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Abstract

Significance: The lung is a unique organ, as it is constantly exposed to air, and thus it requires a robust
antioxidant defense system to prevent the potential damage from exposure to an array of environmental insults,
including oxidants. The peroxiredoxin (PRDX) family plays an important role in scavenging peroxides and is
critical to the cellular antioxidant defense system.
Recent Advances: Exciting discoveries have been made to highlight the key features of PRDXs that regulate the
redox tone. PRDXs do not act in isolation as they require the thioredoxin/thioredoxin reductase/NADPH,
sulfiredoxin (SRXN1) redox system, and in some cases glutaredoxin/glutathione, for their reduction. Further-
more, the chaperone function of PRDXs, controlled by the oxidation state, demonstrates the versatility in redox
regulation and control of cellular biology exerted by this class of proteins.
Critical Issues: Despite the long-known observations that redox perturbations accompany a number of pul-
monary diseases, surprisingly little is known about the role of PRDXs in the etiology of these diseases. In this
perspective, we review the studies that have been conducted thus far to address the roles of PRDXs in lung
disease, or experimental models used to study these diseases. Intriguing findings, such as the secretion of
PRDXs and the formation of autoantibodies, raise a number of questions about the pathways that regulate
secretion, redox status, and immune response to PRDXs.
Future Directions: Further understanding of the mechanisms by which individual PRDXs control lung in-
flammation, injury, repair, chronic remodeling, and cancer, and the importance of PRDX oxidation state,
configuration, and client proteins that govern these processes is needed. Antioxid. Redox Signal. 31, 1070–1091.
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Historical Overview

In 1988, the first peroxiredoxin (PRDX) was described
in Saccharomyces cerevisiae as an unknown protein that

protected enzymes from thiol oxidative inactivation in the
presence of reducing agents such as dithiothreitol or beta-
mercaptoethanol (69). The isolated protein did not appear
to have any catalase, glutathione peroxidase, or superoxide
dismutase activity. Instead it was originally thought to me-
tabolize sulfur radicals and thus was named thiol-specific
antioxidant (TSA). It was later discovered that yeast cells
lacking TSA were viable under normal conditions; however,

if TSA-deficient cells were grown in the presence of various
peroxides, they showed a significantly decreased growth rate
compared with wild type counterparts (21). In 1993, the se-
quence of the human TSA analog, TSA protein (PRP, now
known as PRDX2), was compared with a human gene se-
quence database. PRP was found to share homology with
several other proteins whose function had not been described,
all of which had two highly conserved regions surrounding
cysteines (98). In 1994, the sequence of TSA was compared
across 11 different organisms from all 5 animal kingdoms, 26
genes were identified with similar conserved regions sur-
rounding 1 of the 2 cysteine residues (23, 24). While the
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amino-terminal cysteine was conserved in all 26 genes, the
carboxy-terminal cysteine residue was not conserved in 6 of
the genes. In 1994, the same group published the first article
showing that a yeast PRDX homologue was a thioredoxin-
dependent peroxidase. It was in this article that the name
‘‘peroxiredoxin’’ was first suggested for this family of pro-
teins, which directly reduces hydrogen peroxide (H2O2) (19).
It was clear that PRDXs were thiol peroxidases, but not all
members of the family use thioredoxin for regeneration.
Therefore, previously suggested names such as thioredoxin
peroxidase were not correct. As Rhee et al. stated regarding the
creation of the name ‘‘peroxiredoxins’’ in his 2005 review,
‘‘peroxi-indicates the nature of the substrate reduced, -redoxin
rhymes with thioredoxin and glutaredoxin (GLRX), which
also contain redox-sensitive cysteines that undergo oxidation–
reduction cycles during protein function (147).’’ It was pos-
tulated that the differences in the sequences of the PRDX
family were likely due to differences in the mechanism in-
volved in H2O2 reduction.

The PRDX Catalytic Cycle

Six PRDXs are found in humans and can be subdivided
into three distinct classes based on their reaction mechanisms:
2-Cys, atypical 2-Cys, and 1-Cys. Four are 2-Cys PRDXs
(PRDX1–4), one is an atypical 2-Cys PRDX (PRDX5), and
one is 1-Cys PRDX (PRDX6) (Fig. 1). The 2-Cys PRDXs

have conserved amino- and carboxy-terminal cysteines that
are separated by 121 amino acids (147) (Fig. 2). The 2-Cys
PRDXs reduce H2O2 by donating an electron from the per-
oxidatic cysteine (amino-terminal) to the H2O2 molecule.
This reaction releases water and generates a sulfenic acid
intermediate state of the peroxidatic cysteine. The resolving
cysteine (carboxy-terminal) of another PRDX monomer then
interacts in a head to tail configuration with the oxidized
peroxidatic cysteine to form an intermolecular disulfide bond
and releases another molecule of water (153). The disul-
fide bonds between peroxidatic and resolving cysteines of
PRDX1–4 are in turn reduced by the thioredoxin/thioredoxin
reductase/NADPH (TXN/TXNRD/NADPH) system (Fig. 1A).

PRDX5 lacks the typical resolving cysteine found in the
first four members of the family and functions through an
atypical 2-Cys mechanism. PRDX5 has the amino-terminal
conserved cysteine at residue 47 and 2 more cysteines, Cys72
and Cys151. It is believed that PRDX5 functions through a
unique disulfide shuffling mechanism where after the per-
oxidatic cysteine (Cys47) reduces H2O2, the resulting sulfe-
nic acid intermediate is resolved by the formation of an
intramolecular disulfide bond with Cys151. This disulfide
bond is then rearranged to form an intramolecular disulfide
bond between Cys47 and Cys72 that can subsequently be
reduced by TXN (44) (Fig. 1B).

PRDX6 lacks the conserved carboxy-terminal resolving
cysteine found in the 2-Cys PRDXs and is the only 1-Cys

FIG. 1. PRDX reaction mechanisms. (A) The peroxidatic cysteine(Per) of the PRDX reacts with H2O2 to release H2O
and form a sulfenic acid (SOH) intermediate. The sulfenic acid intermediate is resolved when the resolving cysteine of the
second monomer to form an intermolecular disulfide bond. The disulfide bond is reduced by TXN or another client protein
(X), regenerating the PRDX. (B) The reaction mechanism of PRDX5 an atypical 2-Cys PRDX. The peroxidatic cysteine of
PRDX5 interacts with H2O2 to form an SOH intermediate. The SOH intermediate then forms an intramolecular disulfide
bond with Cys151. This disulfide bond is then rearranged to a disulfide bond between the peroxidatic cysteine and Cys72.
Similar to the classical 2-Cys PRDXs, the disulfide bond is reduced typically by TXN or another client protein (X). (C) The
1-Cys PRDX mechanism of PRDX6. PRDX6 reacts with H2O2 to form an SOH intermediate. This SOH intermediate is
recognized by GSTP with GSH bound, which catalyzes the S-glutathionylation of the peroxidatic cysteine (–SSG). The
glutathionylated PRDX6 then interacts with another GSH moiety to release oxidized GSH (GSSG) and regenerate the
reduced PRDX6. GSH, glutathione; GSSG, glutathione disulfide; GSTP, glutathione-S-transferase Pi; H2O2, hydrogen
peroxide; PRDX, peroxiredoxin; TXN, thioredoxin.
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PRDX in humans. PRDX6 was found to have phospholipase
A2 (PLA2) activity before it was identified as a PRDX (70,
124). Contrasting other PRDXs, PRDX6 can reduce phos-
pholipid hydroperoxides in addition to other organic hydro-
peroxides and H2O2. Instead of TXN, the electron donor used
by PRDX1–5, PRDX6 uses glutathione (GSH) as an electron
donor to reduce hydroperoxides (Fig. 1C). The aforemen-
tioned phospholipase activity that is unique to PRDX6 plays
an important role in lung surfactant homeostasis and degra-
dation of internalized dipalmitoylphosphatidylcholine (156),
as further described below. A glutathione-S-transferase Pi
(GSTP)-catalyzed reaction is currently believed to catalyze
the first step in the reduction of the sulfenylated peroxidatic
cysteine of PRDX6 (103). GSTP was shown to bind to the
sulfenic acid form of Cys47 (PRDX6-SOH) and in turn S-
glutathionylates the active site cysteine (103). Free GSH in
turn interacts with the glutathionylated cysteine to regenerate
the reduced peroxidatic cysteine, releasing glutathione dis-
ulfide (103). Mutation of the residues involved in the GSTP-

PRDX6 binding interface reduces peroxidase activity and
dimerization of PRDX6 (144, 145, 193), suggesting a role of
GSTP-mediated S-glutathionylation in the peroxidatic cycle
of PRDX6. Relevant to this perspective on lung disease, it is
noteworthy that compared with other PRDXs, PRDX6 ex-
pression is highest in lung tissue (78), and PRDX6 expres-
sion in lung is higher than other organs (151). Similarly,
GSTP expression also is prominent in lung tissue, notably in
epithelial cells where PRDX6 also is present (78). A role for
S-glutathionylation in the regeneration of other PRDXs
(notably PRDX 1 and 2), and their protection against over-
oxidation, has also been shown (22). The active site Cys
residues of PRDX2 can form stable mixed disulfides with
GSH, via a sulfenic acid intermediate that is in turn S-
glutathionylated, preventing overoxidation (see the PRDX
Inactivation section). Reaction with GLRX in turn regener-
ates the peroxidase activity of PRDX2. Thus, GSH and
GLRX provide an alternative mechanism to TXN and
TXNRD to regenerate catalytically active PRDX2 (138).

