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Abstract

Most genotype-phenotype studies have historically lacked population diversity, impacting the 

generalizability of findings and thereby limiting the ability to equitably implement precision 

medicine. This well-documented problem has generated much interest in ascertainment of new 

cohorts with an emphasis on multiple dimensions of diversity, including race/ethnicity, gender, 

age, socioeconomic status, disability, and geography. The most well-known of these new cohort 

efforts is arguably All of Us, formerly known as the Precision Medicine Cohort Initiative Program. 

All of Us intends to ascertain at least one million participants in the United States representative of 

the multiple dimensions of diversity. As an incentive to participate, All of Us is offering the return 

of research results, including whole genome sequencing data, as well as the opportunity to 

contribute to the scientific process as non-scientists. The scale and scope of the proposed return of 

research results are unprecedented. Here, we briefly review possible return of genetic data models, 

including the likely data file formats and modes of data transfer or access. We also review the 

resources required to access and interpret the genetic or genomic data once received by the 

average participant, highlighting the nuanced anticipated barriers that will challenge both the 

digitally, computationally literate and illiterate participant alike. This inventory of resources 

required to receive, process, and interpret return of research results exposes the potential for access 
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disparities and warns the scientific community to mind the gap so that all participants have equal 

access and understanding of the benefits of human genetic research.
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Genetics is mainstream

The idea of genetic data is popular among non-scientists, but its understanding and 

consequences are poorly understood. Coverage of core genetic concepts in science, 

technology, engineering, and math (STEM) education is highly variable (Dougherty et al. 

2011; Lontok et al. 2015) and genetic literacy is persistently low among the United States 

(US) general population (Haga et al. 2013). Despite the technical chasm, persistent pop 

cultural references to genetics and genomics in both entertainment and the media have 

elevated and maintained the voguishness of these data. In the movies, the Jurassic Park 
franchise launched in the early 1990s spurred an interest in ancient DNA and genetic 

engineering while the now cult classic Gattaca (1997) dealt with genetic determinism and 

genetic discrimination among other bioethical issues (Müller and Dalzotto 2018), prescient 

of today’s genetic testing and gene editing capabilities. Examples in television include the 

popular “CSI: Crime Scene Investigation” (2000-2015), which since the mid-oughts has 

popularized forensics and spurred debates on its lasting impact on real-life jurors 

(Schweitzer and Saks 2007). More recently, genetic ancestry and genealogy have taken a 

starring role as a tool for self-discovery on both television (“Who Do You Think You Are” in 

partnership with Ancestry.com (2010-12; 2013-present) and “Finding Your Roots” (2012-

present)) and social media (e.g., YouTube).

In contrast to the idea of “genetics,” most non-scientists are not yet aware of “precision 

medicine” research (Ray 2018). Non-scientists, however, are aware of the availability of 

tailored prevention strategies or treatment plans from celebrity-penned op-eds and 

testimonials such as Angelina Jolie and her decision to have a prophylactic double 

mastectomy based, in part, on family history and genetic testing results (Desai and Jena 

2016; Jolie 2013; Liede et al. 2018). Like the terms “precision medicine” or “personalized 

medicine”, the Precision Medicine Initiative Cohort Program, now known as All of Us, is 

unknown to most surveyed (Ray 2018). In comparison, awareness of personal genetic testing 

through direct-to-consumer (DTC) genetic tests has steadily increased since becoming 

available in 2006, albeit with noted differences by geography, age, race/ethnicity, education, 

and income (Agurs-Collins et al. 2015; Apathy et al. 2018; Finney Rutten et al. 2012; 

Salloum et al. 2018). Now that All of Us has launched as of May 2018, the specific program 

as well as precision medicine in general promise to become more prominent in the general 

conversation given the expected exposure to national advertisement campaigns and mostly 

positive narratives offered by the media (Marcon et al. 2018).
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The promise of return of research results

This backdrop of pop cultural curiosity of genetics, mixed with a growing but variable 

awareness for at least DTC genetic testing, is making return of genetic and genomic results a 

popular incentive for participation in precision medicine research. Local and national 

surveys demonstrate that the majority of potential participants would like to receive genetic 

results (Cooke Bailey et al. 2018), including genetic ancestry data (Kaufman et al. 2016), 

about themselves. In a study of US veterans, the majority of those surveyed indicated that 

they would be less likely to participate in a Veterans Affairs biobank if individual research 

results were not returned (Kaufman et al. 2009). Regarding what results should be returned, 

most surveyed want “all” results when presented with multiple options (Cooke Bailey et al. 

