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Purpose: Performance of the preconditioned alternating projection algorithm (PAPA) using
relaxed ordered subsets (ROS) with a non-smooth penalty function was investigated in positron
emission tomography (PET). A higher order total variation (HOTV) regularizer was applied and
a method for unsupervised selection of penalty weights based on the measured data is
introduced.
Methods: A ROS version of PAPA with HOTV penalty (ROS-HOTV-PAPA) for PET image recon-
struction was developed and implemented. Two-dimensional PET data were simulated using two syn-
thetic phantoms (geometric and brain) in geometry similar to GE D690/710 PET/CT with uniform
attenuation, and realistic scatter (25%) and randoms (25%). Three count levels (high/medium/low)
corresponding to mean information densities (IDs) of 125, 25, and 5 noise equivalent counts (NEC)
per support voxel were reconstructed using ROS-HOTV-PAPA. The patients’ brain and whole body
PET data were acquired at similar IDs on GE D690 PET/CT with time-of-fight and were recon-
structed using ROS-HOTV-PAPA and available clinical ordered-subset expectation-maximization
(OSEM) algorithms.
A power-law model of the penalty weights’ dependence on ID was semi-empirically derived.

Its parameters were elucidated from the data and used for unsupervised selection of the penalty
weights within a reduced search space. The resulting image quality was evaluated qualitatively,
including reduction of staircase artifacts, image noise, spatial resolution and contrast, and quanti-
tatively using root mean squared error (RMSE) as a global metric. The convergence rates were
also investigated.
Results: ROS-HOTV-PAPA converged rapidly, in comparison to non-ROS-HOTV-PAPA, with no
evidence of limit cycle behavior. The reconstructed image quality was superior to optimally post-fil-
tered OSEM reconstruction in terms of noise, spatial resolution, and contrast. Staircase artifacts were
not observed. Images of the measured phantom reconstructed using ROS-HOTV-PAPA showed
reductions in RMSE of 5%–44% as compared with optimized OSEM. The greatest improvement
occurred in the lowest count images. Further, ROS-HOTV-PAPA reconstructions produced images
with RMSE similar to images reconstructed using optimally post-filtered OSEM but at one-quarter
the NEC.
Conclusion: Acceleration of HOTV-PAPA was achieved using ROS. This was accompanied by an
improved RMSE metric and perceptual image quality that were both superior to that obtained with
either clinical or optimized OSEM. This may allow up to a four-fold reduction of the radiation dose
to the patients in a PET study, as compared with current clinical practice. The proposed unsupervised
parameter selection method provided useful estimates of the penalty weights for the selected
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phantoms’ and patients’ PET studies. In sum, the outcomes of this research indicate that ROS-
HOTV-PAPA is an appropriate candidate for clinical applications and warrants further research. ©
2017 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12292]

Key words: image reconstruction, maximum likelihood estimation, positron emission tomography,
single photon emission computed tomography, total variation

1. INTRODUCTION

Total variation (TV) regularization via the gradient favors
images with sparse gradients,1,2 which tends to remove noise
while preserving edges. As such, it has been very successful
in image denoising because it preserves details. This has
made it an interesting candidate for emission tomography.
However, in images without sparse gradients, TV regulariza-
tion can create piecewise constant artifacts, often referred to
as “staircase” artifacts. Unfortunately, images reconstructed
from positron emission tomography (PET) and single photon
emission computed tomography (SPECT) often have non-
sparse gradients, due to a number of factors, including large
point spread functions, and partial volume effects from coarse
reconstruction grids. To deal with this problem, a number of
researchers3–5 have shown that using higher order gradients
can reduce or remove these “staircase" artifacts. In particular,
Li & Zhang et al.5 applied it to penalized-likelihood SPECT
image reconstruction. The TV regularizer creates several
other challenges, including not being differentiable every-
where, slow reconstruction convergence, and sensitivity of
resulting images to regularization weights.

The problem of nondifferentiability is especially acute
because it takes place where the penalty is active, making it
difficult to avoid and making convergence slow when using
conventional gradient descent schemes. A number of algo-
rithms have been proposed to address this, including those
derived from the augmented Lagrangian framework, e.g.,
Alternating Direction Method of Multipliers (ADMM),6–8

others derived from a primal-dual framework, e.g., Cham-
bolle–Pock,9–11 and those derived from a fixed-point proxim-
ity framework,12,13 e.g., Preconditioned Alternating
Projection Algorithm (PAPA).5,14,15

PAPA, in particular, is suitable for optimization problems
with three convex terms.† Furthermore, PAPA’s explicit form
is easily derived, unlike ADMM, where the minimizations of
the alternating directions are unspecified and must be imple-
mented by the user. It is noted that a well implemented ver-
sion of ADMM, which allows the use of the PAPA
preconditioner, can be derived via fixed-point methods and
has similar convergence properties with PAPA. In the context
of PET and SPECT imaging, this includes a convex and dif-
ferentiable Kullback–Leibler (KL) divergence fidelity term,
along with convex nondifferentiable functions (first- and sec-
ond-order TV in this case), and a non-negativity constraint.

Algorithm convergence can be accelerated through the use
of data subsets. Examples include ordered-subset expecta-
tion-maximization (OSEM)16 and sequential frame subsets
used in list-mode EM,17–19 both of which use disjoint subsets
of the data to update images. Unfortunately, after initial
improved convergence, these methods almost always become
“stuck” at a limit cycle and fail to converge to the minima of
the objective function.20 Bertsekas21 introduced a convergent
class of incremental gradient methods to address this. These
incremental gradient methods can use ordered subsets (OS)
or other data subsets to produce convergent algorithms. In
particular, a number of convergent algorithms for gradient
descent have been developed.22–27 Of these, block sequential
regularized expectation maximization (BSREM)23,24 has
been used in a recent clinical implementation. However, even
using data subsets, it still requires a large dedicated computer
in order to make the computing time clinically viable.