FIG. 2. Sequence align-
ment of the human PRDX
family members. Black
boxes indicate regions of
high similarity. Gray boxes
denote amino acids with
similar properties. Red se-
quences indicate the mito-
chondrial transit peptide,
which is cleaved after en-
trance into the mitochondria.
Blue sequence indicates ER
signal peptide, which is
cleaved after translation of
PRDX4 into the ER lumen.
Green sequence is the lyso-
somal targeting sequence in
PRDX6. *: conserved amino-
terminal peroxidatic cysteine.
#: conserved carboxy-terminal
resolving cysteine. ER, endo-
plasmic reticulum. Color
images are available online.
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Oligomerization of PRDXs

Originally it was believed that 2-Cys PRDXs formed di-
mers through the disulfide bond formed between the resolv-
ing cysteine of one monomer with the peroxidatic cysteine of
a neighboring monomer during the catalytic cycle (25).
However, it was later shown that PRDXs form dimers
through noncovalent interactions between the monomers
(178). The first PRDX decamers were described in 1969 by
transmission electron microscopy, where complexes with 10-
fold symmetry were observed (48). PRDX1, 2, and 4 tend to
form decamers, while mitochondrial PRDX3 forms dodeca-
mers (139) that can self-assemble into high-molecular-
weight oligomeric forms (187).

Overoxidation of 2-Cys PRDXs results in the formation of
higher order decameric structures, which have been shown to
gain molecular chaperone activity, do not require peroxidase
activity, and protect protein substrates from thermally in-
duced aggregation, akin to heat shock proteins (56, 96, 119)
(Fig. 3). Thus, the cellular protective effects of PRDXs are
not limited to the removal of peroxides, as they also directly
protect proteins from irreversible denaturation (22). The
factors influencing decamer and higher order formations of
PRDXs are not fully understood and it is important to note
that not all structural transitions under varying peroxide
levels are identical between typical 2-cys PRDXs (141). It is
believed that PRDXs in vivo cycle between dimer and dec-
amer formations, with decamer formation being favored in
the reduced and overoxidized conformations (1, 96, 178)
(Fig. 3). The intermolecular disulfide bond between the
peroxidatic and resolving cysteine of dimerized monomers
requires a conformational unwinding of the active site alpha
helix that results in a destabilization of the decamer formation

(152). It is possible that the shift from decamer to dimer
facilitates the reaction between PRDXs and client proteins,
such as TXN, in the catalytic cycle to regenerate reduced
PRDX. It has been proposed that the dimer and decamer dy-
namic is modulated by pH, where at higher pH, PRDXs have an
exposed active site loop interfering with decamer formation,
while at lower pH, the active site loop is locked down favoring
decamer formation (121). S-glutathionylation of PRDX1 at
Cys83 converts the decameric PRDX to its dimers with the loss
of chaperone activity. Cys83 is located at the putative dimer–
dimer interface and it plays a role in stabilizing the hydro-
phobic interaction required for decamer formation (22). The S-
glutathionylation of cysteine residues that are in close prox-
imity to the dimer–dimer interface in the decamer structure
suggests a mechanism by which cells regulate the chaperone
activity of PRDXs by inhibiting decamer formation via S-
glutathionylation.

PRDX Inactivation

PRDXs are unusual H2O2 scavenging enzymes in that they
are inactivated by high concentrations of their substrates,
peroxides. Under conditions of increased H2O2 concentra-
tions, a second H2O2 moiety can interact with the peroxidatic
cysteine before it has resolved the sulfenic acid intermediate
to an intermolecular disulfide bond. This interaction results in
the sulfinic (SO2H) modification of the peroxidatic cysteine
(142, 186). The sulfinic acid forms of PRDXs do not have
peroxidase activity, as the peroxidatic cysteine in the sulfinic
acid state will not react with the resolving cysteine to form a
disulfide bond. The inactivation of PRDXs in settings of in-
creased H2O2 seems counterproductive. To explain this

FIG. 3. PRDX oligomerization. Under certain conditions, 2-Cys PRDXs can form higher molecular weight structures.
Reduced PRDXs can form decamers that have increased peroxidase activity. Overoxidation of the peroxidatic cysteine to
the sulfinic acid (SO2H) form leads to a stabilization of decamers, which have no peroxidase activity but have increased
chaperone activity. SRXN1 reduces overoxidized PRDXs, destabilizing the decamer formation and promoting dimers.
PRDX3 forms dodecamers, as seen on the right, but single decamers are shown for clarity. SRXN1, sulfiredoxin.
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phenomenon, the ‘‘floodgate theory’’ was developed in 2003,
stating that this inactivation of PRDXs allows H2O2 to ac-
cumulate and execute signaling functions (179). It has also
been proposed that inactivation of PRDXs frees TXN to in-
teract with other critical substrates that were oxidized during
an increased oxidative state (39). PRDXs can also be irre-
versibly hyperoxidized to the sulfonic acid state (–SO3H);
however, this hyperoxidation does not appear to occur
spontaneously from the sulfinic acid state (–SO2H) of PRDX
(56, 96). Overoxidized PRDXs no longer function as perox-
idases, but they have been shown to have greatly increased
chaperone activity (96). Of the mammalian 2-Cys PRDXs,
PRDX3 has four differing amino acids in the conserved re-
gion downstream of the resolving cysteine, which confer a
decreased susceptibility to overoxidation (141). When this
sequence was cloned into human PRDX2, it significantly
decreased the overoxidation of recombinant PRDX2 in re-
sponse to peroxide treatment (141). This implies that the shift
from active to inactive overoxidized forms is regulated and
has evolved to be different in each PRDX and suggests a key
functional relevance of PRDX overoxidation.

Addition of overoxidized inactivated PRDXs to cell lysates
from mammalian cells quickly resulted in reduction of the
sulfinic acid modification of the peroxidatic cysteine, re-
generating the active PRDX (175). It was later discovered that
this process is facilitated by sulfiredoxin (SRXN1), which re-
duces the sulfinic acid in 2-Cys PRDXs in an ATP-dependent
manner, regenerating the active enzyme (9). SRXN1 has dif-
ferent affinities for the 2-Cys PRDXs (172, 176). Using surface
plasmon resonance, the PRDX with the highest binding af-
finity for SRXN1 was shown to be PRDX4 (171). Interest-
ingly, PRDX4 is believed to reside within the endoplasmic
reticulum (ER), whereas SRXN1 is a cytosolic protein (171).
These observations raise questions about the trafficking of
PRDX4 to enable the interaction between ER-located PRDX4
and cytosolic SRXN1. SRXN1 has been shown to translocate
to the mitochondria during oxidative stress (127), however,
translocation of SRXN1 to the ER has not been shown thus far.

The peroxidase activities of PRDXs can also be affected
via phosphorylation. In response to growth factor stimula-
tion, PRDX1, but not PRDX2, was transiently inactivated via
an SRC kinase-mediated tyrosine phosphorylation at
Tyrosine-194 (97, 177). A role of NOX1 in the activation of
SRC kinase and subsequent phosphorylation of PRDX1 was
demonstrated (Woo and colleagues). Recent studies from our
laboratories demonstrated activation of SRC via sulfenyla-
tion of Cys185 and Cys277 in response to NADPH oxidase-
dependent signaling (49).These collective findings suggest
that H2O2 can promote inactivation of PRDX1 through oxi-
dative activation or SRC, and subsequent phosphorylation of
PRDX1, thereby promoting further accumulation of H2O2.
H2O2 plays an important role in growth factor signaling, and
it is likely that this localized inactivation of PRDX1 is nec-
essary to allow H2O2-mediated oxidation of signaling proteins.
During cell division, PRDX1 is phosphorylated at Thr-90 by
CDK1 at regions close to the mitotic spindle. The centrosome-
bound phosphatase cell division cycle 14B (CDC14B) is sus-
ceptible to inactivation through oxidation by H2O2. The local
PRDX1 inactivation enables localized H2O2 concentrations to
increase and facilitates the oxidative inactivation of CDC14B
(97). Later in the cell cycle, centrosome-localized PRDX1 is
dephosphorylated and reactivated by okadaic acid-sensitive

phosphatases (97). The reactivation of PRDX1 decreases lo-
calized H2O2 levels enabling the reactivation of CDC14B.
These findings show the spatial and temporal regulation of
PRDX activity throughout the cell cycle to propagate H2O2-
mediated signaling. PRDX1 can also be phosphorylated by the
tumor suppressor, mammalian sterile twenty 1 and 2 (MST1
and MST2) at Thr-90 and Thr-183 leading to its inactivation
(146). MST1 can be activated by H2O2 (92), pointing to a
feedforward loop between MST1 and PRDX1. Activation of
MST1 via oxidation results in inactivation of PRDX1 via
phosphorylation, leading to sustained oxidative signaling (146).
Contrary to the Thr and Tyr phosphorylation leading to the
inhibition of peroxidase activity, Ser32 phosphorylation has
been shown to enhance the peroxidase activity of PRDX1 (196).

