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Abstract

CRISPR-Cas genome editing technologies have revolutionized modern molecular biology by 

making targeted DNA edits simple and scalable. These technologies are developed by 

domesticating naturally occurring microbial adaptive immune systems that display wide diversity 

of functionality for targeted nucleic acid cleavage. Several CRISPR-Cas single effector enzymes 

have been characterized and engineered for use in mammalian cells. The unique properties of the 

single effector enzymes can make a critical difference in experimental use or targeting specificity. 

This review describes known single effector enzymes and discusses their use in genome 

engineering applications.
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PART I: CRISPR ORIGINS, FUNCTION, AND CATEGORIZATION

The evolutionary web of life represents a complex environment where organisms 

continuously evolve for better adaptation and survival. This competitive evolutionary 

process is exemplified by the relationship between hosts and their pathogens. For example, 

bacteriophages can outnumber bacteria 10:1,1 and parasitic mobile genetic elements such as 

plasmids cause unnecessary energetic or genomic burdens.2 To combat these forces, bacteria 

and archaea have evolved several different countermeasures to foreign genetic material, 

including physical blockage, restriction enzymes, abortive infection, bacteriophage 

exclusion, and Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas 

systems.3 CRISPR-Cas systems provide adaptive immunity for the bacterial species by 

incorporating foreign DNA fragments into the host genome to create “memories” and later 

target the foreign nucleic acid for cleavage, based on complementarity to the encoded 

sequence.4

Basic Components of CRISPR-Cas Systems.

The CRISPR array and Cas proteins are the basic components in the microorganism ′s′ 
genomic locus necessary for the adaptive immunity process. The CRISPR array, or the 

repetitive targeting moiety, and its diverse cas genes together provide adaptive immunity. 

The CRISPR array is composed of alternating short variable spacers, which are generally 

identical to sequences from invading foreign genetic elements, and short direct repeat (DR) 

sequences.5–8 The CRISPR array is transcribed and processed into its final functional form, 

the CRISPR RNA (crRNA), consisting of a spacer and a DR. The partially palindromic DRs 

within a single CRISPR-Cas system usually have the same sequence, and when transcribed 

individually, or complexed to another unique trans-activating RNA (tracrRNA) sequence9 

such as for Type II, V–B, and V–E systems,3 a unique hairpin-like structure forms that is 

recognized by the Cas protein(s).10 The cas genes are organized in an operon expression 

system and have diverse roles contributing to adaptive immunity.3 There are four distinct 

functional modules that classify Cas protein function, including spacer acquisition, crRNA 

processing, target cleavage, and ancillary roles.

The Three Phases of CRISPR Adaptive Immunity.

There are three phases of CRISPR adaptive immunity: spacer acquisition, crRNA 

processing, and target cleavage, discussed at length in other reviews.11–13 In brief, 

adaptation, or spacer acquisition, is the first phase of CRISPR adaptive immunity and is the 

process by which foreign nucleic acids are encoded into the CRISPR array4 mediated by the 
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Cas1 and Cas2 proteins in various known bacterial species.14–16 Expression is the second 

phase of CRISPR adaptive immunity, during which the components for targeted nucleic acid 

cleavage are synthesized, processed, and complexed to form the RNA-guided endonuclease 

complex.9,17 Interference is the final phase of CRISPR adaptive immunity, which results in 

cleavage of the targeted foreign nucleic acid dependent on the proper base pairing between 

the crRNA and the target sequence in the protospacer and the protospacer adjacent motif 

(PAM).18,19 A majority of the known Cas proteins function in one of the three phases of 

CRISPR adaptive immunity, but some CRISPR systems have ancillary proteins that conduct 

various but generally less well characterized roles.20,21,22,23

CRISPR-Cas Nomenclature.

Approximately 47% of analyzed bacterial genomes and 87% of analyzed archaeal genomes 

have at least one CRISPR system, and many contain multiple CRISPR-Cas systems.24 These 