It is also known that the convergence of these algorithms
is both data- and penalty weight-dependent, making their
assessment complex. Further until recently, given a particular
class of imaging problem (i.e., a typical image for a particular
patient size, disease, region, etc.), data from that class mem-
ber, and a particular image quality metric, there were no sim-
ple theoretical means with which to choose the optimal
penalty weights. At present, several researchers have devel-
oped theoretical frameworks based on the discrepancy princi-
ple (DP) given Gaussian and Poisson noise for estimating the
penalty weights of single parameters.28–31

The DP is the idea that the uncertainty of the data should
match the variability of the object or penalty function. How-
ever, it has been pointed out by several researchers that this
match does not necessarily result in a minimum mean
squared error (MMSE) image,32,33 nor if MMSE is necessar-
ily the right goal.34 Nevertheless in estimating MMSE pen-
alty weights, Eldar32 has developed a generalized framework
that does not require knowledge of the true distribution. How-
ever, it is computationally intensive, and optimal penalty
selection remains a difficult task, making the adoption of reg-
ularized algorithms even more challenging.

In this paper, these problems are addressed together and the
resulting algorithm is applied to both simulation and clinical
data. That is, we demonstrate the performance of a relaxed
ordered subsets (ROS) version of PAPA (KL-divergence) using
optimized penalty weights at three realistic count levels, first
by simulation and then using patient data are demonstrated. In
each case, the optimized penalties are first determined using
an empirical methodology, with connections to the DP, for a
simple image quality metric for quantitative tasks: root-mean-
squared error (RMSE). The results are then used with ROS-

†More precisely the PAPA algorithm is suitable for two proper lower
semicontinuous convex functions and a differentiable convex func-
tion with a Lipschitz continuous gradient.
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PAPA to demonstrate convergence acceleration and show
improved image quality relative to conventional unpenalized
image reconstruction. In this way, the simulations provide sup-
port and insight for the clinical results.

2. METHODOLOGY

2.A. Objective function description

Let f 2 Rd denote the true activity distribution in d vol-
ume elements of the reconstruction space, g 2 RN the
detected coincidence events at N pairs of detector ele-
ments, c 2 RN the additive background counts (i.e., ran-
dom, scatter, and cascade counts that are independently
estimated), and A 2 RNd the system matrix modeling the
geometrical mapping, attenuation, and detector blurring.
Following the notation used by Krol et al.,14 the penalized
Poisson-likelihood optimization model for PET reconstruc-
tion is as follows

arg min
f2Rd

þ

hAf ; 1i � hln Af þ cð Þ; gi þ kRðf Þf g: (1)

The KL data fidelity 〈A�,1〉�〈 ln (A�+c),g〉, denoted by f in
subsequent sections, measures the discrepancy between the
estimated and the observed data. The penalty term kR is
introduced to regularize the estimate to our prior knowledge.
Here, k is a positive penalty weight; its selection is of practi-
cal importance.

The TV regularizer often introduces undesirable “stair-
case” artifacts when reconstructing images without sparse
gradients. However, the first-order discontinuity of TV can be
relaxed by including higher order discontinuity penalties.
This can be achieved by using higher-order gradients of the
image, leading to the higher order total variation (HOTV)
regularization method.5 This work uses the HOTV regular-
ization method, where a second-order TV penalty is added to
the TV regularizer. This results in the penalty term kR(f) in
(1) being given by

Rðf Þ ¼ k1u1ðB1 f Þ þ k2u2ðB2 f Þ; (2)

where B1 and B2 are the first- and second-order difference
matrices, respectively, and u1, u2 are both sums of isotropic
vector norms (see5 or Appendix A for their precise defini-
tions).

Because the minimization of both first- and second-order
gradients of an image forces a compromise between the
piecewise constant and the piecewise linearly varying solu-
tions it results in solutions with substantially reduced “stair-
case” artifacts, as compared with only first-order TV
regularization.

2.B. Relaxed ordered-subset high-order total
variation PAPA (ROS-HOTV-PAPA)

The nondifferentiable optimization model in Eq. (1) can
be solved by the PAPA. Because the details of PAPA and
its extension to a HOTV-regularized reconstruction

problem have been previously discussed in,5,14 only a
selection of interesting and useful features of PAPA have
been given here. First, it allows us to deal with the func-
tions involved in the optimization model, either through
their proximity operators12 or through their gradients. In
fact, for nondifferentiable functions, the proximity operator
can be a very powerful tool (for smooth functions the gra-
dient may be simpler to implement). Second, PAPA does
not require matrix inversion, which is an advantage when
solving large-scale reconstruction problems that can be
quite expensive. Finally, PAPA suggests the search direc-
tion for the solution to follow the classical EM algorithm,
and thus speeds up the convergence. Using the notation in
Li & Zhang et al.,5 and the HOTV-PAPA iterative scheme
reads

hðkÞ ¼ max f ðkÞ � bSðkÞ rF f ðkÞ
� ���

þB>
1 b

ðkÞ þ B>
2 c

ðkÞ�; 0�
bðkþ1Þ ¼ q1 I � proxk1

q1
u1

� �
1
q1
bðkÞ þ B1hðkÞ

� 	
cðkþ1Þ ¼ q2 I � proxk2

q2
u2

� �
1
q2
cðkÞ þ B2hðkÞ

� 	
f ðkþ1Þ ¼ max f ðkÞ � bSðkÞ rF f ðkÞ

� ���
þB>

1 b
ðkþ1Þ þ B>

2 c
ðkþ1Þ�; 0�:

8>>>>>>>>>>><
>>>>>>>>>>>:

(3)

In scheme (3), b and c are dual variables, b is the step size, and
S denotes a preconditioning matrix. The operator max{�,0} is
a projection onto the first octant that is calculated compo-
nent-wise. The gradient of the data fidelity term has the
form rFðf Þ ¼ A>ð1� g

AfþcÞ, and the proximity operators
of u1 and u2 have closed forms that are described in
Appendix A.