2018; Kaufman et al. 2009), including whole genome sequencing data (Middleton et al. 

2015). However, within the genomics research community, there is ongoing dialogue as to 

what should be returned, by whom and to whom (Jarvik et al. 2014).

The new All of Us program is promising unprecedented access to individual-level research 

data by a study participant. According to the recent funding announcements for the All of Us 

Research Program Genome Centers (Health 2018a), awardee laboratories are expected to be 

Clinical Laboratory Improvement Amendments (CLIA)-certified and are expected to have 

the capacity for high-throughput whole genome genotyping and sequencing in this 

regulatory environment. It is likely that the All of Us program will develop custom 

genotyping arrays to target genetic variants on the American College of Medical Genetics 

(ACMG) secondary findings list (Kalia et al. 2016) as well as select pharmacogenomic 

variants. For whole genome sequencing, variant calling and minimal first-pass functional 

and clinical annotation efforts leveraging existing data in repositories such as ClinVar 

(Landrum et al. 2014; Rehm et al. 2015) are expected with a focus on genes on the ACMG 

secondary findings list and pharmacogenes deemed important by Clinical Pharmacogenetics 

Implementation Consortium (CPIC) standards (Relling et al. 2017). All pathogenic or 

potentially pathogenic variants identified from the ACMG secondary findings gene list will 

trigger clinical validation by one of the awardee laboratories, and results will be documented 

in a formal clinical report.

The gap

The return of these clinically important research results to the participant is not necessarily 

unexpected or novel given that other medical centers with research biobanks have or had 

programs to return medically important research results to participants through a medical 

provider (Pulley et al. 2012; Schwartz et al. 2018). The novelty of the proposed All of Us 

return of results program is the scale, with at least one million participants being genotyped 

or sequenced. The other novelty, which is the focus of this brief review, is the scope. That is, 

in addition to medically important or actionable results, the All of Us program promises to 

return whole genome data to participants either un-interpreted or variant-called, a task 

tackled recently by only a handful of research groups (Thorogood et al. 2018). Here we 

review the resources required to receive, access, and understand whole genome sequencing 

data from the perspective of the non-expert with brief commentaries on the potential privacy 
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consequences and other issues that could further widen the gap in research disparities in this 

era of big biomedical data and precision medicine.

How might the data be returned?

Beyond the funding announcement language for the Genome Centers (Health 2018a; Karow 

2018), the All of Us program has not yet released a final protocol detailing how whole 

genome genotype and sequencing data will be returned to participants. Several data delivery 

mechanisms can be envisioned modeled from individual-level data access or sharing within 

research consortia (Baker 2010) and DTC genetic testing companies, including 1) granting 

participants access to a secure website portal and 2) returning data to participants via an 

encrypted storage device. For participants interested in accessing cohort data to conduct 

research as non-scientists, data will likely be available via a cloud-based infrastructure and 

computing environment as a component of the NIH Data Commons (Health 2018b). While 

the receipt of personal data and access to cohort data is technically feasible, the assumed 

requirements will not be easily met by all participants, thereby creating disparities in who 

can access genomic information and who cannot, as well as who will be able to engage in 

non-scientist research initiatives.

Should All of Us return whole genome results via a secure website portal, an in-home 

internet connection will be required. The majority of US residents do have a broadband 

internet subscription (~65-77%) and a desktop or laptop (~75%) (Center 2018; Ryan and 

Lewis 2017). However, there are marked differences in internet access and availability of a 

desktop or laptop in households by geography, age, race/ethnicity, education, and income. 