CRISPR-Cas systems in bacteria or archaea exhibit notable diversity and are organized 

according to a specific classification scheme. CRISPR-Cas protein classification is based on 

phylogenetic, comparative genomic, and protein structural analyses.24,25 Currently, there are 

two major classes of CRISPR-Cas systems, which are further divided into six types.24,25 The 

most up to date classification of CRISPR-Cas systems is in ref 3. The naming of signature 

proteins and CRISPR-Cas types is generally based on the timeline of characterization or 

experimental validation and therefore does not have a sequential naming scheme based on 

characterization alone.24–27

CRISPR-Cas systems are most broadly characterized as either class 1 or class 2.24 Class 1 

systems require multiple Cas proteins to come together in a complex to mediate interference 

against foreign genetic elements. Class 1 systems are further divided into three CRISPR-Cas 

types based on the presence of a specific signature protein: Type I contains Cas3, Type III 

contains Cas10, and the putative Type IV contains Csf1, a Cas8-like protein (for more 

information on Class 1 systems, see Koonin et al.). In contrast to Class 1 systems, Class 2 

systems use a large single Cas enzyme to mediate interference. Class 2 systems are generally 

less common than Class 1 systems and occur almost exclusively in the bacterial domain of 

life. Class 2 systems are further divided into three CRISPR-Cas types based on the presence 

of other specific signature proteins: Type II contains Cas9; Type V contains Cas 12a 

(previously known as Cpf1), Cas12b (previously known as C2c1), Cas12c (previously 

known as C2c3), Cas12d (previously known as CasY), and Cas12e (previously known as 

CasX); and Type VI contains Cas13a (previously known as C2c2), Cas13b, and Cas13c.3

PART II: GENOME ENGINEERING WITH CRISPR-CAS SYSTEMS

The ability of CRISPR-Cas systems to cleave targeted nucleic acids within bacteria or 

archaea may be repurposed for targeted editing of nucleic acids in heterologous contexts: 

harnessed CRISPR-Cas systems provide a simple platform for genome or transcriptome 

modulation as well as additional assays.28,29 Class 2 CRISPR-Cas systems are employed for 

genome engineering or assay development simply because there are fewer components to 

engineer compared to Class 1 CRISPR-Cas systems. The diversity of Class 2 CRISPR-Cas 
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systems provides various opportunities for tool development, which will be elaborated on 

below.

CRISPR-Cas Enzyme Diversity.

There is widespread natural diversity within the Class 2 single effector Cas enzymes. This 

diversity is believed to be a byproduct of the competitive coevolution of CRISPR-Cas 

systems with different evolving viruses and associated anti-CRISPR proteins.3 Additionally, 

it may stem and diverge from the diverse environmental conditions from which microbes 

containing the Cas nucleases were derived. Such conditions may affect the temperature, pH, 

or ion requirements for optimal Cas nuclease activity. This diversity provides researchers 

with many variations of Cas proteins that may be explored for individual experiments. For 

example, CRISPR-Cas nucleases display a range of catalytic activity in heterologous 

contexts, such as in mammalian cells, as assayed by indel frequency.30–33 Orthologs that 

express well and display robust as well as consistent levels of targeted DNA cleavage have 

traditionally been selected for genome editing purposes in mammalian cells.31 Furthermore, 

wild-type Cas proteins have been engineered to create a number of variants with specific 

biochemical properties such as altered PAM specificity or reduced off-target cleavage 

efficiency,34–37 further adding to the diversity of these enzymes.

Reflecting the evolutionary diversity and unique selective pressures, CRISPR-Cas single 

effector enzymes exhibit a range of unique features, many of which have been leveraged for 

specific genome engineering contexts, see Figure 1. These features include target nucleic 

acid, nuclease domains, protein amino acid length, flanking sequence requirements, the 

number of reported orthologs, target cleavage pattern, requirement of a tracrRNA, crRNA 

architecture, and the ability to process its own pre-crRNA (see Table 1). Type II and Type V 

Class 2 CRISPR-Cas enzymes catalyze RNA-guided cleavage of dsDNA, whereas Type VI 

CRISPR-Cas enzymes exclusively cleave ssRNA. The DNA targeting Cas enzymes also 

differ with respect to their target cleavage pattern when cleaving dsDNA. Some Cas proteins 

even have the ability to process their own pre-crRNA.32 Some CRISPR-Cas systems are 

more common than others, and therefore more orthologs exist, providing opportunities to 

test for functionality in heterologous contexts. Different Cas orthologs may exhibit 

differences in protein size, which can influence the delivery method of the cas gene. Single 

effector Cas proteins generally range in size from ~950 to 1400 amino acids. Although 

different sized enzymes can be used, the smallest functional Cas proteins have been used 

when there are defined size limits for experiments, such as the ~4.7 kb packaging capacity of 

adeno-associated viruses (AAVs), a commonly used therapeutic viral vector. Protospacer 

adjacent sequence requirements can also vary across multiple orthologs, and this influences 

the available target sequence space.31 In addition to differences in protein structure, there 

exist specific variations with the targeting guide RNA or crRNA for each Cas protein. The 

architecture of the targeting RNAs may differ, and some Cas proteins require a tracrRNA, 

such as the commonly used Streptoccocus pyogenes Cas9. Last, some enzymes are naturally 

more specific than others, and this specificity can be augmented through structure-guided 

engineering.34,35 Specific examples of the above variations are referenced in Table 1 or in 

Part III.
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CRISPR-Cas Systems in Heterologous Contexts.