To meet the time constraints due to tight clinical work-
flow, an (OS) version of PAPA is proposed. The assumption
is made that the data fidelity term F can be decomposed into
M smaller KL divergences F1; . . .;FM , which satisfies
the subset balance condition: rFðf Þ � MrF1ðf Þ �
� � � � MrFMðf Þ. For OS acceleration, ∇F is replaced in (3)
by MrFm and the updates in (3) are incrementally performed
M times to obtain a complete outer iteration,24 leading to a
ROS-PAPA,

hðk;mÞ ¼ max f ðk;m�1Þ � bkS
ðk;m�1Þ rFmðf ðk;m�1ÞÞ��

þB>
1 b

ðk;m�1Þ þ B>
2 c

ðk;m�1Þ�; 0�
bðk;mÞ ¼ q1 I � prox k1

Mq1
u1

� �
1
q1
bðk;m�1Þ þ B1hðk;mÞ

� 	
cðk;mÞ ¼ q2 I � prox k2

Mq2
u2

� �
1
q2
cðk;m�1Þ þ B2hðk;mÞ

� 	
f ðk;mÞ ¼ max f ðk;m�1Þ � bkS

ðk;m�1Þ rFmðf ðk;m�1ÞÞ��
þB>

1 b
ðk;mÞ þ B>

2 c
ðk;mÞ�; 0�

8>>>>>>>>>>><
>>>>>>>>>>>:

(4)

with f ðk;0Þ ¼ f ðkÞ and f ðkþ1Þ ¼ f ðk;MÞ. The subset gradients are
computed by rFmðf Þ ¼ A>

mð1� gm
Amfþcm

Þ with Am, gm, and cm
the mth subsets of the system matrix A, detected coincidence
events g, and background counts c, respectively. The diagonal
elements of EM-induced preconditioning matrix are given by
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Sðk;m�1Þ
jj ¼ Mf ðk;m�1Þ

j = A>1ð Þj; A>1ð Þj [ 0

Mf ðk;m�1Þ
j : A>1ð Þj � 0

(
(5)

OS techniques can greatly speed up the algorithm conver-
gence. However, they generally exhibit limit cycle behavior
when using a constant step size b. Following the relaxation
strategy proposed previously,24 a diminishing step size is
adapted,

bk ¼
b0

fk þ 1
(6)

to suppress the limit cycle and push updates to further
approach the minimizer. In the relaxation parameter, bk , f is a
constant that depends on the number of subsets, and b0 is
usually set to 1. Recalling the sufficient condition of algo-
rithm convergence for PAPA,14

qj ¼
1

2kBjk22maxfSðk;m�1Þg ; j ¼ 1; 2; (7)

is set. A more detailed description of the parameters is
located in Appendix A.

2.C. Image quality assessment

RMSE was used as the image quality metric due to its
relationship to the goals of the DP (i.e., achieving an MMSE
image) and PET’s quantitative nature. This metric is appro-
priate for quantitative tasks, balancing the reconstructed
image’s bias and variance. Further, it is simple to compute
and is in the same units as the image, making its interpreta-
tion clear. In all image quality comparisons, unpenalized
images were postfiltered using RMSE-optimal filtering
parameters after being iterated to convergence (i.e., relative
change of the objective function\� 10�5 � 10�8 for patient
and simulated images, respectively).

2.D. Penalty weight selection and the discrepancy
principle

2.D.1. Relation to the discrepancy principle

Several researchers have shown that the DP can be used to
guide penalty weight selection. In particular, Guerit et al.31

have shown via KL-divergence that a penalty sub-update can
be added to Poisson denoising algorithms. However, this
method relies on the Poisson discrepancy metric for image
quality, which may not be optimal in the MMSE sense, and
its extension to a two parameter model is unclear.

To avoid these problems, an empirical model based on fit-
ted data whose functional form is consistent with the DP was
chosen. This model’s connection to the DP is illustrated using
a simple minimization problem for sparse representation
shown by Elad.33 Consider the denoising problem:

min kxk1 subject to ky� Dxk22 � �; (8)

where the noisy image y 2 RN is contaminated with inde-
pendent and identically distributed Gaussian noise ry. This
problem seeks to represent y with a unitary matrix
D 2 RN�M and sparse coefficient vector x 2 RM. A natu-
ral choice for the error threshold is � ¼ Nr2y , where N is
the number of voxels in y. This problem can also be rep-
resented as

min
1
2
ky� Dxk22 þ kkxk1; (9)

where a particular penalty weight, k, will produce the same
result as Eq. (8).

In the original form of the problem, the interpretation of �
was clear and setting its value was straight forward. In the
new problem, the parameter k is more difficult to interpret,
but as suggested by the DP, it can be set as k ¼ ry=rx, where
rx is the variability (ensemble standard deviation) of the coef-
ficient vector x. This is motivated by thinking of the penalty
weight as balancing between the energy of the residual and
the regularization term.

The problem here is to match the discrepancy of KL-diver-
gence with HOTV penalties in Eq. (1). The standard devia-
tion of our data from this equation is given by

ffiffiffi
g

p
, but it is

complicated by the additive noise c. Likewise, the variability
of the image is complicated by the HOTV penalty. As a
result, we use a functional form that is consistent with the
ratio of data noise to image variability.

Noise equivalent counts (NEC),35–37 defined by NEC
¼ T2

TþSþR (T+R+S, true, random, and scatter), is good candi-
date function for data variance. For scale independence, the
mean information density in a patient image is defined as the
NEC per total voxels within the patient

ID, NECPd
j¼1 ‘f

� �
j

; (10)

where ‘f , is the indicator vector of voxels within the patient
(0 or 1) that can be estimated from a suitability scaled and
thresholded CT image set. From this it is observed that
r2y / ID.

Thus, given the definition in Eq. (10), projection data
(g = T+R+S), and an estimate of the randoms and scatter
counts (c = R+S, necessary for reconstruction), the ID can be
estimated by

ID � 1Pd
j¼1 ‘f

� �
j

PN
i¼1 gi � cið Þ ‘l

� �
i

h i2
PN

i¼1 gi ‘l
� �

i

; (11)

where ð‘lÞi is the ith component of the indicator vector of
projection attenuation (lines of response that pass through the
object).

For the image variability component, rx, it is noted that its
scale is related to the NEC (or here ID), and can be thought
of as rx being a function of ID for some particular activity
distribution. Using a power-law approximation for rx, the
penalty weight is given as

Medical Physics, 44 (8), August 2017

4086 Ross Schmidtlein et al.: Ordered subset PAPA for PET reconstruction 4086



k ¼ aID
b
; (12)

with free parameters a and b. Also, the use of a power-law
allows for the absorption of ry into the overall functional
form, and the object’s variability and choice of penalty func-
tion to be accounted for by the free parameters. Furthermore,
although the DP does not necessarily guarantee MMSE, the
fits using Eq. (12) will use it as the optimization criterion.

2.D.2. Multiparameter penalty weight selection

Using Eq. (12), penalty weights were chosen using a two-
part optimization strategy. This strategy both reduced the
search space to 1D and suppressed “staircase” artifacts from
the first-order TV term. It is noted that the first-order term is
slightly more effective in achieving MMSE and will other-
wise dominate a two-term minimization.