The 1-Cys PRDX6 can also be phosphorylated (29, 143).
PRDX6 is phosphorylated by extracellular signal-regulated
kinase (ERK) and P38, causing an increase in PLA2 activity
due to conformational change that exposes a hydrophobic
residue and enhances phospholipid binding (143, 180). The
phosphorylation of PRDX6 also increases its localization to
the cell membrane and enhanced PLA2 activity aids in the
activation of the NADPH oxidase, NOX2 (29). Similar to
observations with NOX2, PRDX6 also promotes activation
of NOX1 through interaction of the SH3 domain of NOX
activator 1 and requires PRDX6’s PLA2 and peroxidase ac-
tivities (84). These findings demonstrate that PRDXs enhance
NOX activities and point to the exquisite feedback regulation
through which NOX regulates PRDX, and PRDX in turn
promotes NOX activation to sustain redox-based signals.

Cysteines in PRDX1, PRDX2, and PRDX6 can be modi-
fied through S-glutathionylation, the addition of the tripep-
tide moiety GSH to a protein cysteine residue. As discussed
earlier, PRDX6 is S-glutathionylated in a GSTP-catalyzed
reaction that is part of its catalytic cycle (103, 144). GLRX-
mediated deglutathionylation of catalytic site cysteines in
PRDX1 and 2 regenerated peroxidase activity (138). In-
triguingly, a role of SRXN1 in deglutathionylation of PRDX1
has been shown via the formation of an S-glutathionylated
SRXN1 intermediate (132), which in yeast was regenerated
via the GLRX/GSH system (10). Besides the roles of GLRX
in the regeneration of S-glutathionylated PRDXs and S-
glutathionylated SRXN1, GLRX also is important in the re-
generation of S-glutathionylated TXN (43). Under conditions
of oxidative stress, a two-disulfide form of TXN, containing
an active site disulfide (Cys32–Cys35) and a nonactive site
disulfide (Cys62–Cys69), was observed. Inactivation of TXN
is believed to be important for the transmission of oxidative
signals. The nonactive site disulfide of TXN was shown to
S-glutathionylated and subsequently could be reduced via the
GLRX/GSH system, leading to reactivation of TXN (43).
These intriguing observations suggest that the PRDX, TXN,
GLRX, and SRXN1 cellular redox systems do not act inde-
pendently but operate in a highly coordinated manner to
control each other’s function to restrict or promote redox-
based signals.

S-glutathionylation of PRDXs can also occur at cysteine
residues outside of the catalytic site (132). As described above,
S-glutathionylation of PRDX1 at Cys83 disrupts the formation
of decamers and favors dimer formation with concomitant loss
of chaperone activity (133). A redox proteomic screen to
identify S-glutathionylated proteins secreted following stim-
ulation of macrophages with lipopolysaccharide (LPS) or
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A549 lung cancer cells with influenza virus identified PRDX1,
PRDX2, and TXN as secreted S-glutathionylated proteins
(30). The same group also showed that S-glutathionylated
PRDX2, along with TXN, can act as a danger signal to en-
hance inflammation, and suggested that the proinflammatory
action of released PRDX2 and TXN involved modification of
the redox status of cell surface receptors involved in proin-
flammatory signaling (149). Toll-like receptor 4 (TLR4) is a
putative target in the propagation of proinflammatory sig-
naling, due to the documented binding of PRDX1, 2, and 5 to
TLR4 (75, 101, 148), as discussed below.

Comparison of Human PRDX Domains

Each of the six PRDXs has highly conserved regions with a
sequence homology of >70% between the first four family
members (PRDX1–4). The most highly conserved regions
flank the peroxidatic cysteine (amino-terminal), which is
conserved in all PRDX members (Fig. 2, ‘‘*’’). The resolving
cysteine (carboxy-terminal) found in PRDX1–4 is equally
well conserved among the 2-Cys PRDXs (Fig. 2, ‘‘#’’).

PRDX1 and 2 are cytosolic proteins, while PRDX3 and 5
are imported into the mitochondrial matrix by a mitochondrial
localization signal in their N-terminus comprising alternating
acidic and hydrophobic residues (Fig. 2, red). PRDX4 is ER-
localized and the membrane signal peptide is located in the
large stretch of hydrophobic residues in the N-terminal (Fig. 2,
blue). This signal peptide is cleaved once PRDX4 is translated
into the ER lumen. PRDX4 does not possess a KDEL sequence
for ER retention but is believed to be kept in the ER by
chaperone proteins (62, 185); however, PRDX4 can also be
secreted (108, 129). It is not currently known what conditions
determine whether PRDX4 is retained in the ER, or secreted
from the cell, or whether PRDX4 localization is a cell type-
dependent attribute. The aforementioned ability of SRXN1, a
cytosolic-localized protein, to reduce the sulfinic acid form of
PRDX4 also raises questions about the processes and signals
that regulate the trafficking of PRDX4. PRDX6 is found pre-
dominantly in the cytosol, but a fraction is found in lysosomes,
due to its lysosomal targeting sequence (Fig. 2, green) (157).

Signaling via PRDX Relays

Recent studies have illuminated a cardinal role of PRDXs
in redox-based signaling through relays (46, 51, 122, 130,
155, 158, 181, 195). Cysteine residues are highly conserved
throughout all five kingdoms of species and have a wide
range of H2O2 reactivity, depending on solvent exposure,
neighboring residues, and protein structure. However, there is
no clear consensus about how cysteines in redox-regulated
proteins are oxidized by H2O2. Modeling of the oxidized
amino acids in transcription factors that are redox reactive
predicts a relatively high reaction rate constant (k around
101–102 M-1 s-1) for H2O2 (106). It was hypothesized that
there must be specially localized regions of increased H2O2

concentrations where these redox-regulated transcription
factors are localized to enable their direct H2O2-mediated
oxidation. Regions of high H2O2 likely exist in cells in areas
close to NADPH oxidases who produce H2O2 and near
aquaporins in the cell membrane where H2O2 is imported into
cells; however, mathematical modeling studies do not sup-
port the existence of such locations in the cell (163). Alter-
natively, it was proposed that thiol peroxidases that have a

very high reactivity toward H2O2 act as a relay through which
they pass their oxidizing equivalents to downstream redox-
regulated proteins. The high abundance of PRDXs can make
up as much as 1% of soluble total proteins (20), and their high
reactivity toward H2O2, k around 105–108 M-1 s-1, makes
PRDXs ideal targets for H2O2-mediated redox relays (137,
158, 174). PRDXs are then able to pass their oxidative
equivalent to a client protein, typically though disulfide bond
formation, thus propagating the redox signaling cascade and
regenerating the PRDX to its reduced state.

In 2002, the first mechanism for the thiol oxidation of a
target protein by a thiol peroxidase was described in yeast
(40). The first indication of redox signaling via PRDXs in
mammals was the role of PRDX1 in redox signaling via
apoptosis signaling kinase 1 (ASK1) (57). During oxidative
stress induced by H2O2, PRDX1 has been shown to catalyze
the oxidation of ASK1 to its active state, and to fully activate
the ASK1/P38 pathway in response to H2O2 (57). More re-
cently, PRDX1 has been identified in a redox relay regulating
the mammalian fork head box transcription factor of the O
class 3 (forkhead box O3 [FOXO3]) (51). Under conditions
of oxidative stress induced by H2O2, a PRDX1 dimer forms a
trimer with FOXO3 through disulfide bond formation. The
binding of PRDX1 to FOXO3 inhibits the transcriptional
activity of FOXO3 by inhibiting the nuclear translocation. If
PRDX1 is overoxidized, then this interaction is inhibited, and
FOXO3 can traffic to the nucleus and become activated via
MST1, JNK, or p38 (51).

A relay between PRDX2 and signal transducer and acti-
vator of transcription 3 (STAT3) also has been documented.
PRDX2 modifies the transcription factor STAT3 by cata-
lyzing the addition of an inhibitory disulfide bond (155). On
stimulation with H2O2, PRDX2 forms a mixed disulfide in-
termediate with STAT3, which is then resolved to result in an
active reduced PRDX2 and oxidized STAT3 (155). Oxidized
STAT3 forms oligomers that attenuate its transcriptional
activity. PRDX2 has also been suggested to be involved in a
redox relay involving protein deglycase 1 (DJ-1), also known
as Parkinson disease protein (7, 46). Under conditions of
H2O2 stress, a disulfide link between PRDX2 and DJ-1 is
observed before the disulfide bond-dependent dimerization
of DJ-1, likely through a thiol/disulfide exchange.

