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Abstract
Cognitive control, the ability to regulate one’s cognition and actions on the
basis of over-riding goals, is impaired in many psychiatric conditions.
Although control requires the coordinated function of several prefrontal
cortical regions, it has been challenging to determine how they work
together, in part because doing so requires simultaneous recordings from
multiple regions. Here, we provide a précis of cognitive control and
describe the beneficial consequences of recent advances in neurosurgical
practice that make large-scale prefrontal cortical network recordings
possible in humans. Such recordings implicate inter-regional theta (5–8 Hz)
local field potential (LFP) synchrony as a key element in cognitive control.
Major open questions include how theta might influence other oscillations
within these networks, the precise timing of information flow between these
regions, and how perturbations such as brain stimulation might
demonstrate the causal role of LFP phenomena. We propose that an
increased focus on human electrophysiology is essential for an
understanding of the neural basis of cognitive control.
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Cognitive control and psychiatry
Cognitive control refers to the ability to regulate one’s own cog-
nitive activity and the actions driven by that activity in the pres-
ence of overarching goals1–3. It is especially important when 
faced with the need to withhold a response or to countermand 
a planned thought or action. For example, anyone who has 
lived with a toddler knows that “inside voice” is different from  
“outside voice”. The parent needs to teach the child that even 
something as basic as speaking volume must be linked to a 
seemingly arbitrary context and that a habit of speaking loudly 
must be controlled in some circumstances. A more clinically 
relevant example would come from touching a doorknob in a  
public building. That action may trigger thoughts of germs 
and may motivate hand-washing. But a patient with obsessive- 
compulsive disorder (OCD) undergoing exposure response pre-
vention therapy may choose to deliberately delay hand-washing  
because of a higher-order goal of practicing not responding to 
obsessions.

Cognitive control involves three major components4–6. First, 
we must maintain an ever-changing internal mental repre-
sentation of our long-term goals. Then, we must monitor our  
interactions with the world and compare the results of those 
interactions (or the likely results of intended interactions) with 
our goals and assess how closely they match. Finally, we must  
adjust our behavior, if need be, to better fit our goals. In 
other words, our brains function, in an abstract sense, like a  
closed-loop engineering control system.

A critical element of most control systems is an internal repre-
sentation of the task and its contingencies. Detection of failure 
to achieve goals requires a representation of what those goals 
are; adjustment requires a judgment about which way the adjust-
ment should go. Thus, an important part of control, which we 
do not focus on here, is the map of task state. There is some  
evidence that the orbitofrontal cortex (OFC) may be specialized  
for maintaining this type of representation7–9. Another possibil-
ity is that maps of state space are more widespread, perhaps in 
different forms. Such representations, relevant for control, may 
be stored adjacent to representations needed for the relevant 
processing (for example, in dorsal anterior cingulate cortex  
[dACC]10).

Contexts that elicit control, such as conflict, can have two types 
of consequences. First, we can try to change course online 
(that is, adjust our immediate plans so that we do something  
different)11–15. Second, we may change strategies on subsequent 
trials or encounters. Over short time frames, this process is 
known as adjustment16,17. Over longer time frames, it is known  
as learning. Both processes are united in that they use monitor-
ing signals to alter stimulus-output mappings. Together, these 
two forms of adjustment are often known as proactive and  
reactive control.

Notably, cognitive control overlaps quite a bit with the concept 
of self-control3,18–21. Self-control, however, is slightly different. 
Specifically, it can be defined as the deliberate selection of an  
abstemious option that produces greater long-term ben-
efits when faced with a more tempting option. Thus, it is a  

cognitive operation that generally requires cognitive control. 
As the study of one is likely to help shed light on the other, their  
differences must be kept in mind.