In the first step, at several different count levels, the first-
and second-order penalties were independently optimized for
RMSE using a golden search. These single MMSE penalty
fits for a1, a2 and b1, b2 can be written as

k�1 ¼ a1ID
b1 ; and

k�2 ¼ a2ID
b2 ;

(13)

Next, using these relations to constrain the scale between the
penalty weights, a combined MMSE penalty weight correc-
tion fit for a� and b� is performed using

k�1;2 ¼ a1ID
b1a�IDb� ¼ k�1a

�IDb�
; and

k�2;2 ¼ a2ID
b2a�IDb� ¼ k�2a

�IDb�
;

(14)

where a� rescales the magnitude and b� alters the slope of the
two individual MMSE penalties. This process was repeated
at several count levels, and regression uncertainties were
computed using a linear approximation via Taylor’s expan-
sion.

2.D.3. Optimization surrogate for patient scans

In the case of patient images, the true activity distribution
is unknown. Because of this, the cold rod region of the ACR
phantom (Flangeless Esser PET Phantom, Data Spectrum
Corp.) was used as a surrogate. This region has the largest
amount of variability of any commonly used PET phantom
and includes cold structures which are well known to have
poor contrast and slow convergence in reconstructed images.

The ACR phantom was filled in accordance with the ACR
guidelines38 and scanned at one dwell position for 30 minutes
with the cold rod (solid plastic rods) section centered in the
camera. Projection data with differing ID were generated by
replaying the scans for different acquisition durations (3, 6,
10, and 30 min). For each replay, the ID were calculated from
the projection data using Eq. (11).

The CT-derived reference activity distribution of the
cold rod section was generated using the accompanying
CT images (coregistered by default), where threshold

segmentation of the air, water, and plastic defined the
activity distribution. These reference images, for both 300
and 700 mm FOV, are shown in the results section. The
water portion of the phantom was assigned an activity
concentration value from the reconstructions of the uni-
form region of the phantom (the high contrast cylinders
were ignored). Calibration bias, the use of under con-
verged images in clinical calibration, was avoided by indi-
vidually normalizing to the mean of the activity
distribution for each reconstruction.

The calibration of the ACR phantom proceeded in a man-
ner similar to that of the simulations. Using the CT-derived
reference activity distribution, the minimum RMSE penalty
weights were determined individually for both the first- and
second-order penalties. These results were fitted using
Eq. (13). Next, the combined minimum RMSE penalty
images were found, and fitted using Eq. (14). This procedure
was used for each reconstructed field of view size.

2.E. Simulated PET images and phantoms

Initially 2D PET-like data were generated to characterize
the performance of the PAPA/OS-PAPA algorithms39 using
Matlab (Version 2014b) in an “inverse crime” study. Simple
2D images with variable intensity were created and forward-
projected via a projection matrix built with a ray-driven
model using 32 rays per detector pair. This was based on a
similar geometry to the GE D690/710 PET/CT, e.g., 6.3 mm
detectors on a 256 9 256 matrix interleaved with 288 views
over a 300 mm FOV. Uniform water attenuation was simu-
lated using the PET image support. Scatter was added by for-
ward-projecting a highly smoothed version of the images.
This was added to the attenuated image sinograms scaled by
an assumed scatter fraction SF ¼ S

TþS.
39 Random counts

were simulated by adding a uniform uptake to these sino-
grams scaled by the random fraction RF ¼ R

TþSþR.
39 The

subsequent image was scaled to a number of total counts and
Poisson noise realizations were performed at each count
level.

Three count levels (high/medium/low) were used based on
observed count data from patient studies in the clinic. For
high, medium, and low counts18 FDG-brain (370 MBq
injected, 10-minute acquisition 1-hour postinjection),18 FDG-
whole body (444 MBq injected, 3-minute per bed position
acquisition 1-hour postinjection), and antibody, (185 MBq of
89Zr injected, 5-minute per bed position acquisition 3-days
postinjection), respectively, were used. These scans roughly
corresponded to IDs of 125, 25, and 5 counts per support
voxel. The counts, using scatter and random fractions of
25%, for the scans were scaled to match these IDs using the
2D phantom described below.

Two phantoms were simulated for the study. For the first,
referred to hereafter as the Sinc+ phantom, a 2D sinc function
with some uniform and constant slope inserts were used (see
Figs. 1(a) and 1(b)). The sinc portion of the phantom pro-
vided a variable background, whereas the inserts provided
edges and regions where staircase artifacts would likely
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manifest. The inserts were spread radially and azimuthally to
aid the analysis. These simulations were performed using
penalty weights optimized for RMSE. The second phantom,
Fig. 1(c), was taken from a slice of a PET Brain scan and was
subsequently denoised using the Rudin–Osher–Fatemi
model1 with HOTV.

The simulated data were reconstructed using TV(1)-OS-
PAPA (first-order only), TV(2)-OS-PAPA (second-order
only), and HOTV-OS-PAPA using a modified version of the
PETSTEP platform39 described above. Additive noise was
included in the loop. Both projectors included attenuation,
and back-projection was performed using the matrix trans-
pose of the forward-projection to ensure it being the adjoint
forward-projection operator. Simulations were stopped after
50 to 100 iterations.

2.F. Patient brain and whole body scans

All patients were acquired with a GE D690 PET/CT with
time-of-flight information and reconstructed on a 256 9 256
matrix with point spread function information. The PET brain
and whole body patients were injected with 370 and
444 MBq (nominal) of 18FDG and scanned � 1 hr postinjec-
tion for 10 and 3 min, respectively. The antibody patient was
injected with 176 MBq of 89Zr-Df-IAB2M (ImagineAb)40

scanned � 3 days postinjection for 5 min per bed position.
The patient data were additionally reconstructed using con-
ventional OSEM. For the brain patient, 3 9 32 (itera-
tions 9 subsets) with a field of view of 300 mm with
“standard” z-axis (3-point smoothing, [1 4 1]/6) and 2.6 mm
FWHM Gaussian transaxial postfilters was used. For whole
body and antibody patients, 2 9 16 (iterations 9 subsets)
with a field of view of 700 mm with “heavy” z-axis (3-point
smoothing, [1 2 1]/4) and 6.4 mm FWHM Gaussian transax-
ial postfilters was used.

The ROS-HOTV-PAPA reconstructions were performed
using a modified version of the GE PET Toolbox release
2.0.41 Similar to GE’s Q.Clear reconstruction 25 9 24 itera-
tions and subsets were used.

