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Salicylic acid regulates polyamine biosynthesis during drought responses in oat
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ABSTRACT
Salicylic acid (SA) is involved in several plant processes including responses to abiotic stresses. Although
SA is thought to interact with other regulatory molecules in a complex way, currently, little information
is available regarding its molecular mechanisms of action in response to abiotic stresses. In a previous
work, we observed that drought-resistant oat plants significantly increased their SA levels as compared
with a susceptible cultivar. Furthermore, exogenous SA treatment alleviated drought symptoms. Here,
we investigated the interaction between SA and polyamine biosynthesis during drought responses in
oat and revealed that SA regulated polyamine biosynthesis through changes in polyamine gene
expression. Overall, SA treatment decreased the levels of putrescine under drought conditions while
increased those of spermine. This correlates with the downregulation of the ADC gene and upregulation
of the AdoMetDC gene. Based on the presented results, we propose that SA modulates drought
responses in oat by regulating polyamine content and biosynthesis.
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Salicylic acid (SA) is an important plant hormone naturally
occurring in plants. Its role in plant–pathogen interactions
has been widely documented.1 In addition, SA is involved in
the regulation of plant development and growth, flowering,
and ripening.2 More recently, it was also reported to be
involved in plant responses to abiotic stresses.3 Thus, SA
mediates the response to salinity, low temperature, and
drought.4 Consequently, SA has been proposed to have
a great agronomic potential to improve stress tolerance in
economically important crops. However, only sparse informa-
tion is available to date regarding the molecular mechanisms
of SA in response to abiotic stresses. Furthermore, the effect
of SA in tolerance to abiotic stresses is under controversy due
to the concentration-dependent effect of this hormone.
Accordingly, low concentrations of applied SA alleviate the
sensitivity to abiotic stresses, whereas high concentrations
lead to a decreased tolerance due to the induction of oxidative
stress.3 In a previous metabolomic study,5 we observed an
induction of the SA biosynthetic pathway in a drought-
resistant oat cultivar (Patones) as compared with
a susceptible cultivar (Flega). Further studies showed that
the resistant cultivar increased SA content when subjected to
gradual water depletion compared with well-watered or sus-
ceptible plants and that exogenous SA applications at 100 µM
alleviated drought symptoms in part due to a reduction of
stomatal conductance.5

SA is thought to interact in a complex way with other
hormonal compounds.6 It has been reported to interact with
ethylene during heat stress,7 and it is also among the major
phytohormones interacting with nitric oxide (NO).8 Both
ethylene and NO are directly related to polyamine content,
and our previous data indicated a complex interplay between
ethylene, NO, and polyamines during drought tolerance

responses.9 Indeed, most common polyamines such as the
diamine, putrescine (Put), the triamine, spermidine (Spd),
and the tetra-amine, spermine (Spm), act as regulatory mole-
cules in many fundamental regulatory processes as well as in
stress responses. However, there is little information on the
direct SA–polyamine interaction during drought stress
responses apart from a study from Németh et al.10 in maize
in which SA caused sensitivity to drought, maybe due to the
relatively high concentration applied. We hypothesized that
the SA-mediated alleviation of drought symptoms observed in
oat might be due to its interaction with polyamines.

To test this hypothesis, oat plants from the resistant
Patones and susceptible Flega cultivars were grown and sub-
jected to drought as previously.5,11,12 At the beginning of the
drought treatment, the plants were sprayed with 100 μM SA
or 4-hydroxibenzoic acid (4-hBA), an isomer of SA with no
biological activity13 as control. As previously,5 we observed an
alleviation of drought symptoms in SA-treated plants.
Quantification of polyamines by high-pressure liquid chroma-
tography revealed significantly reduced levels of putrescine in
resistant Patones plants under drought conditions as com-
pared with Flega (p= 0.009). Furthermore, SA treatment
reduced the amount of this polyamine in both cultivars (p <
0.001) compared with 4-hBA-treated plants under drought
conditions but not under the well-watered conditions
(Figure 1). Differential effect of plant hormones under well-
watered or drought conditions has been previously reported.
For instance, the accumulation of Abscisic acid (ABA) in
roots helps to maintain growth under drought stress condi-
tions but not when applying ABA to well-watered plants.14