The ER-localized PRDX4 can donate disulfide bonds to
naive proteins that are being folded. When ER-oxidoreductin-
1 (ERO1) is genetically deleted, thus inhibiting the ERO1-
dependent disulfide bond formation via protein disulfide
isomerases (PDIs), oxidized PRDX4 can donate its disulfide
bond to various PDIs to allow ER protein folding to proceed
(195). The ability of PRDX4 to perform thiol/disulfide ex-
changes with members of the PDI family in the ER is partic-
ularly intriguing, because it suggests at an alternate recycling
mechanism for PDIs that could be H2O2 dependent (162).
PRDX4 has different binding affinities for the various mem-
bers of the PDI family (150), suggesting that redox-regulated
recycling mechanisms could have specificity in protein folding
in ER under oxidative stress conditions. PRDX4 can directly
catalyze the addition of disulfide bonds to target proteins
within the ER, thus linking target protein activity, function,
and trafficking to the oxidative state of the ER. The PRDX4-
mediated addition of non-native disulfide bonds has been
identified for glycerophosphodiester phosphodiesterase 2
(GDE2), also known as GDPD5 (181). Within the ER, PRDX4
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forms a non-native disulfide bond in GDE2 which inhibits the
trafficking of GDE2 to the cell surface.

Implications of PRDXs in Lung Diseases

Changes in the redox environment have long been impli-
cated in the pathophysiology of a myriad of lung diseases that
include lung cancer, asthma, acute lung injury (ALI), chronic
obstructive pulmonary disease, and pulmonary fibrosis. While
originally thought to be merely damaging, oxidants are now
known to regulate the structure and function of proteins
through oxidation of cysteines. Dysregulation of oxidant pro-
duction, and consequently, protein cysteine oxidations may
contribute to the pathogenesis of lung diseases. As described
above, PRDXs are major regulators of the cellular redox en-
vironment and impact protein cysteine oxidation directly
and indirectly. In the next sections we summarize some of the
studies conducted thus far that have implicated PRDX in the
pathogenesis of lung diseases, emphasizing lung cancer, me-
sothelioma, pulmonary fibrosis, and ALI, given that most of the
studies involving PRDX have been conducted in those diseases
and that efforts from our laboratories have focused there.

Lung cancer

Lung cancer is the leading cause of cancer-related mor-
tality in the United States and worldwide. Despite significant
progress over the past decade in the early detection and
treatment of lung cancer, the 5-year survival rate of patients
with advanced disease remains <20% (58). Lung cancer is
classified into two major subtypes: small-cell and three types
of nonsmall-cell lung cancer (NSCLC), including adenocar-
cinoma, squamous-cell carcinoma, and large-cell carcinoma
(86). Adenocarcinoma is the most common form of lung
cancer, and *30% of lung adenocarcinoma contains onco-
genic single-point mutations of KRAS (115).

A possible contribution of PRDX in lung cancer is not
surprising given the increase of oxidative stress in lung tu-
mors, especially H2O2, that was first shown in 1980 (128,
161). Mitochondrial oxidant generation was shown to be
increased and essential for KRAS-induced cell proliferation
and tumorigenesis (173). The oncogenes, KRAS-G12D,
BRAF-V619E, and MYC-ERT2, increased the transcription
of nuclear erythroid 2-related factor 2 (NRF2 also known as
NFE2L2) to stably elevate the basal NRF2-dependent anti-
oxidant program (41). The transcription factor NRF2 plays a
prominent role in lung cancer pathogenesis. Mutations that
disrupt the NRF2–KEAP1 interaction to stabilize NRF2 and
increase the constitutive transcription of NRF2 target genes
have been found, including in patients with NSCLC, where it
has been shown that NRF2 activation allows tumors to
combat the enhanced oxidative burden of tumor environment
(41). A number of PRDX genes, as well as SRXN1 and GSTP
that are discussed herein, are transcriptional targets of NRF2
(5, 34, 71, 116, 160).

The first link between PRDX and lung cancer was made in
2001 when a proteomic screen of potential biomarkers for
lung cancer showed a significant increase in PRDX1 ex-
pression in A549 lung adenocarcinoma cells compared
with controls (26). In 2004, a comprehensive analysis of
PRDX mRNA and protein levels was conducted in squa-
mous and adenocarcinomas comparing findings with normal
control tissue from the same patient. Reverse transcription-

polymerase chain reaction showed increases in PRDX1, 2, 4,
and 6, whereas Western blot analysis showed increased
PRDX1 and 4 protein levels, with variations in expression of
PRDXs between tumor subtypes (93). Similarly, assessment
of PRDX transcript levels in lung adenocarcinoma or squa-
mous cell carcinoma, and adjacent healthy tissue, using a
larger cohort of patients annotated in The Cancer Genome
Atlas database (Broad Institute), revealed increases in
PRDX1–4 transcripts in the tumors compared with nontumor
adjacent tissue, while PRDX5 transcripts decreased and
PRDX6 was unchanged (Fig. 4A, B).

PRDX1 was upregulated in NSCLC based on evaluation
via immunohistochemistry, Western blot, and proteomic
screenings that aimed to identify protein signatures of lung
cancer (26, 59, 65, 68, 95, 131, 134, 135). In settings of a
KRAS mutation, PRDX1 was upregulated in an NRF2-
dependent manner (134). The increased expression of
PRDX1 in NSCLC tumors was associated with an increased
risk of metastasis and tumor differentiation (95). Using A549
lung adenocarcinoma cells, it was demonstrated that knock-
down of PRDX1 resulted in less Matrigel invasion and colony
forming ability in soft agar, while overexpression of PRDX1
promoted Matrigel invasion and colony forming ability (59),
consistent with a potential protumorigenic role of over-
expressed PRDX1.

In contrast to these observations, absence of the PRDX1
gene in mice expressing the KRAS-G12D driver mutation
resulted in an increase in tumor number and size, which ap-
peared to be linked to the oxidative activation of the ERK/
cyclin D1 pathway (134). Similarly, absence of PRDX1 in-
creased susceptibility to Ras-induced breast cancer (17). In-
terestingly, A549 lung cancer cells were shown to secrete
PRDX1 (27, 28, 52), and autoantibodies against PRDX1 were
found in the sera of patients with NSCLC, suggesting that cir-
culating PRDX1 or the autoantibody against PRDX1 is a po-
tential biomarker for lung cancer (27). How the redox state of
PRDX1 or its configuration (monomer, dimer, etc.) affects its
secretion or antigenicity remains unclear. In addition, the rele-
vance of these autoantibodies in the pathogenesis of lung cancer
also requires additional studies.

A number of putative targets of PRDX1-mediated redox
regulation potentially relevant to lung cancer have been
identified. PRDX1 has been shown to play a role in the regu-
lation of AKT signaling via oxidation of the tumor suppressor,
phosphatase and tensin homologue (PTEN). PTEN inactiva-
tion has been linked with resistance to epidermal growth factor
receptor (EGFR)-tyrosine kinase inhibitor therapy and lower
survival in NSCLC patients (136). The tumor suppressor,
PTEN, is susceptible to reversible inactivation via oxidation by
H2O2 (91). Under steady-state conditions, PRDX1 binds to
PTEN and prevents the inhibition of PTEN’s phosphatase
activity by preventing a disulfide bond from forming in the N-
terminal region (17). Under conditions of increased oxidative
stress, PRDX1 is overoxidized and forms decamers, releasing
from PTEN and allowing the inhibition of the active site of
PTEN through disulfide bond formation. Inactivation of PTEN
leads to increased AKT signaling and oncogenesis (17, 125).

PRDX1 has also been implicated in controlling the activity
of dual-specificity phosphatases (DUSP)-1 and -10 (also
known as MAP kinase phosphatase 1 and 5, respectively),
which have been linked to lung cancer (117). Notably, low
DUSP1 levels are associated with a poor clinical outcome in
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patients with NSCLC (105). Interestingly, overexpression of
DUSP1 in gefitinib-resistant NSCLC cells restored gefitinib
sensitivity by inhibiting EGFR signaling and inducing apo-
ptosis, whereas its knockdown in sensitive cells conferred
gefitinib resistance (99). DUSP1 and 10 can inhibit multiple
mitogen-activated protein kinases (MAPKs), including P38,
an activator of cellular senescence (165), and ERK. DUSP1-
mediated inhibition of ERK has been linked to protection in
KRAS-G12V-driven nonsmall-cell lung carcinoma (105).
Binding of PRDX1 to DUSP1 or DUSP10 inhibits oligo-
merization and promotes phosphatase activity toward P38.
Overoxidation of the peroxidatic cysteine of PRDX1 leads to
a dissociation from DUSP1, while increased binding to
DUSP10 (165). Intriguingly, overoxidation of PRDX1-
Cys52 resulted in DUSP1 oxidation-induced oligomerization
and inactivity toward P38, while overoxidation of PRDX1-
Cys52 enhanced the PRDX1:DUSP10 complex that pro-
tected DUSP10-mediated inactivation toward P38. The dif-
ferent binding affinities for DUSP1 and DUSP10 that depend
on the oxidation state of PRDX1 further highlight that sub-

strate sensitivity of PRDX partners depends on the local re-
dox environment and illustrates the precision through which
PRDX oxidations rewire signaling pathways. PRDX1 also is
a binding partner for the transcription factor, FOXO3, a tu-
mor suppressor whose deletion has been linked to lung cancer
(111). In settings of increased oxidative stress, disulfide-
bound heterotrimers linking dimeric PRDX1 to monomeric
FOXO3 are enhanced. Absence of PRDX1 enhances FOXO3
nuclear localization and transcription controlled by the
presence of Cys31 or Cys150 within FOXO3 (51). It remains
unclear precisely how the oxidation state of PRDX1 regulates
substrate specificity toward client proteins in lung cancer
cells and what the implications are for lung cancer biology.
Given that the redox state of PRDX1 regulates its biological
functions, targeted drugs to prevent its overoxidation there-
fore have the potential to elicit biological responses, without
affecting the endogenous function of PRDX1. It is not diffi-
cult to rationalize the aforementioned contradicting effects of
PRDX1 ablation or overexpression in the various lung cancer
models, as the substrate targets of PRDX1 may have varied.