For example, it is well documented that a digital divide persists between rural and urban 

America, and as of 2015, more than 50% of rural US residents lack access to high-speed 

internet service. Internet access is the worst among Americans living on Tribal lands and US 

territories (2015), the latter’s situation further exacerbated by Hurricanes Irma and Maria’s 

landfall in 2017 (Thieme 2018). Based on demographics, in 2015 households that were 

African American alone (65%), led by an adult 65 years or older (62%), with limited 

English speaking skills (55%), had a household income less than $25,000 (51%), or where 

the educational attainment of the householder was at most a high school graduate (60%) had 

reduced rates of broadband internet subscriptions compared with other groups (Ryan and 

Lewis 2017). Delivery of All of Us program data via an encrypted storage device will not 

address these broadband access issues as data access will still require a desktop or laptop, 

and their ownership is associated with similar patterns of accessibility as described for 

internet access.

What might the data look like?

The popular DTC genetic testing companies such as 23andMe currently allow consumers to 

download their array-based whole genome genotype call data as compressed (zipped) text 

files, for which there are several readily available desktop tools to decompress such files. 

These files are 5 MB to 30 MB in size and can be opened in a text editor such as WordPad or 

Microsoft Excel, the latter of which has a maximum of 1,048,576 data rows. All of Us has 

not yet finalized how whole genome genotype or sequence data will be returned, though it is 
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unlikely that general-purpose text compression methods such as gzip (Gailly and Adler 

1992) and bzip2 (Seward 1996) will be used for whole genome sequence data. As described 

in the All of Us Genome Centers funding announcement OT-PM-18-002 (Health 2018a; 

Karow 2018), it is very likely the data will be in the form of compressed/binary SAM 

(known as BAM), CRAM, VCF or BCF files as opposed to the unmapped short reads and 

quality scores stored in FASTQ files (Cock et al. 2010). All of these files are generated by 

specialized algorithms that take advantage of repetitive subsequences inherent in genomic 

sequences to achieve a higher compression ratio compared to general-purpose text 

compression methods (Zhu et al. 2015).

Even more challenging than the file format is the fact that these algorithms and related tools 

work almost exclusively within command-line (i.e., Unix or Linux operating systems) 

environments which are largely unknown to the general population. Most of the freely 

available resources for “viewing” or working with whole genome data require, at minimum, 

baseline knowledge of working in a commandline environment. For All of Us participants 

unfamiliar with working in such an environment, online educational resources do exist that 

are hypothetically accessible to those with time and the means to access them. As an 

example, a quick internet search reveals “Command Line Tools for Genomic Data Science” 

Coursera class offered by Johns Hopkins University - course 5 of 8 in the Coursera Genomic 

Data Science Specialization. To sign up, users must have an e-mail address (and thus, an 

internet connection). Users can access Coursera via a 7-day free trial, and can continue to 

access course materials for this and all courses in the specialization for $39 per month, or 

users can choose the option of auditing the course. The course information page (University 

2016) estimates that the course will take approximately 26 hours to complete, with a 

suggested commitment of 7 hours per week. The course is available only in English with 

English subtitles.

Once familiar with command-line environment, we can consider the possible file formats All 

of Us may use to return whole genome sequence data. Sequence data are commonly 

presented in the Sequence Alignment/Map (SAM) format, which was designed to harmonize 

data generated by distinct sequencing technologies. The SAM format is generated by the 

Burrows-Wheeler Alignment tool and is a common alignment structure applicable to all 

sequence types and aligners, supporting single- and paired-end reads as well as combining 

distinct read types/sources (Li et al. 2009). SAM format functions as a common interface 

between the alignment/mapping process and such downstream analyses as variant detection, 

genotyping, and assembly. SAM formatted files are composed of tab-delimited header and 

alignment sections, including 11 mandatory fields containing information pertinent to the 

sequence data contained in the file. SAM formatted files can average 500 gigabytes per file 