3. RESULTS

3.A. Simulation penalty weight selection

Figure 2 shows the RMSE-optimal penalty weights as a
function of ID (see Table I for the ID values). The solid red
and blue lines represent the individual first- and second-order
TV penalty fits, which show excellent agreement with the
suggested power-law relationship with correlation coeffi-
cients greater than 0.98.

In Figure 2, the dashed red and blue lines represent the
penalty weights for the combined HOTV penalties. These fits
result from a combined second optimization process where

(a) (b) (c)

FIG. 1. Two simulation phantoms are shown. (a) The Sinc+ phantom with four uniform square inserts and four larger sloped square inserts. (b) The intensity
image of the Sinc+ phantom. Dashed lines show where intensity profiles are measured. (c) The denoised brain phantom (shown cropped from the simulated
300 mm FOV). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. Minimum RMSE penalty weights as a function of information den-
sity for the simulated Sinc+ phantom are shown. The lines show the power-
law fits of the individual penalties with RMSE-optimal penalty weights as a
function of ID for the Sinc+ phantom. The first- and second-order individual
penalties use the TV(1) and TV(2) prefixes, respectively (and similarly for
the combined penalty using the HOTV prefixes). The dashed lines show the
minimum RMSE fit for the combined penalties using the same ID-dependent
scaling term, where the individual penalty fits provide the relative penalty
weight scaling. Ten realizations over a wide range of values (see Table I)
were used (error bars smaller than marker size) for each penalty weight esti-
mate. [Color figure can be viewed at wileyonlinelibrary.com]
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the ratio of the individual fits is fixed as described by
Eq. (14). The resulting fits again show correlation coeffi-
cients near or greater than 0.98. This suggests that the result-
ing penalty weights are a reasonable estimate for minimum
RMSE.

The BSREM algorithm (the blue line in Fig. 2) was added
using a simple quadratic difference penalty to show that this
methodology works for that type of penalty as well.

3.B. Staircase artifact reduction

TV-penalties are known to produce “staircase” artifacts
that are dependent on the ratio of the penalty weights. As
shown in Fig. 3, the addition of a TV second-order gradient
can reduce these artifacts while preserving edges using the
minimum RMSE penalty weights derived from the fixed-ratio
fits in Fig. 2.

3.C. Comparison of relative penalty performance

The fitted penalty weights for TV(1), TV(2), and HOTV
image reconstructions exceeded the performance of optimally
postfiltered, fully converged OSEM reconstruction (in the
RMSE sense). This is shown in Table I for both the Sinc+
phantom and the brain phantom for a wide range of IDs
where each increment represents a factor of four over increase
of the prior value.

Figure 4 shows the normalized RMSE improvement for
HOTV compared with optimally postfiltered maximum-like-
lihood expectation-maximization (ML-EM). For each of
these phantoms, HOTV-PAPA outperforms, in the RMSE
sense, postfiltered OSEM, suggesting that HOTV-PAPA can
reconstruct equivalent image quality at almost one-quarter of
the counts as conventional ML-EM.

3.D. Performance of OS-PAPA without relaxation

Using the previously determined optimal penalty weights,
we show the convergence behavior of the various algorithms

for the low-, medium-, and high-ID images (Fig. 5). Overall,
using the normalized difference of the objective function
U1�Un
U1�U1

where U1,U2000� 1 (iterationsindicating limit cycle
behavior 9 subsets), the behavior is as expected; images con-
verge more quickly and then stop (indicating limit cycle
behavior), with higher count studies initially converging more
quickly and lower count studies stopping sooner, showing
that large subsets do accelerate TV-OS-PAPA and HOTV-
OS-PAPA in a similar way to more conventional algorithms.
Larger subsets showed limit-cycle behavior with fewer itera-
tions. In all cases, when subsets were used, limit cycle behav-
ior was eventually observed.

3.E. Convergence of relaxed (R)OS-PAPA

The relative convergence rates of OS-PAPAwith and with-
out relaxation are shown, using the normalized difference of
the objective function, in Fig. 6. Notice that for the medium-
and low-count images the number of subsets were reduced to
12 and 6, respectively. These reductions were based on the
observation in Fig. 5 that for lower count data the smaller
subset division converged almost as rapidly as the larger sub-
set division. Note that, even with small subset division, very
low-count images showed some convergence instability,
which is most evident when the second-order TV penalty was
used alone (not shown). No limit-cycle behavior was
observed when subset relaxation was used (Fig. 6).

3.F. Patient images using OS-HOTV-PAPA

For the clinical images, the penalties were set using the
methodology described in section II II.D, where the cold rod
region of the ACR phantom was used as a surrogate for the
patients. These results are shown in Fig. 7. Power-law fits of
the cold rod region of the ACR phantom were performed
using the 300 and 700 mm FOVs that are used for brain and
whole body patients. The overall range of these fits covered
most of the typical clinical range (ID = 15�100) where
extrapolation was used for ID outside the ranges of the fits.

Figure 8 shows patient images generated with ROS-
HOTV-PAPA and the clinical algorithm, postfiltered OSEM.
The improved image sharpness and reduced noise are readily
apparent. These used 25 9 24 (iterations 9 subsets) with a
relaxation constant of one twenty-fourth on a 256 9 256
matrix and a field of view of 300 mm for brain images, and
700 mm for whole body images, time-of-flight and point
spread function correction were also used. The mean mea-
sured ID and its [minimum to maximum] was: brain-102,18

F-FDG whole body (8 frames)-17.4 [12.7 to 28.6], and 89Zr-
antibody (9 frames)-12.3 [4.73 to 23.9] NEC per voxel. The
convergence, using OS with several different relaxation con-
stants along with images normalized relative error, is shown
in Fig. 9.