To utilize CRISPR-Cas systems for targeted genome engineering in heterologous organisms 

such as mammals, the Cas protein as well as the guide RNA(s) have traditionally been 

modified for optimal expression and localization according to specific interests in cell type, 

species, and applications. For guide RNA expression in heterologous cells, RNA expression 

is generally driven by a promoter recognized by the endogenous transcription machinery. In 

mammalian cells, the RNA polymerase III (polIII) U6 promoter is commonly used because 

it is short and able to transcribe short RNAs.38 Another polIII promoter for guide RNA 

expression is H1, which also drives constitutive expression of short RNAs.39 Second, if a 

tracrRNA is required, such as for spCas9, a chimeric crRNA–tracrRNA hybrid RNA, also 

known as a single guide RNA (sgRNA), can be used to reduce the number of expressed 

RNAs required for targeted genome editing.40–42 Last, the spacer sequence of the guide 

RNA should be chosen in the genomic area of interest with the appropriate flanking PAM 

sequence for the particular Cas enzyme.

Several modifications to wild type cas genes also aid protein function and expression in 

heterologous contexts. The cas gene can be codon optimized for efficient translation in the 

specific organism. If particular organelle localization is required, such as localization of the 

Cas enzyme to the nucleus to edit dsDNA, localization tags can be added, such as nuclear 

localization sequence (NLS) tags to recruit the ribonucleoprotein complex to the nucleus.41 

A promoter specific to the organism of interest can be selected for tissue specific or 

ubiquitous constitutive expression. The specific ortholog of the Cas enzyme will dictate the 

size of the Cas protein and protospacer flanking sequence requirements.

PART III: CLASS 2 CRISPR-CAS SYSTEMS

Given the broad application of Class 2 CRISPR-Cas systems as genome editing tools, there 

has been a recent focus on the discovery and characterization of these systems. The unique 

properties of these diverse systems have been used as an array of molecular tools (Figure 1). 

The next sections will describe specific molecular characteristics of different Cas enzymes, 

orthologs, or enzymes modified through targeted engineering and are summarized in Figure 

2.

Type II CRISPR Systems.

The first CRISPR associated single effector enzyme to be repurposed as a mammalian 

genome-editing tool was Cas9,41,42 which is currently the only known unique large single 

effector Cas protein of the Type II CRISPR-Cas systems. Cas9 is the most common large 

single effector Cas enzyme with 3822 reported orthologs, nearly all from the bacterial tree of 

life.25 Crystal structures have shown that Cas9 is a bilobed enzyme that uses two separate 

nuclease domains to cleave the target DNA in a blunt pattern using a RuvC-like and a HNH 

DNase domain (Figure 3).43–45 Each nuclease domain of Cas9 cleaves a single strand of 

DNA. Mutating either HNH or RuvC catalytic residues separately creates a nickase enzyme 

that cleaves just one of the two strands of DNA.40,46 Mutating both catalytic residues results 

in a catalytically inactive enzyme, which can be used as a programmable DNA binding 

protein. Additionally, Cas9 is not capable of cleaving its own pre-crRNA into individual 
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crRNA units. RNase III processes the pre-crRNA.9 It appears that mammalian cells can 

process pre-crRNAs without expression of the bacterial RNase III, possibly due to the ability 

of endogenous RNase III enzymes.41 The crRNA associates with a tracrRNA that has partial 

complementarity to the crRNA repeat and forms a secondary RNA structure recognized by 

the Cas9 protein.9

Cas9 is widely used to mediate genome editing within in vitro or in vivo environments, and 

several genome-wide off-target cleavage analyses have been performed in mammalian cells 

to better understand their on-target and off-target cleavage patterns.47,48 The most well 

characterized Cas9 ortholog comes from the species Streptococcus pyogenes SF370, termed 

SpCas9, which is a large 1368aa protein with a short, permissive NGG PAM.18 Several other 

orthologs of Cas9 have been harnessed for mammalian genome editing and are summarized 

in Table 2. Characterizing other orthologs has produced genome-engineering tools with 

altered PAM sequences or reduced gene sizes such as SaCas9, which is a shorter (1053aa) 

variant31 that may be packaged with its guide RNA into a single AAV vector. Besides the 

characterized orthologs, additional structure-guided engineered Cas9 variants have been 

produced. Cas9 engineered variants exhibit altered PAM specificity37 or enhanced cutting 

specificity34,35,49 as listed in Table 2. Cas9 is the subject of other relevant genome 

engineering reviews such as that of Karvelis et al.