FIG. 4. mRNA expression profile of PRDXs in human lung diseases. (A, B) PRDX RNA-seq expression data were
obtained from The Cancer Genome Atlas. Individual PRDX RNA expression from lung adenocarcinoma (Ad) (n = 533) and
lung squamous-cell carcinoma (Sq) (n = 533) samples were compared with adjacent healthy lung tissue (n = 59). (C, D)
Microarray gene expression was obtained from the Lung Genomics Research Consortium for patients with ILD (n = 194),
COPD (n = 144), and Ctrl (n = 91). Microarray expression from ILD or COPD was compared with healthy controls for each
individual. Results shown as AVG – standard error of the mean. Statistical significance calculated using Mann–Whitney U
Test. *p-value <0.05; **p-value <0.01; ***p-value <0.001; ****p-value <0.0001; ns, no significance. COPD, chronic ob-
structive pulmonary disease; ILD, interstitial lung disease; TPM, transcripts per million. Color images are available online.
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PRDX2 was remarkably increased only in A549/gefitinib-
resistant (GR) cells compared with A549 cells. The elevated
expression of PRDX2 resulted in the downregulation of
reactive oxygen species (ROS) and cell death and upregu-
lation of cell cycle progression in the A549/GR cells. When
PRDX2 mRNA in the A549/GR cells was knocked down,
the levels of ROS and apoptosis were significantly recov-
ered to the levels of controls (85).

PRDX3 was also shown to be upregulated in lung adeno-
carcinoma and this was associated with a loss of expression
of Dachshund family transcription factor 1 (DACH1), which
has been attributed a tumor suppressor function. Over-
expression of DACH1 attenuated PRDX3 expression and
decreased colony forming potential of A549 cells, an effect
that could be overcome by overexpression of PRDX3 (194).

PRDX4 immunohistochemical staining in 142 patients
with stage II NSCLC revealed that positive PRDX4 expres-
sion was significantly correlated with recurrence, and shorter
disease-free survival in patients with early-stage lung squa-
mous cell carcinoma (54). In contrast, decreased immuno-
histochemical staining of PRDX4 in patients with primary
stage I lung adenocarcinoma was also associated with poor
outcomes (154). PRDX4 has also been linked to lung cancer
via association with SRXN1 (172). Strong increases in
SRXN1 immunoreactivity were found in tissue arrays from
patients with squamous and adenocarcinoma (171). The
PRDX4-SRXN1 axis in A549 lung cancer cells plays a role
in activator protein 1 (AP-1) activation. Knockdown of either
PRDX4 or SRXN1 resulted in reduced colony forming units
and cell invasion.

Using a tumor xenograft model in SCID mice, knock down
of SRXN1 resulted in decreased tumor growth, while over-
expression of SRXN1 alone, or SRXN1 in combination with
PRDX4, resulted in tumors that grew faster than those from
control cells (171). A tumor promoting role of SRXN1 was
also shown in studies demonstrating that cigarette smoke
promotes the upregulation of SRXN1, and that genetic ab-
lation of SRXN1 attenuated urethane-induced carcinogenesis
(114). The sulfiredoxin inhibitor, K27 (N-[7-chloro-2-(4-
fluorophenyl)-4-quinazolinyl]-N-(2-phenylethyl)-b-alanine),
led to the accumulation of sulfenylated PRDXs, increased
mitochondrial oxidants, and preferential death of tumor cells
(67), including A549 lung cancer cells (64).

It remains unclear whether PRDX4 was a target of en-
hanced overoxidation following SRXN1 inactivation. In
aggregate, these findings suggest an important role of the
SRXN1/PRDX4 inactivation/reactivation pathway in pro-
tecting lung cancer cells from oxidative stress, and that in-
hibition of SRXN1 may constitute a potential therapeutic
opportunity for the treatment of lung cancer.

PRDX6 was originally linked to NSCLC when auto-
antibodies against PRDX6 were found to be increased, which
corresponded with an increase in serum PRDX6 levels in
patients with squamous-cell carcinoma (184, 192). The role
of PRDX6 in lung cancer is complicated by the fact that it has
both peroxidase and PLA2 activities, as described earlier.
The peroxidase activity of PRDX6 has been linked to A549
cell growth, whereas the PLA2 activity has been linked to
increased invasion and metastasis of lung cancer cells (50).
The overexpression of PRDX6 in implanted lung tumor cells
caused tumors to grow faster than in wild-type control lung
cancer cells, and the tumors showed evidence of increased

AP-1 and MAPK signaling (60, 188). Furthermore, mice
overexpressing PRDX6 show enhanced tumor formation in
the urethane model of lung cancer, in association with
binding of PRDX6 to JAK2 and activation of the JAK2/
STAT3 pathway (189).

A role of PRDX6 in lung cancer development was also
suggested in a mouse model lacking presenilin2 (PS2). Pre-
senilins are the enzymatic components of c-secretase com-
plex that cleaves amyloid precursor proteins, Notch and b-
catenin, and are known to have critical roles in cancer de-
velopment. Mice lacking PS2 were more prone to urethane-
induced lung cancer, and this was associated with enhanced
expression of PRDX6, increased PLA2 and GSH peroxidase
activities, and activation of STAT3. It was speculated that c-
secretase-mediated cleavage at the phospholipase motif site
of PLA2 in PRDX6 causes a decrease in PLA2 activity in
lung from wild-type PS2 expressing mouse lung, but not in
lungs from PS2 knockout mice (190). These findings point to
a unique role of the PLA2 activity of PRDX6 in lung tu-
morigenesis. A recent study using the anti-EGFR therapeutic,
gefitinib, in a xenograft model suggested that serum PRDX6
constitutes a potential biomarker of response to anti-EGFR
treatment (53), although additional larger scale studies will
be required to substantiate that claim.

Malignant mesothelioma

Malignant mesothelioma (MM) is a rare but devastating
tumor that develops on the mesothelial cell layer lining the
peritoneal and pleural cavities (164). The pathogenesis of
MM, which is most often linked to occupational exposure to
asbestos, is characterized by loss of tumor suppressor genes,
chronic inflammation, and a long latency period. MM is re-
markably resistant to common chemotherapies, and average
survival times after diagnosis are measured in months, not
years. Laboratory studies with animal and cell culture models
show that asbestos fibers induce DNA damage, oxidative
stress, and chronic inflammation, and antioxidants have been
shown to ameliorate many of the effects of asbestos on cells
and tissues (7).

MM is considered a ‘‘reactive oxygen species (ROS)-
driven tumor’’ due to changes in molecular and cell signaling
signatures that support redox-dependent adaptations required
for the proliferation and survival of MM tumor cells (31).
Cultured MM cells produce increased levels of mitochondrial
and cytoplasmic ROS compared with normal mesothelial
cells and compounds that perturb cytoplasmic and mito-
chondrial redox status show antitumor activity in MM cell
and animal models, indicating the importance of maintaining
a balanced redox environment for survival and proliferation
(35, 126). Assessment of PRDX in MM revealed that
PRDX1–3, 5, and 6 are expressed at moderate to high levels
in MM cells and tumor tissues (73). However, only the mi-
tochondrial TXNRD2–TXN2–PRDX3 axis has been inves-
tigated in detail in MM (35–38, 126).

PRDX3 was identified as a protein of interest in MM when
it was discovered to be a redox-dependent target of the an-
ticancer compound thiostrepton (TS). TS was shown to co-
valently crosslink disulfide-bonded dimers of PRDX3, a
catalytic intermediate formed during H2O2 metabolism in the
mitochondria, in both MM cells in vitro and human MM
xenoplants in vivo (126). Crosslinking of PRDX3 by TS was
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more abundant in MM cells versus normal mesothelial
cells, was potentiated by the addition of the TXN2 inhibitor,
gentian violet (191), and was inhibited by pretreatment with
the sulfenic acid trapping molecule, dimedone (Fig. 5) (126).
In addition, a ‘‘PRDX3 turnover assay’’ consisting of puri-
fied recombinant proteins required for PRDX3 oxidation
and reduction was used to show that PRDX3 catalytic ac-
tivity promoted crosslinking by TS (126). These data provide
evidence that PRDX3 catalytic activity may be increased in
MM tumor cells, and that the disulfide-bonded dimer inter-
mediate of PRDX3 catalysis is the preferred target for TS.
This is of considerable importance, as PRDX3 expression in
MM tissues is not considered to be an appropriate tumor
marker, as it is also expressed in numerous nonmalignant

cells (73). Therefore, PRDX3 enzymatic activity may prove
to be a more appropriate marker of malignancy, and devel-
opment of assays to measure PRDX activity in cells and
tissues may provide novel diagnostic and prognostic bio-
markers.