(which is equivalent to the total storage available for the average desktop computer) 

depending on coverage and number of reads (Li et al. 2009). To improve performance speed, 

the Binary Alignment/Map (BAM) format was designed, and it contains SAM format 

information with additional compression developed to achieve faster random access. A 

BAM file of a single whole genome sequence data file requires approximately 100 

gigabytes. The CRAM format is a compressed alignment file of a BAM file designed by the 

European Bioinformatics Institute as a highly space-efficient format that uses reference-

based compression (Zalunin 2012), wherein information stored includes only base calls that 
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differ from the designated reference sequence, resulting in a 40-50% space savings in 

comparison with a BAM file (Hsi-Yang Fritz et al. 2011). The CRAM format requires 

reference sequences maintained by the Global Alliance for Genomics and Health (GA4GH) 

Large Scale Genomics workstream and made available in a CRAM reference registry. Users 

must note that the specific reference sequence used to generate the CRAM file must be used 

for compression and decompression.

The other likely data format would be the Variant Call Format (VCF) which was developed 

for the 1000 Genomes Project (Clarke et al. 2012) as a generic text file format that stores 

DNA variant information including single nucleotide polymorphisms (SNPs), insertions, 

deletions, and structural variants, combined with related annotation information with respect 

to a reference genome sequence (Danecek et al. 2011). The annotation includes genomic 

position, reference and alternate alleles, quality of read, filter status (dependent upon 

whether a filter was applied), and additional information that varies depending upon the tool 

used to generate the VCF file (Danecek et al. 2011; McKenna et al. 2010). The VCF file is 

expected to be much smaller than the BAM file as it retains information on variants alone (at 

most a few hundred megabytes), with respect to a reference file (which may be a gigabyte in 

size). There is also BCF, which is binary version of a VCF file and requires even less storage 

space, analogous to the BAM version of a SAM file. VCF and related files are considered 

“interpreted” data files and may require an investigational device exemption with the Food 

and Drug Administration (FDA) before they can be returned to participants (Karow 2018).

Working with likely file formats

In general, software used to generate and manipulate the mapped (SAM, BAM, and CRAM) 

and annotated (VCF/BCF) sequencing data files is open source and free to use. For the 

average non-scientist participant, identifying, locating, and implementing the various tools 

can be daunting. For the format files, the SAMtools library and software package provides 

universal tools for working with SAM, BAM, and CRAM formats (Li 2011; Li et al. 2009). 

SAMtools is available in various programming languages, including C, C++, Java, Perl, 

Python, Ruby, Common Lisp, and Haskell, and tutorials for varying levels of expertise are 

available on various websites (Table 1). In addition to SAMtools, there are several other 

command-line packages which support these file formats, including Scramble (Bonfield 

2014), CRAMtools (Hsi-Yang Fritz et al. 2011; Zalunin 2012), and Picard (Table 1).

If participant data are returned as unannotated but mapped file formats (SAM, BAM, and 

CRAM), participants can use a variety of available software to annotate their data. In 

bioinformatics, one of the most popular toolkits available for calling and annotating 

germline variation is the Genome Analysis Toolkit (GATK), a set of tools for working with 

high-throughput sequencing data, including variant calling, processing, and quality control, 

maintained by the Broad Institute (Van der Auwera et al. 2013). GATK is available via 

download and is supported in Unix, Linux, and MacOSX environments (not Microsoft 

Windows), or to run on FireCloud, a web-based, open platform for secure and scalable 

analysis in the cloud. Implementing GATK takes considerable bioinformatics expertise and 

time and requires a computing infrastructure not available to most non-scientists (Hansen 

2016). There are alternative pipelines such as SpeedSeq (Chiang et al. 2015), Freebayes 
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(Garrison and Marth 2012) and “BAM to most probable genotype” (bam2mpg) (Hansen 

2016; Teer et al. 2010). While these alternative pipelines may be more manageable 

compared with GATK, they still require a reference sequence dataset (such as from the 1000 

Genomes Project) and access to a relatively expensive computing environment. For 

participants without these resources, an attractive alternative could be Galaxy (Afgan et al. 

