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Abstract

A chemoselective primary amine modification strategy which enables the three-component, one-

pot bioconjugation is described. The specifically designed, mercaptobenzaldehyde-based 

bifunctional linker achieves highly selective and robust amine labeling under biocompatible 

conditions. This linker demonstrates wide functional group tolerance and is simple to prepare 

which allowed facile payload incorporation. Finally, our studies have shown that the introduction 

of linker does not impair the function of modified protein such as insulin.

Graphical Abstract

Efficient chemical modification of peptide or protein systems with multiple components has 

been shown to be essential towards achieving important biological and therapeutic functions.
[1] A number of therapeutic applications have recently been reported where proteins have 

been functionalized with different bioactive components.[2] As the case in point, the usage of 

multiple antigen modified trivalent peptides to trigger a potent immune response,[3] linkage 

of polypeptide and biotin in a three-component fashion to facilitate elucidation of 

intracellular interactome with pull-down assays.[4,5] Despite the aforementioned examples, 
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convergent synthetic strategies to achieve multi-component peptide assemblies in a one-pot 

reaction remain challenging.

A number of approaches have emerged in recent years.[6] Most notably, Francis et al. 

reported a three-component Mannich-type transformation for selective tyrosine 

modification.[7] Meanwhile, Ball and co-workers recently described an organometallic 

approach for three-component tyrosine bioconjugation.[8] Herein, we report a one-pot three-

component protocol that is specifically targeting primary amine position at native 

polypeptides and proteins under mild biocompatible conditions. The described approach 

builds upon the conventional ‘click’ modification[9] (Figure 1a) and recently developed 

bioorthogonal strategies that entail genetic incorporation of unnatural amino acid residues 

and typically result in mono-functionalized peptides.[10]

Our approach is based on the our understanding of the unique reactivity of the thiol group 

towards imines.[11] We hypothesized that alkynyl mercaptobenzoate 1 will be a suitable 

heterobifunctional linker which can be concisely synthesized (Figure 1b). The 

mercaptobenzoate end of the molecule will selectively react with primary amines whereas 

alkynyl group could facilitate a robust copper-catalyzed azide alkyne cycloaddition 

(CuAAC)[12] within the protein framework. The proposed chemoselective amine 

conjugation requires no exogenous additives or reagents, concurrent conjugation of primary 

amines and CuAAC may be carried out at the same time in a one-pot manner. Lastly, due to 

the planar structure of aryl ring, the shown modification is unlikely to impair the native 

functions and activity of the targeted peptides or proteins.[13]

To test our hypothesis, we carried out a model study shown in Scheme 1. A known disulfide 

substrate 2 was obtained from the commercially available mercapto-benzyl alcohol in two 

steps. The reaction of 2 and glycine methyl ester under the conditions (TCEP, THF/PBS 

buffer (1:9)) at neutral pH (6.8) generated 4 containing a unique [3.3.1] bicyclo nonane 

structure in 90% yield. Previously, compound 4 has been reported as the analogue of 

Tröger's base.[14] The pioneering work by Toste and co-workers described synthesis of 4 in 

non-aqueous solution and at the elevated temperature (80 °C).[15] We found that the 

transformation could be carried out at room temperature and in a biocompatible PBS buffer 

(Scheme 1). We believe that the reaction began with reduction of the disulfide bond of 2 to 

liberate mercaptobenzaldehyde 5. Amination of 5 with the glycine methyl ester 3 generated 

imine 6 which was trapped by a second equivalent of 5. The adduct 7 subsequently 

underwent intramolecular amination and yielded imine 8. Another intramolecular thiol 

addition to the iminium intermediate afforded bicyclic product 4, which was confirmed by 

X-ray analysis.

Intrigued by the benign reaction conditions and excellent yields, we hypothesized that the 

mercaptobenzaldehyde derivatives could be applied toward the modification of primary 

amines within the protein’s framework. However, utilization of the disulfide 2 would not be 

ideal. The substrate would require disulfide reduction using TCEP which could also disrupt 

the protein’s disulfide linkages, thereby denaturing the protein. On the other hand, a motif 

with a similar structure of the substrate 5 would be preferred. Addition of an alkynyl group 

facilitates a secondary site of conjugation using well-established CuAAC chemistry. 
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Synthesis of the heterobifunctional linker was carried out in two steps using readily available 

4-bromo-3-formylbenzoic acid 9, as shown in Table 1. O-propargylation furnished bromo-

benzaldehyde 10 in 95% yield, which was treated with sodium sulfide in 

dimethylformamide afforded 1 in 90% yield.