Limits of animal models
Neurophysiological models of cognitive control have been dif-
ficult to fully test. For example, major open questions include 
how theta might influence other oscillations within these  
networks, the precise timing of information flow between 
these regions, and how perturbations such as brain stimulation 
might demonstrate the causal role of local field potential (LFP)  
phenomena. One major challenge in answering questions like  
these is the disconnect between results from human and non-
human studies. Structurally, we do not know the homology 
between prefrontal regions in rodent, monkey, and human22–24.  
Most notably, although monkeys appear to have a region 
homologous to human dACC, the specifics are hotly 
debated10,25. In rodents, portions of dACC may be quite differ-
ent, and there is likely no homologue of dorsolateral prefrontal  
cortex (dlPFC)23,26. Functionally, the overlaps are unclear as 
well. For example, dACC is frequently activated in human  
neuroimaging studies of conflict and associated control-related 
adjustment. On the other hand, primate neurophysiology studies, 
which have high temporal and spatial resolution, have gener-
ally failed to find single-unit correlates of cognitive conflict 
in this region27–30. The reasons for the disconnect between  
non-human primate electrode recording studies and human 
neuroimaging are not clear31, although the lack of naturalness  
of the primate tasks may be a contributing factor32.

This does not mean that non-human animal models are 
worthless. Indeed, animal models have proven quite use-
ful in understanding the neural basis of, for example, response 
competition33–36, rule switching37–40, response inhibition41,  
persistence42–44, and outcome monitoring45–47. These suc-
cesses, indeed, are foundational in the field of cognitive con-
trol. Nonetheless, they do not provide a complete picture of 
cognitive control and they have some limitations. For example,  
we lack a clear and non-controversial model of cognitive 
conflict and the types of control needed for rapid learning, 
for control related to language, for culture, or arguably for  
self-control48.

Consequently, humans are the most important model organ-
ism for the study of cognitive control. Unfortunately, the spatial 
resolution of electro-encephalography (EEG), the most prevalent 
human electrophysiological technique, may not be conducive 
to refining the specific functional roles of spatially neighboring 
PFC regions. It also may not pick up key nodes of the proposed 
network (for example, OFC49). Magnetoencephalography,  
while offering potentially higher resolution, is still far from 
desired. Finally, functional magnetic resonance imaging, although 
it is the most widely used method, lacks sufficient spatial and  
temporal resolution to answer several key questions, such as those 
related to theta (see below).

Recent advances in neurosurgery offer the promise of intrac-
ranial recordings in humans. Patients with medication-resist-
ant epilepsy often obtain relief from neurosurgery, wherein a  
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seizure-originating focus is removed from their brains. Localiz-
ing an individual patient’s focus can require the implantation of 
temporary monitoring electrodes that effectively triangulate the  
seizure origin through monitoring of the LFP. Changes in patient 
and surgeon preference have driven rapid adoption of a spe-
cific monitoring technique called stereotactic EEG (stereo-EEG  
for short), where the monitoring electrodes are long cylindri-
cal shanks placed through very small drill holes in the skull. 
These electrodes pass through superficial cortex and terminate 
in the deep brain, often close to the midline (Figure 1).  
Thus, these patients may have continuous recordings from mul-
tiple PFC components for a period of 1 to 2 weeks. During 
this time, patients are typically resting in a hospital room, 
awaiting a seizure event, and are often able to perform psy-
chophysical tasks. These task runs offer a unique opportunity  
to study cognitive control processes directly in humans. Next, 
we summarize the relationship between mental illness and 
cognitive control and then describe some of the benefits of  
intracranial studies.

The transdiagnostic nature of cognitive control
Deficits in cognitive control have been demonstrated in almost 
every psychiatric illness (for example, 50–57). For example, 
one hallmark of cognitive control is the ability to readily disen-
gage from one train of thought or pattern of action to pursue an 
alternative. That alternative may be goal-aligned; thus, failure to 
disengage is often opposed to goals. People with OCD can have 
trouble disengaging from persistent anxious thoughts and the  
resulting rituals, people with post-traumatic stress disor-
der can have trouble disengaging from avoidance behavior 
driven by fear memories, and people with substance addic-
tion can have trouble disengaging from cravings and the result-
ing drug-taking. In other words, cognitive control failures are a  
transdiagnostic phenomenon. Furthermore, such deficits 
can translate to controlled laboratory tasks of goal-aligned 

disengagement, such as reversal learning and cognitive  
conflict tasks58,59.