In addition to its use as a way to edit the genome, its specific activity, ease of targeting, and 

modularity have enabled Cas9 to be repurposed for many other assays, summarized in refs 

28 and 50. Cas9 can be used in genome-wide knockout screens in which a pooled library of 

guide RNAs can be delivered through lentiviral vectors to a cell population, which is then 

subjected to positive or negative selection.51,52 Catalytically inactive Cas9, or dCas9, has 

been used as a programmable DNA binding protein to direct functional effector localization.
53,54 For targeted transcription initiation, either dCas9 is directly fused to a transcriptional 

activator such as VP6455–57 and/or the guide RNA can undergo structure-guided alterations 

to direct localization of VP64. An MS2 RNA stem loop, from the MS2 bacteriophage, can 

be added to a permissive area of the guide RNA and coexpressed with an engineered MS2 

coat protein fused to the VP64 protein, in which the MS2 coat protein strongly and 

specifically binds to the MS2 RNA stem loop, thereby providing synergistic activation of 

transcription.58,59 Also, dCas9 has also been used for targeted DNA imaging60 or to alter 

epigenetic marks such as histone demethylation.61 More recently, Cas9n has been fused to 

an artificially evolved tRNA adenosine deaminase to achieve precise conversion of A·T to 

G·C in genomic DNA.62

Type V CRISPR Systems.

Type V CRISPR systems encompass all Cas enzymes that have a RuvC-like endonuclease 

domain with the RNase H fold, conserve catalytic motifs, and lack an HNH nuclease 

domain.3 Currently there are five such unique single large effector proteins: Cas12a (Cpf1), 

Cas12b (C2c1), Cas12c (C2c3), Cas12d (CasY), and Cas12e (CasX; Figure 3). Available 

data of the Cas12 family of proteins suggest that they exhibit several functional similarities 

but generally show low sequence homology.3
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Cas12a/Cpf1 has been identified in 70 bacteria species25,63 and was functionally 

characterized as an active bacterial immune system.32 Cas12a has also been successfully 

harnessed for genome editing applications in several different organisms including human 

cells,32 mice,64 plants (tobacco and rice),65 silkworms,66 zebrafish, and Xenopus,67 

illustrating its widespread applicability. Cas12a orthologs have also been examined, four of 

which are active in mammalian cells, as shown in Table 2.68 The wild-type Cas12a enzyme 

is found to have high levels of specificity.30,69 Last, Cas12a has promise for use 

therapeutically as illustrated by correction of muscular dystrophy in human cells and a 

mouse model.70

Cas12a/Cpf1 is distinct from Cas9 in several different ways. First, Cas12a enzymes have a 

T-rich PAM located 5′ of the guide, whereas Cas9 enzymes have G-rich PAM sequences. 

The T-rich PAM enables editing in AT rich genomes as well as pyrimidine-rich genomic 

areas such as the splice acceptor region.70 For example, the wild-type Cas12a ortholog 

Acidaminococcus sp. BV3L6 has a TTTV PAM 5′ of the protospacer.32 Engineered Cas12a 

variants exist with altered PAM specificities including 5′ TYCV and 5′ TATV, which have 

expanded the targeting range of Cas12a.71 Cas12a is also naturally targeted to the cognate 

DNA using only the single crRNA,32 which is simpler than the crRNA–tracrRNA duplex 

used by Cas9 and shorter than the chimeric Cas9 guide RNA. Cas12a is also unique in that 

the enzyme itself cleaves its own CRISPR array into individual crRNA units, making it the 

only known Cas nuclease with both DNase and RNase activity.72 The ability of Cas12a to 

process its own pre-crRNA has been leveraged for multiplexed genome editing.68 Unlike the 

blunt cut of Cas9, Cas12a targeted dsDNA cleavage results in a staggered cut leaving sticky 

overhangs after cleavage,32 potentially enhancing targeted knock-in efficiency. Crystal 

structures of Cas12a orthologs provide evidence that the RuvC-like domain is involved in 