With the desired compound in hand, we next investigated the reactivity of 1 in the 

bioconjugation settings. Under the standard reaction conditions, the coupling of linker 1 and 

peptide proceeded smoothly and the bicyclic adduct 11 was produced in high yield in 

THF/PBS buffer. The small amount of THF was necessary to achieve complete solubility of 

1. A small library of peptides was prepared and subjected to the standard bioconjugation 

conditions (Table 1). It is notable that the described chemistry is compatable with functional 

groups that are relevant to proteins and polypeptide. Fmoc protected peptides 11a furnished 

lysine modification products in 83% yield. Hydrophobic and hydrophilic sidechains are well 

tolerated; lysine could be modified in the presence of adjacent carboxylic acid or amide 

groups. Secondary amine of proline N-terminus will not engage bioconjugation and lysine 

was modified with excellent yields (11b-11g). We next examined the chemoselectivity 

between peptidyl N-terminus and the lysine ε-amino group (entries 11h-11j). Under neutral 

reaction medium, lysine was selectively modified when the polypeptides constitute sterically 

demanding amino acids such as valine residues at the N-terminus. The polypeptides bearing 

either alanine or glycine residues at the N-terminus can also be efficiently functionalized 

with compound 1 (entries 11k-11n). Overall, the linker 1 demonstrated an exclusive 

preference for primary amines in the polypeptides. The reaction conditions are compatible 

with all type of amino acid residues. Commonly known nucleophilic peptidyl sidechains 

such as His, Cys, Trp, and Ser are compatible with our bioconjugation approach. Other 

amino acids with polar sidechains (Asn, Glu, Tyr, Met and Arg) would not interfere with the 

described conjugations.

We subsequently investigated one-pot three-component bioconjugation using compound 1 
under the CuAAC conditions (CuSO4, sodium ascorbate, TBTA, t-BuOH/H2O (1:1)). The 

reaction involving linker 1, glycine methylester 3, and the azido cargos 12 generated the 

double-clicked adducts 13. In one step, through linker 1 and produced 13a and 13b in 87% 

and 86% yields respectively. Fluorophore azido-methoxycoumarin and benzyl azide and 

acetophenone azide were connected to glycine monosaccharide azides were evaluated, and 

13c-13e were obtained in good to excellent yield.

We have discovered that the level of cargo installation can be controlled using azido 

compounds as limiting reagents. The one-pot reaction exclusively yielded double-clicked 

products when the 2.4 equivalents of azido compounds were used (13a-13e) (Scheme 2a). 

On the other hand, when 1.2 equivalents of azido compounds were used, the mono-clicked 

adducts were produced (Scheme 2b). Under the mono-clicked conjugation conditions, 

fluorophore azido-methoxycoumarin was furnished in 72% yield (15b). In addition, we 

evaluated a variety of azides, such as monosaccharide azides (15d-15e), and a biotinylation 

reagent azide-PEG3-biotin (15f). these examples successfully modified target amino acids or 

peptides in good yields in a one-pot fashion. Moreover, one-pot labeling experiments were 

extended to polypeptides without the erosion of the yields. Methoxycoumarin and glucose 

was connected to the peptides in good yields under bioconjugation conditions (15h-15j).
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Furthermore, mono-clicked constructs generated in Scheme 2b retained an unreacted alkynyl 

group which potentially could be used to intergrade a different labeling group. We continued 

with our investigation with these considerations (Scheme 3). A consequent conjugation of 

mono-functionalized compounds 15c-15e was achieved under standard reaction conditions. 

Formation of the heterobifunctional compounds 16 was realized. The conjugate successfully 

placed both N-acetylglucosamine and methoxycoumarin on the molecule in excellent yield 

(16a). Glucose, benzylphenone and methoxycoumarin were combined to furnish 16b and 

16c with almost quantitative yields. The generation of 16d required longer reaction time and 

provided an 85% yield. In principle, the highly diversified functional groups could be 

introduced to the amino sites of the protein.

To demonstrate the practicality of our three-component bioconjugation strategy, we 

performed the modification of a more sophisticated protein. The recombinant human insulin 

was selected due to its well-established biological activities. Structurally, insulin consists of 

two peptide chains, the 21 amino acid A chain and the 30 amino acid residue B chain which 

are connected by three pairs of disulfide bonds. Lys residue is located at B53. The N-

terminus of insulin was chosen for modification, as it would cause the least perturbation to 

its activity.[13] Considering the insulin could form insoluble fibrils upon stirring,[16] the 

optimized conditions were used to chemoselectively modify insulin at the N-terminus 

(Figure 2a). The linkage between insulin and AF546 azide was accomplished in one-pot 

setting. The modification of the insulin site specifically occurred at the both N-termini of A 

chain and B chain, which was validated by the extensive LC-MS/MS analysis.[17] The N-

termini selectivity might be attributed to either the lower pKa of N-terminus compared to 

lysine amino group or the steric of insulin shielding the lysine side chain.[16,18] More 

interestingly, the disulfide bonds remained intact during the modification process which 

suggested that our linker is compatible with commonly observed protein disulfide linkages.

As illustrated in Figure 2c, the modified insulin is well-suited for cell biology studies. 

Labeling of insulin with the AF-546 fluorophore showed no obvious perturbation to the 

insulin’s functions. THP1 cells incubated with the modified insulin show the expected strong 

fluorescence, whereas the control cells incubated with the fluorophore and native insulin 

demonstrated negative fluorescence. Further examination of the fluorescent cells found that 

fluorescence is not uniform across the cells but rather forms clusters near cellular nuclei. 