2018), a freely available, internet-accessible platform with a graphical user interface (GUI) 

designed to enable a variety of biomedical research analysis needs, including the 

manipulation of next generation sequencing files as described here.

If participant data is returned as annotated (“interpreted”) files such as VCF files, they can 

be manipulated using a variety of tools, most commonly by VCFtools (Danecek et al. 2011) 

which is a Perl or C++ program. There are also a handful of GUI-based applications, such as 

VCF-Miner (Hart et al. 2016), VCF.Filter (Muller et al. 2017), VarAFT (Desvignes et al. 

2018), and the aforementioned Galaxy platform (Afgan et al. 2018). These GUI applications 

aim to provide bioinformaticians, medical geneticists, and researchers who have limited 

computing resources or are less comfortable with working at command-line alternative tools 

to readily interrogate VCF files, assuming ample user genomic literacy. As for BCF files, 

they can be manipulated using depracated versions of SAMtools or a contemporary version 

of BCFtools (Table 1).

For those participants with the resources to pay for commercially available tools, various are 

available, including Geneious (Kearse et al. 2012), BaseSpace (Illumina 2018), DNAnexus 

(Anderson 2017; DNAnexus 2019), among others (Milicchio et al. 2016; Smith 2015). 

Unlike the open source tools listed in Table 1, most of the commercially available tools are 

all-in-one and offer slick, easy-to-use GUIs that require no computer programming skills or 

command-line know-how (Milicchio et al. 2016; Smith 2015). Many of these commercial 

applications also take advantage of cloud computing resources (Navale and Bourne 2018), a 

major advantage for participants who do not want or cannot afford to invest in the hardware 

necessary for bioinformatics. A major disadvantage of these commercially available tools is 

the pricing, where licenses can range from several hundred to thousands of US dollars. Also, 

it is not clear how pricing will differ for participants not affiliated with the usual customer 

base typically associated with these software (e.g., academics, government, and industry).

Third party interpretation services

Considering the limited options available to the general populace for interrogating BAM, 

CRAM, VCF, or BCF files, it is likely that commercial website-based companies, already 

coined “third party interpretation (TPI)” sites (Badalato et al. 2017), will arise to offer 

services to store, manipulate, and translate the whole genome genotype and sequencing data 

returned to research participants. Flere, “interpretation” refers to offering the understanding 

of genetic variant data in the context of the customer’s health status, physical or physiologic 

traits, and/or disease risk. Currently, there are several TPI services that readily accept the 

downloadable genotype call data from the popular DTC genetic testing companies. These 

yet-to-be-regulated TPI services offer a smorgasbord of health-related services including 

fitness insights, nutrigenomic guidance, longevity reports, and a wide range of disease/

health-trait associations, providing an alternate venue for interested consumers as regulatory 
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policies have limited the range of disease/health-trait associations that can be reported by 

DTC genetic testing companies (Borry et al. 2012; Branch 2013). The ethical concerns 

leading to the regulation of DTC genetic testing companies also apply to TPI services, 

including deficient informed consent, unclear privacy and data storage practices, uncertain 

clinical validity and utility of reported associations, and a clear absence of medical 

supervision (Badalato et al. 2017).

To gauge the current landscape of TPI services, we conducted an informal internet search of 

TPI services (using a collection of generic search terms such as “what to do with raw 

23andMe data” and “interpret raw 23andMe data”) and have summarized 15 of these 

services which ranged from free of cost to a few hundred dollars (Supplementary Table 1). 

Two services accept whole genome sequence data (i.e., VCF files): Promethease and Enlis 

Genomics (Supplementary Table 1). All other identified TPI services generally require 

compressed/decompressed text files of genotypic data downloaded from DTC genetic testing 

services such as 23andMe, AncestryDNA, MyHeritage, FamilyTreeDNA, and several others. 