dsDNA cleavage. Crystal structure data from the Francisella novicida U112 Cas12a suggests 

that the RuvC-like domain is the only domain responsible for cleaving both the target and 

nontarget DNA strands.73 However, in the Acidaminococcus sp. crystal structure, data show 

that mutation of the RuvC catalytic residues inhibits cleavage of both strands but that one 

mutation in the Nuc domain prevented cleavage of the target strand.74

Much less is known about Cas12b, Cas12c, Cas12d, and Cas12e, but the available data 

suggest they may behave similarly to Cas12a but also have some differences. For example, 

crystal structures show that Cas12b is structurally unique compared to Cas12a overall but 

shows similarity in the domain organization of the RuvC-like domain.75,76 Biochemically, 

Cas12b generates staggered DNA cuts distal to its T-rich PAM like Cas12a.27,75,76 Cas12b/

C2c1 also has been shown to accommodate both the nontarget and target DNA strands in the 

RuvC-like domain. Mutagenesis of its RuvC catalytic residues prevents cleavage of both 

dsDNA strands, suggesting that Cas12b uses a single nuclease domain to cleave the 

substrate dsDNA.75 One notable difference between Cas12a and Cas12b is that Cas12b 

requires a tracrRNA for crRNA maturation and target cleavage.27 On the other hand, 

Cas12c, Cas12d, and Cas12e are less characterized. Known properties of Cas12c and 

Cas12d suggest they are similar to Cas12a,2777 whereas Cas12e is a small 980 amino acid 

protein that is predicted to use a tracrRNA.77
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Type VI CRISPR Systems.

The Type VI CRISPR-Cas enzymes are RNA guided RNA nucleases. There are three unique 

Type VI CRISPR Cas enzymes, Cas13a (C2c2), Cas13b, and Cas13c, each of which has two 

Higher Eukaryotes and Prokaryotes Nucleotide-binding or HEPN RNase domains (Figure 

3).78 HEPN domains generally consist of α-helical structures and have a conserved amino 

acid motif of E upstream of an R(X4–6)H where the amino acid after R is typically polar 

(often N, D, or H).79 The HEPN domains of Cas13a and Cas13c are located toward the 

central and C-terminal ends of the protein, whereas the HEPN domains of Cas13b are 

located toward the N-terminal and C-terminal ends of the protein.25 Other than the catalytic 

residues of the HEPN domains, there is no sequence homology between Cas13a, Cas13b, 

and Cas13c.

Cas13a/C2c2 has been identified in 30 bacterial species25 and specifically cleaves single 

stranded RNA from the two individual HEPN domains80 that come together to form the 

RNase active site.81 Validating in vitro cleavage data with purified protein showed cleavage 

of ssRNA at the RNA base uracil80 or adenine depending on the ortholog.82 ssRNA cleavage 

is dependent on a 3′H (A, U, or C) protospacer flanking sequence (PFS).80 Mutagenesis of 

arginine in either HEPN domain of Cas13a resulted in a catalytically dead enzyme.80 

Cas13a also has a second, independent RNase activity that is able to process its own 

CRISPR array,83 which could aid in multiplexed targeting of multiple RNA sequences. 

Cas13a also exhibits an in vitro cleavage phenomenon called the collateral effect, i.e., 

promiscuous RNase cleavage activity after initial targeted RNA cleavage.80 This activity has 

been useful in the development of RNA detection assays83 such as SHERLOCK, which can 

detect specific DNA or RNA molecules with attomolar sensitivity.84 More recently, Cas13a 

has been engineered to achieve new functionality in mammalian cells, such as highly robust 

multiplexed RNA knockdown and binding,85 as well as direct adenosine to inosine editing 

with catalytically inactive Cas13 (dCas13) fused to DAR2.86

Cas13b functions similarly to Cas13a but with some differences, especially in terms of 

regulation. There are more orthologs of Cas13b,25 and they are subcategorized into two 

groups based on the identity of a small accessory protein, either Csx27 or Csx28, encoded in 

the CRISPR locus.23 These proteins differentially impact Cas13b interference activity in a 

bacterial host: Csx27 weakens Cas13b interference activity, whereas Csx28 increases 

activity.23 Cas13b also has a double-sided PFS of 5′D (A, U, or G) and 3′NAN or NNA and 

cleaves ssRNA flanking uracil or cytosine.23 Currently, there are no experimental data 

published on Cas13c. Cas13a, Cas13b, and Cas13c are the only known naturally occurring 

RNA targeting class 2 Cas enzymes.25 Their development as RNA-targeting tools in 

mammalian cells could be used for endogenous RNA knockdown, RNA editing, translation 

control, splicing control, localization studies, or in other applications for targeted RNA-

binding assays.