That might be due to the rapid internalization of insulin-receptor being transported to 

endosomal apparatus of the cell.[19] Such a phenomenon implies that the insulin activity was 

not impaired by the conjugation.

In summary, we have established a general protocol for chemo-selective conjugation of 

primary amine groups within the protein framework using alkynyl mercaptobenzaldhyde 1. 

This bioorthogonal method allows native peptide and protein conjugation with two different 

functional groups, thus facilitating rapid modification of biomolecules with great flexibility. 

We have shown that the method is compatible with a variety of amino acid side-chains and 

disulfide linkages, which allows facile attachment of functional payloads, such as glycans, 

fluorescent groups and affinity handles in a one-pot fashion. Moreover, the modification of 

the mercaptobenzaldhyde aryl ring could introduce a variety of moieties other than alkynyl 

ester, and it is reasonable to speculate that diversified functional groups[20] could be selected 
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as the suitable linkers. The practicality of our approach was illustrated by modifying insulin 

with fluorescent groups and carried out cell imaging experiments which suggested that the 

protein’s functions were not impaired. Further investigations of the bifunctional linker 

towards other protein modification will be reported in due course.
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Figure 1. 
Three-component one-pot bioconjugation.
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Figure 2. 
Three-component conjugation of human insulin. Reagents and conditions: 100 μL THF/PBS 

(1:4, v/v), pH 5.5, 0.15 equivalent of CuSO4, 0.3 equivalent of sodium ascorbate, 0.3 

equivalent of TBTA and 9 equivalents of AF546 azide were used, final concentration of 

insulin is 1.72 mM, incubated for 4 h. Examination of modified insulin 17 function on THP1 

cells. (a) Bright field and fluorescence images of THP1 cells incubated with 0.06 mM 

AF546 azide for 4 h. (b) Bright field and fluorescence images of THP1 cells incubated with 

0.06 mM modified insulin 17 for 4 h. Scale bar: 20 μm.
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Scheme 1. Synthesis of bicyclic [3.3.1] framework under mild conditions.a

[a] Reaction conditions: compound 2 (0.364 mmol) was dissolved in THF (0.4 mL), 

THF/PBS buffer (1: 9, v/v), rt, 10 h.
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Scheme 2. One-pot bioconjugation with different azido compounds.a, b

[a] Reaction conditions: 0.1 equivalent of CuSO4, 0.2 equivalent of sodium ascorbate, 0.1 

equivalent of TBTA and 2 equivalents of 1, 1.2 equivalent of glycine methyl ester 

hydrochloride and 1.2 or 2.4 equivalent of azide were used. [b] Isolated yields.
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Scheme 3. Second cargo incorporation of mono-clicked products.a, b

[a] Reaction conditions: 0.1 equivalent of CuSO4, 0.2 equivalent of sodium ascorbate, 0.1 

equivalent of TBTA and 1.5 equivalents of azido compound were used. [b] Isolated yields. 

[c] Reaction was stirred for 30 h.
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Table 1.

Scope of peptides in conjugation with bifunctional linker 1.

peptides yields
c peptides yields

11a Fmoc-Glu-Gly-Lys-Asn-Ala-Glu-Gly 83% 11b Pro-Ala-Lys-Met-Gln-His-Gly 88%

11c Pro-Glu-Asn-Leu-Lys-Tyr 90% 11d Pro-Tyr-Gly-Lys-Gln-Leu-Glu-Gly 84%

11e Pro-Gly-Lys-Glu-Asn-Ala-Glu-Gly 90% 11f Pro-Ala-Glu-Lys-Gly-Glu-Asn-Tyr-Gly 86%

11g Pro-Glu-Phe-Glu-Ala-Lys-Asn-Leu-Gly-Tyr 88% 11h Val-Glu-Lys-Gln-Ile-Asn-Tyr
d 82%

11i Val-Glu-Ala-Lys-Asn-Leu-Glu-Gly
d 78% 11j Val-Leu-Glu-Lys-Asn-Gly-Glu-Gly-Gln-Tyr

d 71%

11k Ala-Gln-Ser-Gly-Cys-Glu-Gly 85% 11l Ala-Gln-Leu-Glu-Tyr 81%

11m Gly-Tyr-Glu-Ala-Gln-Gly 75% 11n Gly-Glu-Ala-Trp-Leu-Arg-Gly 89%

[a]
Reaction conditions: propargyl bromide, K2CO3, DMF, rt, 2 h, 95%

[b]
Reaction conditions: Na2S, DMF, rt, 5 h, 90%. Compound 1 was dissolved in in THF (80 μL), THF/PBS buffer (1: 9, v/v), final concentration of 

peptides and compound 1 is 0.01 M and 0.022 M.

[c]
Isolated yields.

[d]
Structure was confirmed by tandem MS spectrum.
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