Disorders associated with cognitive control deficits are treat-
able through cognitive-behavioral therapy (CBT), which 
seeks to teach patients alternate (more adaptive) behaviors to 
replace their pre-potent or automatic responses. This could be 
thought of as providing a second automatic response that, once 
practiced, is somehow “easy” to select. The success of CBT  
suggests that control may be a target for remediation and dis-
ease treatment. Indeed, both invasive60 and non-invasive61 
brain stimulation can improve performance on cognitive  
conflict tasks, the most common laboratory measure of  
cognitive control. That improvement is associated with changes  
in neurophysiological signatures of control.

It nevertheless remains difficult to use cognitive control directly 
as a diagnostic or therapeutic target. Psychiatric disorders are 
internally heterogeneous62,63. Control deficits might be more  
common among patients with a given diagnosis, but it does  
not follow that every individual with that diagnosis is guar-
anteed to have a control deficit. This may explain why all the 
effects just cited are themselves heterogeneous; for every dis-
order, there are also studies failing to find cognitive control defi-
cits in a particular patient sample64. Although this may sound 
like a case for pessimism, we believe it indicates the potential 
benefit that can accrue from more fine-grained and precise  
measures of cognitive control.

Given that control deficits are found across disorders, but het-
erogeneously, a logical approach would be to identify a test 
that detects such deficits by studying a large sample of patients 
with a variety of diagnoses. Two recent studies took the first 
steps on that road. One applied a comprehensive neurocogni-
tive battery and a variety of psychophysical tasks to 420 patients 

Figure 1. An example montage from a human intracranial subject. dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal 
cortex; dmPFC, dorsomedial prefrontal cortex; lOFC, lateral orbitofrontal cortex; mOFC, medial orbitofrontal cortex; NAcc, nucleus accumbens; 
postCC, posterior cingulate; rACC, rostral anterior cingulate cortex; ROI, region of interest; vlPFC, ventrolateral prefrontal cortex.
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across mood and anxiety diagnoses, identifying six subgroups 
through a data-driven clustering approach65. These subgroups  
could be discriminated by their performance on a go/no-go 
task when that performance was expressed relative to age- 
and sex-corrected healthy volunteer performance. A different 
approach used the two-step learning paradigm66, a laboratory 
task in which subjects must navigate a decision tree to  
find the most rewarding outcomes. This paradigm has the 
advantage of a well-accepted parametric behavior modeling 
approach67, which, when applied to an individual, yields a sin-
gle number quantifying capacity for “model-based” control 
processes. Gillan et al. developed a population norm for this 
parameter in 1,413 online subjects, establishing a means to  
quantify individual-level control deficits66. The authors then 
showed that subjects with these deficits were more likely to 
report psychiatric symptoms, particularly those related to  
perseveration and compulsion.

The anatomic basis of cognitive control
A brief detour into the neuroanatomy of cognitive control 
reveals a clear overlap between regions associated with con-
trol and those associated with psychiatric disease. Psychiatric 
disorders involve abnormalities in many brain regions, but  
the most consistent of these are in the prefrontal cortico-basal 
ganglia network68. Similarly, cognitive control is closely associ-
ated with the prefrontal cortex, so much so that it is sometimes 
thought to be the defining feature of this large and heterogene-
ous region1. This is, of course, overly simplistic, but it is clear 
that many prefrontal regions are closely involved in cogni-
tive control. Most prominent among these are the dACC and  
dlPFC. Both neuroimaging and electrophysiological stud-
ies, from humans and non-human animals, indicate that these 
two regions are centrally involved in cognitive control4,10,25.  
In addition, lesions or damage to these regions tend to pro-
duce impairments in control. Other regions that are associ-
ated with cognitive control are the ventrolateral prefrontal 
cortex69, the dorsomedial PFC (DMPFC)70, and the OFC71,72. 
Some work even implicates the striatum, although its role is far  
from clear38,54,73,74.