Four other brain PET patients were reconstructed with
similar results. Perturbations of the penalty weights from the
determined values by altering the scaling parameter (c�a1;2

TABLE I. Percent improvement in RMSE of PAPA with TV(1), TV(2), and
HOTV penalties using minimum RMSE fit penalty weights when compared
to optimally Gaussian postfiltered fully converged ML-EM is shown for a
wide range of information densities for both the Sinc+ and brain phantoms

ID
Sinc+

4.3 17.1 68.4 273.3 1093

DRMSETVð1Þ 13.9% 21.7% 28.2% 31.5% 28.3%

DRMSETVð2Þ 0.5% 9.4% 11.3% 12.2% 9.9%

DRMSEHOTV 15.1% 20.0% 21.3% 24.4% 22.2%

ID
Brain phantom

4.4 17.5 69.8 279.2 1116

DRMSETVð1Þ 5.3% 7.7% 9.3% 9.1% 9.7%

DRMSETVð2Þ 6.9% 9.1% 10.2% 10.4% 10.2%

DRMSEHOTV 9.0% 10.8% 14.5% 14.3% 13.8%

Medical Physics, 44 (8), August 2017

4089 Ross Schmidtlein et al.: Ordered subset PAPA for PET reconstruction 4089



FIG. 3. Images (top) and profiles (bottom) from the simulated Sinc+ phantom for (left to right) low, medium, and high count data are shown. The columns from
left to right represent the low, medium and high count data of the Sinc+ phantom. The top three image rows are optimal Gaussian postfiltered (GPF-)MLEM,
TV(1)-PAPA, and HOTV-PAPA reconstructions. Each column of plots on the remaining rows represents segments of the four profiles shown in dashed lines in
Fig. 1(b). [Color figure can be viewed at wileyonlinelibrary.com]
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from (14) by small factors (	 20%) showed a consistent
detail/variance trade-off for each patient (results not shown).

Finally, with respect to the surrogate ACR phantom data
the resulting RMSE values show that the HOTV penalty
improves image quality when compared with optimally (in
the RMSE sense) Gaussian postfiltered, fully converged,
images. The results are shown in Table II.

4. DISCUSSION

The main purpose of this paper was to demonstrate the
improved performance of image reconstruction using nons-
mooth penalties with parameters optimized using simple
image quality metrics (RMSE) under clinically realistic con-
ditions. In this case, ROS-HOTV-PAPA is used. This necessi-
tated that realistic simulation over a wide count and noise
range be performed to show that similar results hold for clini-
cal data. For noise control, the HOTV penalty that suppresses
a well-known problem referred to as “staircase” artifacts was
used and a methodology for selecting fixed-ratio minimum
RMSE penalty weights, which uses information available in
the scan data, was presented. Finally, after these pieces were
combined ROS-HOTV-PAPA was compared with optimally
postfiltered ML-reconstruction (in the RMSE sense).

What is striking is that the net combination of these pieces
leads to such large improvements in image quality when com-
pared with the unpenalized reconstruction that is typically used
in the clinic. It is noted that TV-denoising has been around for
� 30 yr,1 which implies that the use of more recent penalty
methods will likely allow for even larger improvements.

The comparison to unpenalized reconstruction was limited
because, at present only one vendor offers penalized-likeli-
hood image reconstruction, and it is not the purpose of this
study to make a more specific or detailed comparison. To
make such a comparison fair, an equivalent means of penalty
optimization should be available for the other algorithm. To
our knowledge, this is not the case. However, Fig. 2 suggests
that the technique described in this study should be applica-
ble to other types of penalties.

The incremental subgradient extension, via ROS-HOTV-
PAPA is quite straight forward and follows the methodology
described by Ahn and Fessler.24 Here we have shown that our
results are consistent with the asymptotic approach to the
minima of the objective function and a unique image (i.e.,
convergence), which is absent when relaxation is not used.
Though not shown, we have also noted that the convergence
rates of HOTV-PAPA, ROS-HOTV-PAPA are very similar to
those of row-action maximum likelihood algorithm
(RAMLA) and BSREM (quadratic penalty), which is easily
verifiable with a simple simulation. Further, although in this
study was focused on a HOTV penalty, any matrix parameter
product that is a proper lower semicontinuous convex func-
tion can be used, including l1-norm minimization problems
with sparse coefficients.

To optimize the algorithms performance, a heuristic
method based on a power-law, which uses the data’s NEC
divided by the image’s computation support, was used. This
quantity is referred to as ID because counts can be considered
bits of information and the NEC, which is known to correlate
with image quality,37 can be considered a measure of the total
information recovered from the scan. The normalization to
voxel support results in less dependence on patient size. Fur-
thermore, this heuristic is consistent with the observation in a
related problem (DP) that the optimal penalty weight, in an
MMSE sense, is given by the ratio of the data noise to the
object variability.33

The use of the HOTV penalty function requires setting
two penalty weights, which is an additional complication.
Rather than attempt a direct 2D minimization, we decided to
individually optimize each weight and then optimize the com-
bined individually optimized power-law relations. This sec-
ond optimization adds a scale and slope factor to the initial
optimized power-law relations. Given this power-law repre-
sentation, the results show that as few as two acquisitions (for
a particular class of patient), with differing IDs, can be used
to estimate minimum RMSE penalty weights for similar
patients, thus automating the penalty selection process. In
practice, the combined fixed-ratio penalty weights were very
close to simply dividing the individual ones by two, which is
consistent with the DP (i.e., the penalty weight serves to bal-
ance the tradeoffs between the data uncertainty and object
variability).

The decision to forgo a 2D direct search was based on
two observations. The first is that a 2D search requires
much more computational effort compared with a simpler
1D search, whereas the second observation is that individ-
ual penalty searches establish a relative scale between the
penalty weights that avoids artifacts. This is due to a
weakness in the MMSE optimization goal that the MMSE
image may be perceptually inferior despite having the
same or smaller RMSE.34 This is the case with first- and
second-order TV, where first-order TV is more effective at
achieving MMSE despite poorer perceptual image quality.
These improvements are consistent with the results of Li
& Zheng et al.,5 but now using minimum RMSE penalty
weights.

FIG. 4. Normalized RMSE as a function of information density is shown for
the simulated phantoms. The improvement in RMSE of HOTV-PAPA com-
pared with optimally Gaussian postfiltered ML-EM for both the Sinc+ and
brain phantoms. The ID is increased by a factor of four for each sequential
marker. [Color figure can be viewed at wileyonlinelibrary.com]
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As the results show, this relationship holds over a large
range of ID that encompass most clinical situations. However,
if two objects have sufficiently different activity variability or
distributions (like the Sinc+ and Brain simulation phantoms),
then different power-law parameters are likely necessary.
Thus, the parameters can be learned for several patient
classes (based on size, location, tracer, etc.) and used there-
after for similar patients. However, how sufficiently different
the patient distributions can be is an open question, although
initial evidence shows some robustness with respect to visual
perception, as seen when using the surrogate phantom for
patient images in Fig. 8 (although we cannot claim the result-
ing images as having lowest RMSE). This result is consistent

with what has been seen previously:42,43 the power-law rela-
tionship for HOTV penalty weights with brain patients held
for both RMSE and visual assessment (two experienced
nuclear medicine physicians) using the ACR phantom as a
surrogate for patient data. The confidence from the visual
assessment, our simulation experience, the excellent correla-
tion coefficients of the ACR phantom penalty weight fits sup-
ports our use of extrapolation with respect to the brain
images. The incorporation of object variability into the
power-law is under investigation.