Many but not all services have clearly identifiable privacy policies and some degree of 

information on data storage/ownership. Most services report health-related information, but 

only a few outlined the resources used to generate the reports returned to consumers. For 

example, Promethease reports genetic associations available in SNPedia (Cariaso and 

Lennon 2012) and GENOtation reports genetic associations available in the National Human 

Genome Research Institute - European Bioinformatics Institute (NHGRI-EBI) Genome 

Wide Association Studies (GWAS) catalog (MacArthur et al. 2017); however many TPI 

services do not state the studies or references used to develop health-related reports 

(Supplementary Table 1).

The variability of the information relayed and data included in genetic test reports is a 

general problem as no standards exist even for clinically-ordered genetic testing. In the DTC 

space, 23andMe is currently the only service to have received marketing authorization by the 

FDA that allows the service to offer consumers genetic risk health reports for a limited 

number of genetic variants and conditions, including breast/ovarian cancer and BRCA1/
BRCA2, Bloom Syndrome, and now pharmacogenomic-related variants, among others 

(Bates 2018). To fulfill part of the requirements established by FDA, 23andMe is required to 

use CLIA-certified labs for genotyping and to create genetic risk health reports using an 

easily understood format. No guidelines are given for how to report individual-level risk, 

population-level measures of association, or other classifications such as genotypes or 

variant annotations. Like DTC companies, TPI services, and clinical testing entities, large 

studies returning genomic results such as All of Us will have the opportunity to create their 

own genetic risk reports, potentially innovating the way genetic risk is communicated to 

consumers, patients, and participants.

With regard to the variability in how genetic information is relayed, we make special note 

that there are also no universal standards for reporting race-specific genetic results. None of 

the TPI services evaluated here had an option for race-specific reported genetic risk. The 

importance of race/ethnicity or genetic ancestry is well recognized when interpreting genetic 

data. As an example, CPIC provides guidelines that consider race or genetic ancestry if the 

data support clinically-relevant differences (e.g., race- or ancestry-specific genetic variants 
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to include in warfarin dosing models) (Johnson et al. 2017). The lack of race-specific results 

offered by genetic testing services is in large part due to the limited genetic association 

studies and reference data in populations of non-European ancestry (Sirugo et al. 2019). As 

concerted efforts are underway to fill these diversity data gaps (notably, a major goal of All 

of Us), clinically-oriented groups such as the Clinical Genome Resource (ClinGen) have 

already mobilized an Ancestry and Diversity Working Group charged with investigating how 

best to scientifically and ethically use race, ancestry and genomic data (Popejoy et al. 2018).

A major challenge for consumers engaging in TPI services, including All of Us participants 

receiving raw genomic data, is the understanding of the various limitations and assumptions 

that underlie both the genetic data itself as well as the interpretation of those data. Reports 

are already beginning to surface describing DTC consumers using TPI services that then 

identify pathogenic variants outside the official FDA-approved DTC genetic risk health 

reports. When followed-up in a clinical setting, one report described that 40% of the DTC-

generated genetic variants (genotype calls) were incorrect (false positives) (Tandy-Connor et 

al. 2018). Equally troubling are the reports that verified genotypes were misclassified as 

pathogenic by TPI services when clinically-contracted labs classified them as benign 

(Moscarello et al. 2019; Tandy-Connor et al. 2018). Per the funding announcement (Health 

2018a; Karow 2018), All of Us Genome Centers include a CLIA-certified laboratory 

supported specifically to verify genetic variants considered clinically actionable and worthy 

of a clinical report to be returned to the participant. While this plan addresses potential false 

positive genetic variants for the returned clinical reports, it in no way addresses nor can it 

address the allure of extra annotation and the inevitable mutation misclassifications that will 

follow.