Models of prefrontal function ascribe to these regions  
several features that are critical to cognitive control: (1) they par-
ticipate in monitoring goal-relevant variables, (2) their activity  
reflects the evaluation of costs and benefits of choice alterna-
tives, (3) they maintain rule sets and goal-related informa-
tion in working memory, and (4) they adjust adaptive biases 
toward more successful behavior. The evidence linking pre-
frontal cortex to each of these functions is strong. However, the  
specific assignment of regions to functions remains unclear; 
indeed, some recent theories hold that it may be impossi-
ble to link function to region in a one-to-one manner. Instead, 
regions may be better described as existing on a hierarchy of  
control75–78.

More formally, cognitive control can be conceptualized as a 
neural instantiation of ideas from engineering: monitor and con-
troller. These terms originate in engineering control theory 
and refer to elements of a control system that detect the need 
for control and implement it, respectively. By this same logic,  
we may hypothesize that OFC serves as a source of reward 

information that drives control decisions and that DMPFC 
serves as a final gateway to motor systems. This specula-
tive assignment of roles to regions offers a suggestion for why 
dACC appears to be so central: it functions as a hub point for  
the initiation of control79–81. This theory has the potential to inte-
grate several seemingly disparate findings about dACC, includ-
ing its role in monitoring reward outcomes, its role in choice 
processes, and its spatial reference frames, especially the  
frame of actions82–88.

Local field potential synchrony may bind frontal 
regions to achieve control
The broad involvement of dACC, dlPFC, and other prefron-
tal regions highlights the fact that cognitive control is a net-
work function. This raises a question: how are top-down control 
signals and bottom-up signals of the need for control routed? 
Recent work suggests that networks of cognitive control can 
be established through cross-regional synchronization of oscil-
lations in the LFP. (Some example traces of real patient data  
are shown in Figure 2). The general notion that LFP synchrony 
is a mechanism for brain communication is nearly 15 years 
old89 and the theory continues to be refined90–93. This includes 
a continued expansion of the definition of “synchrony”, to 
encompass spike-field coherence90,94 measures related purely  
to the phase of the LFP oscillation, or as coupling between 
a lower-frequency and higher-frequency oscillation91,95–97. 
Furthermore, evidence continues to build that LFP syn-
chrony plays a role in long-range brain areal communication.  
There is particularly strong evidence in sensation- and memory-
related research98,99.

Oscillations in the theta frequency band (5–8 Hz) are particu-
larly relevant for top-down communication100. Theta rhythms 
in the scalp EEG recorded over PFC have long been associ-
ated with cognitive control, especially as studied in conflict 
paradigms55,101–103. In theory, these power increases at the scalp 
might reflect changes in the synchrony of underlying cortical  
structures, where greater synchrony of neural firing leads to 
larger induced dipoles that are more easily observed at the scalp. 
If this is true, invasive neural recordings during similar tasks 
should show increases in theta phase synchrony (coherence or  
phase locking) that precede successful cognitive control.

Human intracranial recording as a tool for studying 
control
Thus far, invasive human electrophysiology studies support 
the thesis that LFP synchrony is a key component in fronto- 
cingulate network formation and function across multiple  
components of cognitive control. As humans are asked to make 
decisions according to increasingly abstract rules (that is, to 
exercise goal-maintenance aspects of control), theta phase syn-
chrony between PFC and motor regions increases91. Directed  
analysis shows cross-frequency coupling between these same 
regions, wherein PFC’s phase drives the amplitude of high-
frequency M1 oscillations. A parallel study extended this 
finding to control during cognitive conflict. After subjects  
receive error feedback during a cognitive conflict task (sign-
aling an increased need to deploy control), there is directed 
information transfer from medial to lateral PFC electrodes104. 
Furthermore, that information transfer (assessed by mutual  
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information calculations) is strongest between 4 and 8 Hz, the 
canonical theta band. Using the same task, our group recently 
showed that this theta synchrony extends well beyond PFC105. 
We showed that cognitive control tasks engage pairwise cor-
relations between PFC, cingulate, and subcortical structures 
and that the majority of high-influence correlations were in the 
theta band105. This may reflect a link between control and atten-
tion; PFC synchronizes with parietal cortex to entrain parietal 
oscillations to ongoing intermittent signals, increasing their 
chance of successful detection100. The dlPFC-dACC control  
framework (described above) is also supported by intracra-
nial electrophysiology. A recent study examined single-unit 
activity in humans during performance of a cognitive conflict 
task15. As in macaques, there were only modest neuronal firing 
rate correlates of conflict in dACC and negligible ones in  
dlPFC. However, conflict substantially altered spike-phase 
coherence in dACC and spike-field coherence in dlPFC. The 
much stronger effects in the LFP domain than in the spiking 
domain were striking, especially given the failures to find  
neural correlates of conflict at the unit level in past studies. The  
authors proposed that the single units may serve as soloists that 
drive a larger oscillatory choir that in turn drives behavior15. An 
open question is whether these networks can be perturbed to dem-
onstrate causality between LFP synchrony and successful control.