Crosslinking of PRDX3 by TS led to intolerable increases
in mitochondrial ROS and MM cell death (36, 126). Fur-
thermore, knockdown of PRDX3 expression by siRNA slo-
wed the growth of MM cells, confirming the importance of
PRDX3 in MM cell proliferation. Knockdown of PRDX3 in
MM cells also caused cell cycle arrest in the G2/M phase,
altered cellular metabolism, and increased mitochondrial
fusion, and decreased sensitivity to TS (38), highlighting the
relevance of PRDX3 as a therapeutic target in MM (36).

FIG. 5. Targeting the mitochondrial Prdx III pathway with the redox-dependent compounds TS and GV. (A)
Reaction cycle of Prdx3 dimers; only one reaction center is shown for clarity. (i) The peroxidatic cysteine (SHP) of Prdx3
reacts with one molecule of H2O2 to form a sulfenic acid, which can be further oxidized under high levels of H2O2 to form
sulfinic acid, a modification only reversible by sulfiredoxin (Srx) and ATP. After a local unfolding of the reaction site, the
sulfenylated peroxidatic cysteine reacts with the neighboring resolving cysteine (SHR) on the opposing monomer to form an
intermolecular disulfide bond. Disulfide-bonded dimers of Prdx3 are reduced by Trx2 to regenerate reduced Prdx3. (ii) TS
preferentially reacts with disulfide-bonded dimers of Prdx3 (36), possibly as a consequence of local unfolding of the protein
complex that allows TS access. TS irreversibly crosslinks Prdx3 dimers, inactivating the enzyme and increasing mito-
chondrial oxidant levels. (iii) GV oxidizes Trx2 leading to protease-dependent degradation of Trx2 (191) and the accu-
mulation of Prdx3 disulfide-bonded dimers, thereby potentiating the activity of TS. (B) Schematic SDS-PAGE of Prdx.
Under nonreducing conditions (omitting reductants from the lysis or loading buffers), Prdx3 predominantly migrates as
monomers (23 kD) and oxidized disulfide-bonded dimers (46 kD). Cells treated with H2O2, GV, TS, or TS/GV show varying
increases in oxidized disulfide-bonded dimers, a biochemical readout of the level of Prxd3 oxidation. Under reducing
conditions, oxidized PRDX3 migrate as monomers, as the disulfide bonds of oxidized Prdx3 are reversible. Covalent
crosslinking of PRDX3 by TS is accentuated by GV, resulting in increased levels of the nonreducible Prdx3 dimeric species.
(C) Protein Western blots of mesothelioma cells treated with increasing concentrations of TS, GV, or TS + GV for 18 h.
Extracts were resolved by nonreducing (left) or reducing (right) SDS-PAGE. GV increases the abundance of PRDX3
disulfide-bonded dimers. TS adducts PRDX3 disulfide-bonded dimers, irreversibly crosslinking PRDX3 dimers that cannot
be reduced by small-molecule antioxidants. Images modified and republished from Cunniff et al. (36), with permission
under the terms of the Creative Commons Attribution License. GV, gentian violet; SDS-PAGE, sodium dodecyl sulfate/
polyacrylamide gel electrophoresis; TS, thiostrepton; Trx2, thioredoxin 2.
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Pulmonary fibrosis

Pulmonary fibrosis is an unrelenting progressive disease,
characterized by a loss of normal alveolar architecture, re-
population of alveolar spaces with extracellular matrix, an
overpopulation of activated myofibroblasts, and loss of al-
veolar epithelia. Pulmonary fibrosis is believed to be the
outcome of repeated cycles of injury and lack of adequate
repair that manifests in individuals in their 50–70s, and af-
fects *3 million people worldwide (107). Current therapies
have limited effectiveness to halt progression of idiopathic
pulmonary fibrosis (IPF), leading to death of patients with
IPF within 3–5 years from the time of diagnosis (107).

A number of environmental insults have been shown or
speculated to cause pulmonary fibrosis that include inhalation
of particulates, such as asbestos or silica, smoking, viral in-
fections, and radiation. In some cases, no clear etiology can
be identified in the pathogenesis of fibrosis, leading to the
diagnosis of IPF. In cases of familial IPF, fibrosis develops in
individuals with germ line mutations in certain genes, in-
cluding surfactant protein C (SFTPC), and surfactant protein
A2 (SFTPA2). These genes encode proteins highly expressed
in epithelia, and mutations in these genes result in defects in
protein folding, leading to ER stress (80, 87). However, ER
stress not only occurs in familial IPF but is now recognized as
a common feature of sporadic IPF as well (77).

Besides IPF, a number of other disorders can result in
lethal fibrosis, including systemic sclerosis (SS) and
Hermansky–Pudlak syndrome (HPS). Numerous studies
have linked oxidative stress to the pathogenesis of IPF (15,
16, 32, 72, 74, 83, 109, 118). Perturbations in mitochondria
(12, 120) and, as mentioned earlier, the ER (13) have been
implicated in the pathogenesis of IPF (88), although the ex-
tent to which redox perturbations originating from dysfunc-
tional mitochondria or ER, respectively, contribute to IPF
remains unclear. Similarly, the roles of mitochondrially lo-
calized PRDX3,5 or ER-localized PRDX4 in lung fibrogen-
esis remain unclear.

Microarray analysis of 194 samples from patients with
interstitial lung disease shows a significant increase in
PRDX2,3,4 and a decrease in PRDX6, while chronic ob-
structive pulmonary disease patients showed significant in-
creases in only PRDX2 and 4, suggesting disease-specific
perturbations of PRDXs (Fig. 4C, D). A proteomic screen in
lung tissues from control subjects, patients with IPF, or pa-
tients with fibrotic nonspecific interstitial pneumonia (NSIP,
a fibrotic lung disease with histopathologic features highly
distinctive of IPF and better prognosis) revealed alterations in
expression of two PRDXs, PRDX1 and PRDX6. PRDX1
expression was increased in lungs from both groups of pa-
tients, compared with the control subjects, with higher ex-
pression being apparent in NSIP compared with IPF. PRDX6
was increased in lung tissues of NSIP patients but not in
patients with IPF, suggesting unique disease-specific modu-
lation of these PRDX proteins.

Immunohistochemical evaluation revealed cell type- and
region-specific increases of PRDX1 in settings of fibrosis that
occurred in a disease-specific manner (78). The pathways that
lead to the cell type- and region-specific increases of PRDX1
and the importance of this upregulation require further in-
vestigation. One study investigated the role of PRDX1 in
bleomycin-induced fibrosis and showed that mice deficient in

PRDX1 were more susceptible to bleomycin-induced mor-
tality, in association with enhanced inflammation and fibro-
sis. Deficiency in PRDX1 led to increased levels in F2-
isoprostanes in lung tissue, indicative of enhanced oxidative
stress and increased macrophage migration inhibitory factor
(MIF). The worsened phenotype in PRDX1-/- mice treated
with bleomycin could be attenuated by treatment with the
low-molecular-weight thiol, N-acetyl-l-cysteine, or an in-
hibitor of MIF (63, 78). As mentioned earlier, patients with
SS, an autoimmune disorder, also suffer from pulmonary fi-
brosis. An immunoglobulin G class autoantibody against
PRDX1 was found to be elevated in sera from patients with
SS, and the presence of this antibody was associated with
longer disease duration, more frequent presence of pulmo-
nary fibrosis, and elevated levels of F2-isoprostanes. Im-
portantly, the autoantibody against PRDX1 was shown to
inhibit the enzymatic activity of PRDX1 (55). Collectively,
these findings suggest that in settings of pulmonary fibrosis,
increases in PRDX1 that are observed may reflect an adaptive
response to combat enhanced oxidative stress and protect the
lung tissue. However, in some settings, secretion of PRDX1
and development of autoantibodies may reflect a maladaptive
response that dampens PRDX1’s protective function.

Immunohistochemical evaluation of PRDX2 in lungs from
patients with IPF showed relative increases in expression of
PRDX2 in hyperplastic epithelia, while in contrast, PRDX2
immunoreactivity was relatively low in fibroblast foci, the
hallmark lesion of IPF (166). Evaluation of PRDX2 expres-
sion in lung tissues using Western blots run under reducing
and nonreducing conditions revealed diminished immuno-
reactivity of PRDX2 in lungs from IPF patients, compared
with non-IPF subjects, under nonreducing conditions, while
differences in PRDX2 expression between the groups were
minor, under reducing conditions (166). These observations
suggest that the oxidation state of PRDX2 is altered in lung
tissues from patients with IPF (166). Further studies will
therefore be required to determine the exact redox perturba-
tions of PRDX2 in fibrotic lung tissue. Similar to observa-
tions with PRDX1, autoantibodies against PRDX2 were also
observed in patients with SS (14) although the implications
for PRDX2’s function in these patients also require further
investigation.