Evolving privacy concerns

Individuals who have downloaded their raw DTC genetic data are also joining 

crowdsourcing platforms such as openSNP (opensnp.org) (Greshake et al. 2014) and 

GEDmatch (www.gedmatch.com). These platforms allow users to openly share their genetic 

information downloaded from DTC genetic testing sites. OpenSNP collects phenotypic 

information, while GEDmatch is focused on reconstructing genealogies, and users who have 

shared their genetic information can also access the genetic information from other users. 

The possibility of re-identification via these services grabbed international headlines 

recently with the arrest of the Golden State Killer by criminal investigators (Guerrini et al. 

2018). In general, public and private databases are biased towards genomes of European-

descent (Ram et al. 2018), and recent work suggests that in the near future, re-identification 

of individuals of European ancestry in the US who have publicly released their genetic 

information is likely (Erlich et al. 2018). It is interesting to note that an unintended 

consequence of today’s cohort ascertainment efforts focused on recruitment of 

underrepresented groups may be the increased population of these private and open-source 

databases with genomes of diverse ancestries, widening privacy concerns to an even greater 

number participants and their un-genotyped relatives (Hazel et al. 2018).
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Potential to widen research disparities

Return of research results to participants in of itself will not likely widen existing health 

disparities. Rather, return of research results will likely highlight existing health disparities 

in who can follow-up on the genetic results with additional medical screening, interventions, 

and treatments. Return of research results will also emphasize existing and noted 

deficiencies in genomic research and knowledge ranging from data on penetrance and risk 

for individual variants to lack of genotype-phenotype data for understudied populations.

The return of these genomic data may also impact genomic research in unexpected ways. 

That is, a major motivation to participate in genetic studies is the potential to receive results, 

and this motivation in turn is used as an incentive to participate in genetic studies. Previous 

sequencing studies have noted that early adopters of this technology on average were 

European-descent, highly educated, and relatively affluent (Facio et al. 2012; Yu et al. 2014). 

It may be that the offering of whole genome sequencing data to participants in All of Us will 

attract more participants with similar early adopter profiles (Lewis et al. 2015), an irony 
given that a major goal of All of Us is the recruitment of a diverse study population defined 

broadly by age, socioeconomic status, health status, race/ethnicity, and geography.

The offering of whole genome genotype and sequencing data as a returned result to all is 

intended to promote participant autonomy as well as trust between the participant and the 

scientific community (Angrist 2011). Increasingly, return of results in a program such as All 

of Us is also meant to promote science conducted by non-scientists where participants 

champion specific research questions or areas of scientific inquiry (Aungst et al. 2017; Beck 

et al. 2018; Woolley et al. 2016). For groups historically underrepresented in and distrustful 

of biomedical research, return of whole genome sequence data and other pro-offerings of 

data and research transparency may be insufficient to foster the necessary trust and 

relationship. Early reactions from Native American groups (Hansen and Keeler 2018) to the 

Tribal Collaboration Working Group Report (Report 2018) recently submitted to the All of 

Us Research Program Advisory Panel underscore this challenge, which will impact both 

participation and the research conducted that could benefit specific populations. More 

generally, differences in trust, genomic and health literacy, resources, skill sets, and 

opportunities to engage in auspicious science as a non-scientist may promote non-response 

bias in this cohort, which, while not designed to be population-based, is designed with the 

intent to represent as many US groups as possible.

Mind the gap

Bearing in mind the diversity of potential participants, and in the spirit of building trust, 

cohorts such as All of Us are beholden to ensuring equity in access to the returned research 

data. The least involved process for returning data might be through a secure website portal; 

however, considerations must first be made for those with little to no digital literacy. Sixteen 

percent of American adults between the ages of 16 and 65 years are digitally illiterate and 

5% have no computer experience (Mamedova and Pawlowski 2018). Highest digital 

illiteracy rates exist among special populations that are of particular interest to All of Us, 

including 35% of Hispanics, 22% of Blacks, and 28% of individuals 55-65 years 
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(Mamedova and Pawlowski 2018). For those who are digitally literate, considerations for 

access to private computing resources and/or internet access are needed, particularly 

instances that might result in the downloaded genetic data being accidentally left on a public 

computer. One possible solution to the internet divide would be mailing encrypted hard-

drives, but that would only resolve access for those with a personal computer. Thus, access 

to these large genetic files is in it of itself nuanced and will require a multifaceted approach.