Only RMSE was used for assessing image quality because
this simple metric represents the overall quantitative accuracy
of the images. Although it is a good place to start, clearly it is

FIG. 5. Normalized difference of the objective function as a function of iteration for different numbers of subsets for the simulated Sinc+ phantom are shown.
Ordered subset convergence rates are shown for top: low-ID (ID = 5, antibody imaging) convergence rates, middle: medium-ID (ID = 25, whole body imaging)
convergence rates, bottom: high-ID (ID = 125, brain imaging) convergence rates. Left to right the figure shows first- and second-order TV and HOTV-PAPA for
each count number. [Color figure can be viewed at wileyonlinelibrary.com]
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insufficient for task-based assessment.34 In the future we
intend to test the penalty selection scheme with more advance
structural metrics34 or model-observers.44,45 However,
because these results held for visual assessment of human
brain patients,42,43 it is possible that it will work for more
sophisticated observer models.

Finally, when compared with conventional maximum
likelihood imaging, even using an optimal postfilter, the
reduction of noise, improved conspicuity, and apparent
improvement in resolution are consistent with the simula-
tion results, indicating that equivalent image quality should
be possible with fewer NEC. Both simulation and clinical

results showed that RMSE equivalent images could be
achieved with almost one-quarter the NEC used with con-
ventional maximum-likelihood reconstruction. In addition,
the cold rod region of the ACR phantom shows improved
quantitative accuracy (RMSE) of up to 44% (Table II)
when compared with optimally postfiltered MLEM. These
results are especially interesting for very low count rates,
such as late imaging with long half-lives in antibody stud-
ies, and in dose reduction. However, at very low counts
(ID = 4), the second-order penalty term, when used alone,
had some instability, which slowed convergence and
achieved poor RMSE (Table I). This is not surprising

FIG. 6. Normalized difference of the objective function as a function of iteration for relaxed and unrelaxed reconstructions of the simulated Sinc+ phantom are
shown with 50 iterations. The relative convergence for low-, medium-, and high-counts is shown left to right for HOTV-PAPA using single subset, unrelaxed, and
relaxed ordered subsets reconstruction. The appended numbers in the legends (24, 12, and 6) represent the number of subsets used. [Color figure can be viewed
at wileyonlinelibrary.com]

FIG. 7. RMSE-optimal penalty weights curve fits as a function of information density for the cold rod section of the ACR phantom are shown. The upper plot
shows the fits for 300 mm FOV, while the lower plot shows those of the 700 mm FOV. In addition, to emphasize the inverse effect the FOV has on concentrating
counts, the uncropped CT-derived PET images of the ACR phantom, which were used as the reference distributions, are shown for each plot. [Color figure can
be viewed at wileyonlinelibrary.com]
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(a)

(b) (c)

FIG. 8. PET Images for three patients are shown. (a) The top two rows show a 18F-FDG PET brain scan of 52-yr-old male with brain metastases. The upper row
was reconstructed with our clinical brain reconstruction protocol (postfiltered OSEM) and the lower with ROS-HOTV-PAPA. The bottom row show maximum
intensity projection images of two different patients, (b) an 18F-FDG whole body scan of a 59-yr-old male with non-Hodgkin’s lymphoma, and C) an 89Zr-anti-
body whole body scan of a 62-yr-old male with metastatic prostate cancer, both patients were reconstructed with clinical whole body (postfiltered OSEM) and
ROS-HOTV-PAPA reconstructions (left and right, respectively). Note the improved sharpness and detail of the brain, and the improved contrast in the whole
body and antibody patients’ images. The red arrows indicate lesions that are especially conspicuous in the ROS-HOTV-PAPA images. Intrapatient images were
identically windowed and leveled. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 9. The convergence of the brain patient shown in Fig. 8(a) using 24 subsets using the normalized relative difference of both the objective function (left plot)
and images (right plot) are compared using different amounts of relaxation. The left plot (U1,U100� 24) shows that objective function convergence is fastest
using a relaxation constant between one twenty-fourth and one-twelfth. This plot also shows the convergence of the non-OS reconstruction. The right plot
(f1,f100� 24) shows that unrelaxed OS causes the images to stop converging despite the objective function continuing to decrease (see left plot). For assured con-
vergence, it is necessary for both normalized relative differences to continue to decrease. [Color figure can be viewed at wileyonlinelibrary.com]
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where the mean relative uncertainty of the counts is
� 50%. First-order TV did not show this problem and
seemed to regularize the second-order term when used
together (bottom-right Fig. 6).

At the end of this study several questions have been left
unanswered. At present, there is no convergence proof for
subset relaxation. The results show that this appears to be the
case (or at least it is in any practical sense), but its rate is
relaxation parameter-dependent, which is also an open ques-
tion. Also, there is no theoretical guidance on how to select
the “best” relaxation rate. However, the clinical and simula-
tion results show that a value of f between 1/12 and 1/24
work over a wide range of counts. With respect to penalty
weight selection, we note that the power-law’s dependence on
local image characteristics, such as contrast heterogeneity,
remains to be studied. Thus, observations indicate that for
similar patients the power-law parameters are similar enough
that they can be ignored, but we have not investigated which
differing patient characteristics have important image quality
implications. In addition, we have only tested our penalty cal-
ibration procedures on one type of scanner (GE Discovery
690/710) and expect that due to differing resolution, sensitiv-
ity, and time-of-flight that this procedure will need to be per-
formed at least once for each type of scanner and class of
image.