Epithelial cell death and lack of epithelial progenitor
function have been recognized as one of the drivers of pul-
monary fibrosis, and the death receptor FAS (CD95) plays a
critical role in that process (3, 47, 81, 82). Previous work from
our laboratories has demonstrated that S-glutathionylation of
Fas cell surface death receptor (FAS) amplifies its proa-
poptotic action, in association with enhanced trafficking to
death inducing signaling complexes and binding to FAS ligand
(FASL) (2). We also showed that stimulation of cells with
FASL induced a rapid overoxidation of PRDX4, suggesting
that a redox perturbation in the ER occurs before apoptosis.
Indeed, S-glutathionylation of FAS was induced during oxi-
dative processing of a latent pool of FAS in the ER, following
protein disulfide isomerase A3-mediated disulfide bridge
formation and GSTP-mediated S-glutathionylation (4). Con-
current production of H2O2 was associated with overoxidation
of PRDX4. Consequently, overexpression of PRDX4 strongly
damped FAS S-glutathionylation, decreased activation of
caspases 8 and 3, and increased survival in epithelial cells
stimulated with FASL (4). Given the importance of epithelial
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apoptosis in the pathogenesis of pulmonary fibrosis, these
findings point to a putative protective role of PRDX4 in lung
fibrogenesis, although additional studies will be required to
formally address this scenario. In support of such protective
role, transgenic overexpression of PRDX4 diminished liver
fibrosis in a model of nonalcoholic steatohepatitis, and type II
diabetes, in association with dampened apoptosis of hepato-
cytes, and decreases in the oxidative stress markers, 8-hydroxy-
2¢-deoxyguanosine and 4-hydroxy-2-nonenal (123).

As discussed earlier, S-glutathionylation of PRDX and
subsequent deglutathionylation by GLRX play a critical role
in the reactivation and regulation of higher molecular weight
complexes of PRDX (22, 138). Although the exact roles of
PRDX in lung fibrosis remain unclear, our laboratories re-
cently illuminated an important role of S-glutathionylation
and GLRX in the pathogenesis of lung fibrosis (3). We
demonstrated that protein S-glutathionylation was increased
in lungs from patients with IPF, compared with non-IPF
subjects, and that this correlated with inactivation of
GLRX. Furthermore, attenuated GLRX activity and in-
creases in oxidized glutathione inversely correlated with lung
function, suggesting a potential contribution of enhanced S-
glutathionylation to the pathogenesis of IPF.

In support of this, the global absence of GLRX greatly
increased the susceptibility of mice to the development of
bleomycin- or adenovirus-expressed active transforming
growth factor beta-induced fibrosis. Conversely, transgenic
overexpression of GLRX, or direct administration of recom-
binant GLRX into airways of mice with existing pulmonary
fibrosis, reversed the existing increases in collagen content,
in association with enhanced collagen degradation, and at-
tenuated apoptosis, in association with diminished S-
glutathionylation of FAS (3). Beyond FAS, the exact targets
for GLRX-mediated deglutathionylation await further study.
For instance, it remains unclear whether GLRX affected the
redox homeostasis or chaperone functions of PRDXs, and
whether this in turn affected fibrogenesis and/or resolution of
disease. In light of the role that GLRX plays in the reduction
of S-glutathionylated high molecular weight PRDX com-
plexes, thereby re-establishing active PRDX, it is conceivable
that inactivation of GLRX may contribute to increases in in-
active PRDXs in settings of lung fibrosis. However, further
studies will be required to address the interplay between
GLRX and PRDX and implications for fibrogenesis.

As mentioned above, the 1-Cys PRDX, PRDX6, is a bi-
functional protein with both PLA2 and peroxidase activities.
It remains unclear to this date whether PRDX6 plays a role in
the pathogenesis of pulmonary fibrosis. In a gamma-radiation
model of pulmonary fibrosis, a carbonylated proteomic
screen revealed PRDX6 as one of the target proteins that was
carbonylated (6), suggesting potentially compromised func-
tion of PRDX6. HPS results from mutations in genes of
membrane trafficking complexes that facilitate delivery of
cargo to lysosome-related organelles, including lamellar
bodies within alveolar type 2 cells in which surfactant com-
ponents are assembled, modified, and stored (76). HPS can
result in lethal lung fibrosis. Using mouse models of HPS,
prominent alterations in surfactant were observed in type II
alveolar epithelial cells, in conjunction with giant lamellar
bodies, early lysosomal stress, late ER stress, and enhanced
apoptosis, findings that were confirmed in tissues from pa-
tients with HPS (102). As mentioned earlier, ER stress and

epithelial apoptosis are prominent features of pulmonary fi-
brosis, suggesting that pathways that culminate in IPF and
HPS may partially overlap. While the role of PRDX6 in fi-
brosis remains unclear, a role of PRDX6 in HPS has emerged,
perhaps not surprising as PRDX6 is found in lamellar bodies
where its PLA2 activity plays a key role in phospholipid
homeostasis (104, 156). Using a mouse model of HPS type 2
(HPS2) lacking the adaptor protein 3 (AP-3) complex, it was
shown that PRDX6 failed to accumulate in lamellar bodies,
concomitant with a loss of PLA2 activity in lamellar bodies.
AP-3-dependent targeting of PRDX6 to lamellar bodies was
shown to require the transmembrane protein LIMP-2/scavenger
receptor class B membrane 2 (SCARB2), and a protein/protein
interaction between LIMP-2/SCARB2 and PRDX6 was shown
to facilitate AP-3-dependent lamellar body trafficking. These
findings suggest that the loss of PRDX6 PLA2 activity con-
tributes to the pathogenic changes in lamellar body phospho-
lipid homeostasis found in a subclass of HPS patients (76). The
PLA2 activity of PRDX6 was attributed to altered lipid ho-
meostasis in this model of HPS2, although it remains unclear
whether its peroxidase activity plays a role in other features of
HPS, or other subtypes, inducing enhanced epithelial apoptosis
or fibrogenesis. Besides the aforementioned interaction be-
tween LIMP-2/SCARB2 and PRDX6, PRDX6 was also shown
to bind to the chaperone protein, 14-3-3e, required for targeting
of PRDX6 to lamellar bodies (156).

As stated above, the sulfenic acid form of the peroxidatic
cysteine of PRDX6 is S-glutathionylated in a reaction cata-
lyzed by GSTP, which is required in the peroxidatic catalytic
cycle of PRDX6 (193). Work from our laboratories has il-
luminated a role of GSTP in pulmonary fibrosis, in associa-
tion with promotion of epithelial apoptosis. As mentioned
earlier, S-glutathionylation of FAS is catalyzed via GSTP-
mediated S-glutathionylation, thereby enhancing FASL-
induced apoptosis in epithelial cells (4). GSTP expression
was prominent in bronchiolar epithelial cells and type II
epithelial cells in nondiseased lung tissue, and lungs from
patients with IPF, where high immunoreactivity was present
in reactive type II epithelial cells that line cysts and in areas of
re-bronchiolization. Mice lacking GSTP were partially pro-
tected from bleomycin- or adenovirus-encoding active trans-
forming growth factor beta-1 (AdTGFB) -induced pulmonary
fibrosis. Direct administration of the clinically relevant GSTP
inhibitor, TLK117, into the airways at a time when fibrosis
was already apparent, attenuated bleomycin- and AdTGFB-
induced remodeling, in association with attenuated S-
glutathionylation and dampened epithelial apoptosis (110).
Additional studies will be required to elucidate whether
oxidized PRDX1 or PRDX6 is a target of GSTP-mediated
S-glutathionylation, and whether this impacts alveolar type
II cell function and fibrogenesis.

Acute lung injury

ALI is described as acute respiratory failure in association
with injury to the vascular endothelium and alveolar epithe-
lium (61). ALI can have many different triggers, which all
lead to the activation of the acute inflammatory response in
the lung (45). During the inflammatory response, activated
neutrophils will pass from the vasculature into the alveolar
space and release cytokines and oxidants (33). The increased
accumulation of oxidants has been linked to epithelial cell
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death (11) and progression of ALI (79), and NOX2 has been
identified as being a major source of oxidants produced by
neutrophils and macrophages during inflammation (42).
Despite these observations, apart from PRDX6, the role of
PRDXs in ALI remains poorly explored. In a hyperoxic in-
jury model of ALI in mice, PRDX1 mRNA and protein levels
were increased (66). In contrast PRDX2 expression was not
altered, showing differential regulation between the two cy-
tosolic PRDXs (66). A proteomic screen identified PRDX1 as
being elevated in a Pseudomonas aeruginosa model of ALI in
rats (101). Furthermore, the proinflammatory mediator, LPS,
increased PRDX1 expression in bronchial epithelial cells,
which in turn contributed to increased expression of proin-
flammatory mediators, in association with activation of nu-
clear factor kappa B (NF-jB) pathway (100).