Once access to the data has been granted, it is unlikely that the average digitally literate 
scientist or non-scientist would be capable of navigating these large and complex data files 

without a suite of detailed tutorials for existing tools and/or the expansion of the unregulated 

TPI market. Here lies an opportunity for the development of novel and effective solutions for 

returning data to genomic participants, such as a customized web-based tool that would 

allow individuals to securely store, navigate, and manipulate their data, and possibly interact 

with other participants as a means to facilitate science by non-scientists. A template for such 

a web-based tool for non-scientists is My46 (Tabor et al. 2017), a tool developed by the 

University of Washington to help individuals manage their genetic testing results. My46 

provides accessible information on genetics and genetic testing, generates several health 

summary reports, and offers access to genetic counselors to answer questions on the returned 

health reports (Tabor et al. 2017). While an attractive template, web-based services such as 

My46 will not provide data access for the digitally illiterate. Thus, the need for a similarly 

thoughtful, interactive, and user-friendly tool that incorporates the spectrum of diversity 

(race, ethnicity, age, access to computational and online resources, education, geography, as 

well as health, genetic, and digital literacy) warrants intentional stakeholder investment by 

All of Us and any other cohort in which the offer of return of research results is intended for 

all participants as opposed to the privileged few who already have the ability or means to 

access these data.

Conclusions

Surveys of potential and current research participants make it clear that return of research 

results is both desired and expected. Large-scale studies such as All of Us are generating and 

offering genome-wide data beyond the scale and scope of previously debated return of 

results discussions. The responsible and equitable return of research results will require 

substantial investment in the development of multiple strategies to disseminate individual-

level data to participants so that all who want them can access and potentially act on them.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.
Libraries and software associated with generating and manipulating mapped and 
annotated sequencing data files.

Website links associated with the tools and example tutorials are given, where available. CRAMtools is no 

longer being supported (https://github.com/enasequence/cramtools), and users are being directed to SAMtools.

Library, Software, or Platform Example Tutorials

Bam2mpg -

https://github.com/nhansen/bam2mpg

BCFtools -

https://samtools.github.io/bcftools/bcftools.html

CRAMtools http://www.htslib.org/workflow/

https://www.ebi.ac.uk/ena/software/cram-usage

https://www.ebi.ac.uk/ena/support/cram-tutorial

https://software.broadinstitute.org/gatk/best-practices/

Galaxy https://galaxyproject.org/tutorials/ngs/

https://usegalaxy.org/ https://galaxyproject.org/learn/

Genome Analysis Toolkit (GATK) https://software.broadinstitute.org/gatk/documentation/topic?name=tutorials

https://software.broadinstitute.org/gatk/

Freebayes http://clavius.bc.edu/~erik/CSHL-advanced-sequencing/freebayes-tutorial.html

https://github.com/ekg/freebayes

Picard -

https://broadinstitute.github.io/picard/

SAMtools http://biobits.org/samtools_primer.html

http://samtools.sourceforge.net/ https://samtools.github.io/hts-specs/SAMv1.pdf

http://www.htslib.org/ http://quinlanlab.org/tutorials/samtools/samtools.html

http://www.htslib.org/doc/samtools.html

Scramble -

https://sourceforge.net/projects/staden/files/io_lib/

VarAFT https://varaft.eu/

https://varaft.eu/

VCFtools https://faculty.washington.edu/browning/intro-to-vcf.html

https://vcftools.github.io/index.html https://github.com/opencb/hpg-variant/wiki/VCF-Tools-tutorial

VCF-Miner -

http://bioinformaticstools.mayo.edu/research/vcf-miner/

VCF.Filter -

https://biomedical-sequencing.at/VCFFilter/
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