Are There Undiscovered Class 2 Cas Enzymes?

The first known CRISPR-Cas systems were discovered empirically, whereas other rarer 

CRISPR-Cas systems were discovered through large computational searches. The first 

empirically discovered CRISPR-Cas systems were Types I, II, and III, which are relatively 
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abundant.26 Next, while analyzing the genomic DNA of the intracellular pathogen 

Franciscella tularensis, the Type V cas12a (cpf1) gene was first discovered as an 

uncharacterized gene next to cas1, cas2, cas4, and a CRISPR array63 and later found in other 

bacterial species.24 With a growing appreciation for the diversity of CRISPR-Cas systems in 

combination with the successful repurposing of Cas9 as a genome-engineering tool, the first 

comprehensive search for uncharacterized Class 2 CRISPR proteins was conducted.27 This 

bioinformatics search was seeded on cas1, which encodes the most highly conserved Cas 

protein87 and is present in most CRISPR-Cas loci.24,26 From this search, the three large 

single effector Cas enzymes Cas12b, Cas13a, and Cas12c were found.27 Later 

bioinformatics searches for uncharacterized Class 2 CRISPR proteins were seeded on the 

CRISPR array and any large protein nearby.23,27 This approach identified Cas13b and 

Cas13c. Regardless of the starting point, large computational searches are limited by the 

sequenced populations available, which are generally skewed toward bacteria that can be 

cultured in laboratories or exhibit clinical relevance. To overcome this limitation, previously 

uncharacterized bacteria were sequenced, yielding the discovery of Cas12d and Cas12e.77 

New data sets of bacterial or archaeal genomes are continuously being published,88 

providing a rich source for future exploration of these diverse systems for discovery of novel 

CRISPR-Cas systems.
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KEYWORDS

Genome editing
a type of genetic engineering in which DNA is inserted, deleted, or replaced in the genome 

of a living organism using engineered nucleases, also known as genome engineering

CRISPR
Clustered Regularly Interspaced Short Palindromic Repeats, a bacterial immune system that 

forms the basis for CRISPR-Cas9 genome editing technology

Immunity
biological defense of an organism to distinguish “self” from “non-self,” to fight infection, 

disease, or other unwanted biological invasion

Class 2 CRISPR-Cas system
a class of CRISPR system in which the effector modules consist of single, large, 

multidomain proteins that might originate from mobile genetic elements

Cas9
an RNA-guided DNA endonuclease enzyme associated with the CRISPR adaptive immunity 

system, particularly class 2 CRISPR

Cas12a (Cpf1)
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a key enzyme in the type V A CRISPR system, also known as CRISPR from Prevotella and 

Francisella 1

Cas12b (C2c1)
a key enzyme in the type V A CRISPR system, also known as C2c1

Cas12d (CasY)
a key enzyme in the type V D CRISPR system, also known as CasY

Cas12e (CasX)
a key enzyme in the type V E CRISPR system, also known as CasX

Cas13a (C2c2)
a key enzyme in the type VI A CRISPR system, also known as C2c2
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Figure 1. 
Graphic representing the diversity that enzyme choice may influence. Single effector Cas 

enzymes may be targeted to dsDNA or ssRNA, have different required protospacer flanking 

sequence requirements, may be delivered using different viral vectors, may be codon 

optimized and driven by promoters specific to function in different organisms, can be 

modified for higher specificity, and can be regulated.
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Figure 2. 
Basic structure and functions of Class 2 CRISPR-Cas Types. Cas9 from Streptococcus 
pyogenes represents Type II. Cas12a from Francisella novicida U112 represents Type V, and 

Cas13a from Leptotrichia shahii represents Type VI.
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Figure 3. 
Schematic representation of the unique Class 2 single effector Cas enzymes and their 

confirmed or predicted catalytic nuclease domains. Each Cas enzyme is grouped according 

to its CRISPR-Cas Type classification, and the number of orthologs is listed. The bright 

colors represent nuclease domains confirmed by crystal structure, and the faded colors 

represent computationally predicted nuclease domains. Several nuclease domains confirmed 

by crystal structure are not linear along the amino acid polypeptide chain and are split into 

sections as shown in the schematic. The split domains include RuvC-like in Cas9, Cas12a, 

and Cas12b and the first HEPN domain of Cas13a.
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