Other studies have shown that PRDX1 can be secreted
from cells in response to distinct stimuli (18, 28), and that
PRDX1 in turn can bind to the LPS receptor, TLR4, to en-
hance production of proinflammatory mediators (148). Si-
milar interactions between PRDX2 or PRDX5 and TLR4 also
have been reported (75, 101), suggesting that signals from
multiple PRDXs may be transduced via TLR4. In contrast to
these stimulatory actions of PRDX on NF-jB activation via
TLR4, both PRDX1 and PRDX6 were shown to inhibit NF-
jB, in association with inhibition of tumor necrosis factor
receptor-associated factor 6 (TRAF6) ubiquitin ligase activ-
ity (112, 113). Similar contradicting outcomes of PRDX have
been observed in in vivo models of ALI or sepsis. Ozone-
induced acute inflammation was attenuated in PRDX1-/-

mice (182), pointing to a proinflammatory role of PRDX1. In

contrast, PRDX1-/- mice showed increased susceptibility to
LPS-induced lethal shock, in association with enhanced in-
flammation (159), and similar findings of enhanced injury
and/or mortality were reported in mice lacking PRDX2 (183),
PRDX3 (94), or SRXN1 (140). Collectively, these findings
suggest that the effects of PRDXs on NF-jB activation and
subsequent proinflammatory signaling may depend on the
location of PRDX (intracellular vs. extracellular) and/or its
molecular target(s) (e.g., TLR4 vs. TRAF6), and on the na-
ture and extent of the proinflammatory insult in vivo (an insult
to the airway vs. systemic injury elicited by LPS).

A substantial number of studies have been conducted to
address the role of PRDX6 in ALI. The overexpression of
PRDX6 in mice exposed to hyperoxia attenuated lung injury
(169, 170), while knockdown of PRDX6 in the lungs of mice
exacerbated hyperoxia- or paraquat-induced lung injury
(167, 168). The attenuation of lung injury following over-
expression of PRDX6 coincided with less oxidative stress,
likely due to the peroxidase activities of PRDX6, reducing
lipid peroxides. As previously mentioned, the PLA2 activity
of PRDX6 is important in the formation of the active form of
NOX2 (29). This is particularly interesting as PRDX6 has
two apparently opposing functions: first, promoting the for-
mation of active NOX2, and second, detoxifying lipid hydro-
peroxides that are increased during ALI. This paradox between
enhancing oxidant generation and detoxifying lipid peroxida-
tion makes specific targeting of the PLA2 activity of PRDX6
enticing. Indeed, a PRDX6 transition state analog inhibitor,
1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol
(MJ33), has been developed to exclusively target the PLA2

FIG. 6. Summary of role of PRDXs in lung diseases. Summarized are findings obtained from human tissues, cell lines,
and mouse models studying the role of PRDX in human lung diseases, notably lung cancer, malignant mesothelioma, acute
lung injury, and lung fibrosis. We refer the reader to the body of the text for detailed explanation. Bleo, bleomycin; FASL,
FAS ligand; HPS, Hermansky–Pudlak syndrome; IPF, idiopathic pulmonary fibrosis; NSIP, nonspecific interstitial pneu-
monia; PLA2, phospholipase A2; SS, systemic sclerosis.
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activity of PRDX6 while maintaining the peroxidase activity
(90). The inhibition of PRDX6 PLA2 activity with MJ33 at-
tenuated the severity of ALI in response to LPS or hyperoxia in
mice (8, 89). These important findings suggest that selective
manipulation of only distinct functions of PRDX6 has the
potential to change the course of disease progression.

Summary and Future Directions

PRDXs are critical regulators of biological functions
through their ability to control the redox tone, allowing either
the promotion or dampening of signals from H2O2 or related
oxidants. The oxidation of PRDXs, and relay of oxidant
signals through PRDX-controlled oxidations, controls the
outcome of activation of NADPH oxidases or oxidants from
other sources, in part, through the oxidation of distinct client
proteins. PRDXs do not act in isolation as they require the
TXN/TXNRD/NADPH, SRXN1 redox system, and in some
cases GLRX/GSH, for their reduction. Furthermore, the
chaperone function of PRDXs, controlled by the oxidation
state, demonstrates the versatility in redox regulation and
control of cellular biology exerted by this class of proteins.

Despite the long-known observations that redox perturba-
tions accompany a number of pulmonary diseases, such as
lung cancer, mesothelioma, pulmonary fibrosis and ALI,
discussed herein, surprisingly little is known about the role of
PRDXs in the etiology of these diseases. Intriguing findings,
such as the secretion of PRDXs and the formation of auto-
antibodies, raise a number of questions about the pathways
that regulate secretion, the redox status of PRDXs secreted,
implications for the biology of cells secreting PRDXs, and the
factors that govern the immune response to PRDXs (Fig. 6).

While client proteins of PRDX-induced oxidation have been
identified, and some of these have relevance to lung pathology,
these studies have been limited to cell line settings using
overexpression strategies to trap proteins bound to individual
PRDXs. To date, client proteins for the individual PRDXs in
settings of homeostasis or lung diseases remain largely un-
known. Some of the studies described herein point to the high
level of precision through which oxidation of PRDXs regulates
the activity of the repertoire of target proteins.

Similarly, it remains unknown how PRDXs transition from
stacked decameric structures that act as chaperones to pro-
teins with redox activities, and which signals govern these
conversions. Given the compartmentalization of individual
PRDXs, further study of these proteins may provide new in-
sights into redox regulation in subcellular compartments such
as the ER, where PRDX4 is localized, and mitochondria where
PRDX3 and PRDX5 are found. This exquisite precision of
PRDX-mediated control of cellular processes, their high level
of expression, and interdependence on the TXN/TXNRD,
SRXN1, and GLRX/GSH redox systems make it easy to en-
vision why nontargeted strategies using generic antioxidants
have failed in a number of clinical trials and have not yielded
new drugs for the management of complex lung diseases.

Insights provided from the biochemical studies conducted
thus far offer new insights into potential avenues to target the
interface of PRDX with unique client proteins to regulate
chaperone activity and control biological oxidations. An
exciting example of this precision is the aforementioned
work with TS, which covalently crosslinks disulfide-bonded
dimers of PRDX3 and preferentially kills MM cells over

normal mesothelial cells. These and additional steps in redox
drug development will offer the precision required to control
oxidant-dependent biological processes with selectivity and
specificity currently achieved in other areas of medicinal
chemistry. Given the exciting new discoveries that continue
to be made in the PRDX field, we have only seen the tip of the
iceberg for potential implications of targeting this family or
redox enzymes to manage lung diseases.
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Abbreviations Used

AdTGFB¼ adenoviral vector expressing transforming
growth factor beta 1

ALI¼ acute lung injury
AP-1¼ activator protein 1
AP-3¼ adaptor protein 3

ASK1¼ apoptosis signaling kinase 1
CDC14B¼ centrosome bound phosphatase cell

division cycle 14B
DACH1¼Dachshund family transcription factor 1

DJ-1¼ protein deglycase 1
DUSP¼ dual-specificity phosphatase
EGFR¼ epidermal growth factor receptor

ER¼ endoplasmic reticulum
ERK¼ extracellular signal-regulated kinase

ERO1¼ER-oxidoreductin-1
FAS¼ Fas cell surface death receptor

FASL¼ Fas ligand
FOXO3¼ forkhead box O3

GDE2¼ glycerophosphodiester phosphodiesterase 2
GLRX¼ glutaredoxin

GR¼ gefitinib resistant
GSH¼ glutathione

GSTP¼ glutathione-S-transferase Pi
H2O2¼ hydrogen peroxide
HPS¼Hermansky–Pudlak syndrome
IPF¼ idiopathic pulmonary fibrosis
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Abbreviations Used (Cont.)

LPS¼ lipopolysaccharide
MAPK¼mitogen-activated protein kinase

MIF¼migration inhibitory factor
MJ33¼ 1-hexadecyl-3-(trifluoroethyl)-sn-

glycero-2-phosphomethanol
MM¼malignant mesothelioma

MST1,-2¼mammalian sterile twenty 1,-2
NF-kB¼ nuclear factor kappa B
NRF2¼ nuclear erythroid 2-related factor 2

NSCLC¼ nonsmall-cell lung cancer
NSIP¼ nonspecific interstitial pneumonia

PDI¼ protein disulfide isomerase
PLA2¼ phospholipase A2

PRDX¼ peroxiredoxin
PRP or PRDX2¼ thiol-specific antioxidant protein

PS2¼ presenilin 2

PTEN¼ phosphatase and tensin homologue

ROS¼ reactive oxygen species

SCARB2¼ scavenger receptor class B membrane 2

SRXN1¼ sulfiredoxin

SS¼ systemic sclerosis

STAT3¼ signal transducer and activator of
transcription 3

TLR4¼ toll-like receptor 4

TRAF6¼ tumor necrosis factor receptor-associated
factor 6

TS¼ thiostrepton

TSA¼ thiol-specific antioxidant

TXN¼ thioredoxin

TXNRD¼ thioredoxin reductase
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