Increased level of putrescine accelerates senescence and has
been associated with chlorophyll loss,15 features that were also
observed in plants under water stress. Thus, the reduction of
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putrescine observed in SA-treated plants supports the drought
symptom alleviation observed. Interestingly, SA reduced the
levels of spermidine in resistant Patones plants but not in
susceptible Flega. This could be due to a different sensitivity
of the two cultivars as also reported in tomato during salt
stress, where exogenous SA affected polyamine production in
the resistant cultivar but not in the susceptible.16 On the other
hand, SA significantly increased spermine content in both
cultivars. Spermine has been associated with drought toler-
ance in other species. Thus, spermine pretreatment reversed
the drought hypersensitive phenotype of the Arabidopsis acl5/
spms mutant otherwise unable to produce spermine.17 This
polyamine may modulate the activity of certain ion channels
increasing Ca2+ and regulating stomatal closure.17 Thus,

spermine could contribute to the previously observed reduc-
tion of stomatal conductance mediated by SA.5 In addition,
a role for spermine increasing the antioxidative capacity has
also been reported.18 In this sense, the increase in spermine
observed would also, at least partially, explain the increase in
antioxidant capacity and related activities observed in Patones
under drought.5

Expression studies of the main genes involved in polya-
mine biosynthesis by qRT-PCR supported the previous con-
clusions. Thus, the downregulation of ADC gene during
drought stress might contribute to the low levels of putrescine
observed (Figure 2). Surprisingly, whereas ADC expression
increased in SA-treated well-watered plants, putrescine levels
were not altered. This suggests that under well-watered

Figure 1. Effect of salicylate on polyamine content. Putrescine, spermidine, and spermine were measured in well-watered or droughted Flega (drought
susceptible) and Patones (drought resistant) plants treated with salicylate 100 µM (black bars) or with the biologically inactive isomer 4-hydroxybenzoic acid
(4-hBA) (control, white bars). Data are mean of five replicates ± standard error. * and ** indicate significant differences between treatments at p < 0.05 and 0.01,
respectively.
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conditions, the increase in ADC expression might lead to
accumulation of polyamine-related compounds such as agma-
tine, which acts as reservoir and precursor of polyamines or
be derived to other related biosynthetic pathways such as the
tricarboxylic acid pathway.9 The increased levels of spermine
observed were supported by an overall upregulation of
S-adenosylmethionine decarboxylase (AdoMetDC) gene,
which is directly involved in spermine biosynthesis.
Interestingly, Flega cultivar also showed a differential beha-
vior since SA-treated plants under drought did not show any
change on AdoMetDC expression. Nevertheless, the level of

spermine also increased in this cultivar following SA treat-
ment. This suggested that SA could influence other polya-
mine-related processes such as induction of enzymatic
activities or post-translational modifications leading to sper-
mine production, as it has been reported with other
enzymes.19 Indeed, it has been described that spermine itself
is able to inhibit the post-translational modification required
by ADC to form putrescine, decreasing putrescine accumula-
tion and the associated senescence.20 Some controversy exists
regarding the effect of SA on ethylene, with works reporting
its inhibition, stimulation, or absence of an effect. Our data
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Figure 2. Effect of salicylate on the expression of several genes involved in polyamine biosynthesis. Expression of arginine decarboxylase (ADC),
S-adenosylmethionine decarboxylase (AdoMetDC), and methionine adenosyltransferase (MAT) was measured in well-watered or droughted Flega (drought
susceptible) and Patones (drought resistant) plants treated with salicylate 100 µM (black bars) or with the biologically inactive isomer 4-hydroxybenzoic acid
(4-hBA) (control, white bars). Oat GAPDH gene was used as an internal control to normalize gene expression. Data, expressed as fold change in expression of SA-
treated plants with respect to controls (4-hBA-treated plants), are mean of at least three independent biological plus three technical replications ± standard error. *,
**, and *** indicate significant differences with respect to treatments at p < 0.05, 0.01, and 0.001, respectively.
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show no significant changes in methionine adenosyltransfer-
ase expression following SA treatment. This would support
a role for SA during drought-regulating polyamine biosynth-
esis without affecting ethylene production, which has been
related to drought-associated senescence symptoms.

In summary, we observed that SA modulated polyamine
content under drought conditions by influencing the expres-
sion of its main biosynthetic genes. These data shed light on
the complex interaction of SA with polyamines and may help
to build the complex scheme of signaling networks, which
could contribute to alleviate drought adverse effect in plants.
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