5. CONCLUSION

This study presents a combination of several advances in
penalized likelihood image reconstruction, namely the devel-
opment of relaxation for a convergent OS version of PAPA
with nonsmooth convex penalties (HOTV in this case) and a
simple empirical automatic means for selecting penalty
weights. This combination resulted in improved RMSE-
image quality and showed that equivalent image quality when
compared with conventional postfiltered OSEM, was
possible with reduced NEC. In fact, low-count phantom data
suggest that similar image quality is achievable with only
one-quarter the counts when compared with optimal

postfiltered, unpenalized image reconstruction, which indi-
cates that it may be possible to reduce the injected dose by a
similar factor. Furthermore, by first demonstrating these
results through simulation, and then with patients, we showed
that this combination has the potential for clinical use.

With respect to the use of ROS with PAPA, the results of
both simulated and patient reconstructions showed that ROS-
HOTV-PAPA greatly accelerated convergence, without which
the algorithm would be clinically infeasible. The algorithm
PAPA that was used is a special case of a fixed-point frame-
work for minimizing nondifferentiable convex functions. It is
our hope that it and other algorithms developed from the
fixed-point framework will allow further improved perfor-
mance using other advanced sparse representations.

To emphasize clinical relevance a promising methodology
for automatically estimating RMSE penalty weights for TV-
type and quadratic penalties was demonstrated. It was further
illustrated that this methodology requires as few as two base-
line scans for a particular class of image (i.e., uptake variabil-
ity) and is a very promising candidate for automatically
choosing optimal penalty weights for improved image quality
metrics.

These advances represent a step toward the clinical adop-
tion of advanced nonsmooth penalties and algorithms that are
feasible for the current generation of scanners with existing
penalized likelihood computing platforms. In future work,
both of these advances will be applied to more sophisticated
image quality metrics, penalty types, and improved fixed-
point algorithms for faster image reconstruction using new
sparse representation penalties.
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TABLE II. Percent improvement in RMSE of PAPA with an HOTV penalty
using near optimal weights compared with optimal Gaussian postfiltered
(GPF) fully converged ML-EM is shown for a series of information densities
for cold rod region of ACR Phantom

ID
Cold Rod Region (300 mm FOV)

5.8 12.4 20.4 57.6

RMSE�
GPF 0.340 0.279 0.250 0.215

RMSE�
HOTV 0.236 0.223 0.213 0.199

%Improvement 44.1% 25.2% 17.5% 8.4%

ID
Cold Rod Region (700 mm FOV)

30.2 64.3 106.0 299.2

RMSE�
GPF 0.326 0.257 0.230 0.190

RMSE�
HOTV 0.239 0.217 0.204 0.184

%Improvement 36.4% 18.7% 12.6% 3.5%
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APPENDIX A

HIGHER ORDER TOTAL VARIATION

In this appendix, the definitions of 3D higher order isotro-
pic total variation as well as the proximity operator are
given.5

In Section II II.A, it was mentioned that first-order and
second-order TV semi-norm can be written as convex func-
tions u1 composed with matrix B1 and u2 composed with
matrix B2, respectively. To write these explicitly Dn is first
defined as the n 9 n first-order difference matrix as

Dn,

0
�1 1

. .
. . .

.

�1 1

2
664

3
775: (A1)

It is assumed that an image considered in this paper has a size of
p 9 p 9 q. The image is treated as a vector in Rp2q, and its
ijkth voxel corresponds to the ðiþ ðj� 1Þpþ ðk � 1Þp2Þth ele-
ment of the vector. Setting d ¼ p2q and denoting In as the
n 9 n identity matrix, the 3d 9 dmatrix B1 and 9d 9 dmatrix
B2, are defined through the matrix Kronecker product⊗, by

B1 ,
Iq 
 Ip 
 Dp

Iq 
 Dp 
 Ip
Dq 
 Ip 
 Ip

2
4

3
5; and (A2)

B2 , Dxx;Dxy;Dxz;Dyx;Dyy;Dyz;Dzx;Dzy;Dzz
� �

; (A3)

where

Dxx , Iq 
 Ip 
 ð�D>
p ÞDp;

Dxy , Iq 
 ð�D>
p Þ 
 Dp;

Dxz , ð�D>
q Þ 
 Ip 
 Dp;

Dyx , Iq 
 Dp 
 ð�D>
p Þ;

Dyy , Iq 
 ð�D>
p ÞDp 
 Ip;

Dyz , ð�D>
q Þ 
 Dp 
 Ip;

Dzx ,Dq 
 Ip 
 ð�D>
p Þ;

Dzy ,Dq 
 ð�D>
p Þ 
 Ip;

Dzz , ð�D>
q ÞDq 
 Ip 
 Ip:

(A4)

Note that kB1k2 � 2
ffiffiffi
3

p
and kB2k2 � 12 (and kB1k2 � 2

ffiffiffi
2

p
,

kB2k2 � 8 for 2D).
The first-order isotropic TV (FOITV) and second-order

isotropic TV (SOITV) of a vectorized image f 2 Rd can now
be defined by

kf kFOITV,
Xd
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB1f Þ2i þ ðB1f Þ2iþd þ ðB1f Þ2iþ2d

q
;

and kf kSOITV,
Xd
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX8
j¼0

ðB2f Þ2iþjd

vuut ;

(A5)

respectively. This implies that for x 2 R3d and y 2 R9d,
u1 : R

3d ! Rd and u2 : R
9d ! Rd are defined by

u1ðxÞ,
Xd
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
j¼0

x2iþjd

vuut ; and u2ðyÞ,
Xd
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX8
j¼0

y2iþjd

vuut ;

(A6)

for FOITV and SOITV, respectively.5

Krol et al.14 used the closed form of proximity operator of
u1 and u2 to address the nondifferentiability of TV semi-
norm. For a convex function w : Rn ! R, its proximity oper-
ator is defined by

proxwðxÞ, arg min
1
2
ku� xk22 þwðuÞ : u 2 Rn


 �
: (A7)

Using the above definitions, by letting u ¼ proxx1u1
ðxÞ,

v ¼ proxx2u2
ðyÞ, as shown in,12 their closed form solution is

written as

½ui; uiþd; uiþ2d�> ¼max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
j¼0

x2iþjd

vuut � x1; 0

8<
:

9=
;�

½xi; xiþd; xiþ2d�>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2
j¼0 x

2
iþjd

q ; and

½vi; viþd; . . .; v8dþi�> ¼max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX8
j¼0

y2iþjd

vuut � x2; 0

8<
:

9=
;�

½yi; yiþd; . . .; yiþ8d�>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP8
j¼0 y

2
iþjd

q ;

(A8)

for i = 1,2, . . ., d.
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