Human experimental opportunities are an excellent opportu-
nity for causal testing of cognitive control theories because spe-
cific brain regions’ function can be perturbed through electrical 
stimulation. Although seizures are always a concern in subjects 

with known epilepsy, many groups have conducted intermit-
tent stimulation experiments in these populations. In those  
studies, there were no major adverse events and there were sev-
eral reports of augmented function106–109. Arguably, the first 
report of such an experiment applied to cognitive control was 
a pair of patients in whom a subjective sense of “the will to  
persevere” could be evoked through rostral ACC stimulation110. 
That study did not quantify the potential control change 
using a behavioral task, but another recent study did. In  
psychiatric patients with deep brain stimulation electrodes in 
the internal capsule, we increased the power of theta rhythms 
in both lateral and medial PFC and, by doing so, improved sub-
jects’ performance on the multi-source interference task60. 
The next step would be defining stimulation patterns that 
can specifically alter coherence, cross-frequency coupling, 
or other synchrony metrics. This may be possible by locking  
stimulation to the phase of a band-limited oscillation, which 
has recently become possible with advances in real-time signal  
processing111–113.

Conclusions
Cognitive control has long been understood to require the coor-
dinated function of multiple PFC structures. Recent advances 
in the study of control have begun to dissect what each of 
these regions contributes, how they collectively detect the 
need for control, and how they then bias lower-level cogni-
tive processes to achieve a desired result. Access to human 
intracranial recording sites has allowed great advances in this  
domain. Specifically, it has allowed confirmation and extension 

Figure 2. Example of stereotactic electro-encephalogram recordings—in this case, eight bipolar-referenced channels from the left 
orbitofrontal cortex (LOF)—during one trial of a cognitive control task. Example of stereotactic electro-encephalogram recordings—in 
this case, eight bipolar-referenced channels from the left orbitofrontal cortex (LOF)—during one trial of a cognitive control task.
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of important theories about the neural basis of control in the 
organism of interest (humans) rather than in model organ-
isms. This is important because of possible dishomology 
between human and model organism structure and function 
in key regions and because of doubt about our ability to elicit 
human-like control in model organisms. A key next step is link-
ing this network-level recording to formal theories of cognitive  
control3,6. Specific aspects of theoretical/computational models 
should load onto sub-regions of PFC but this assumption 
has not yet been tested. Furthermore, if the theta synchrony 
theory is correct, it should be possible to track sequential 
flow of a computation through PFC and ACC, for example,  
through spectrally resolved directed connectivity metrics.

Relatedly, human intracranial opportunities allow direct manip-
ulation of these circuits in the human brain. For instance, as 
described above, we have verified a role of cortico-striatal 

circuits in control by manipulating those circuits with deep 
brain stimulation. Evidence from other cognitive systems sug-
gests that the inter-regional communication necessary for 
top-down control may require synchronized LFP oscillations.  
Different groups have found evidence for phase-related meas-
ures (for example, coherence), phase-amplitude coupling, 
and amplitude-amplitude measures (mutual information) as 
measures of that synchrony. Overall, this hypothesis is plausi-
ble but incompletely tested. With rapid advances in recording 
and stimulation capabilities, particularly for experiments with 
human volunteers, that will soon change. Furthermore, these  
experiments often use electrical stimulation to perturb net-
works of cognitive control, increasingly in activity-dependent 
closed-loop paradigms. Those approaches offer the pros-
pect not only that we will understand control better in years to  
come but that such studies will lead directly to new therapies  
targeting deficits in control.
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