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Abstract. The purpose of this study was to evaluate breast MRI radiomics in predicting, prior to any treatment,
the response to neoadjuvant chemotherapy (NAC) in patients with invasive lymph node (LN)-positive breast
cancer for two tasks: (1) prediction of pathologic complete response and (2) prediction of post-NAC LN status.
Our study included 158 patients, with 19 showing post-NAC complete pathologic response (pathologic TNM
stage T0,N0,MX) and 139 showing incomplete response. Forty-two patients were post-NAC LN-negative, and
116 were post-NAC LN-positive. We further analyzed prediction of response by hormone receptor subtype of
the primary cancer (77 hormone receptor-positive, 39 HER2-enriched, 38 triple negative, and 4 cancers with
unknown receptor status). Only pre-NAC MRIs underwent computer analysis, initialized by an expert breast
radiologist indicating index cancers and metastatic axillary sentinel LNs on DCE-MRI images. Forty-nine com-
puter-extracted radiomics features were obtained, both for the primary cancers and for the metastatic sentinel
LNs. Since the dataset contained MRIs acquired at 1.5 T and at 3.0 T, we eliminated features affected by magnet
strength using the Mann–Whitney U-test with the null-hypothesis that 1.5 T and 3.0 T samples were selected
from populations having the same distribution. Bootstrapping and ROC analysis were used to assess perfor-
mance of individual features in the two classification tasks. Eighteen features appeared unaffected by magnet
strength. Pre-NAC tumor features generally appeared uninformative in predicting response to therapy. In con-
trast, some pre-NAC LN features were able to predict response: two pre-NAC LN features were able to predict
pathologic complete response (area under the ROC curve (AUC) up to 0.82 [0.70; 0.88]), and another two were
able to predict post-NAC LN-status (AUC up to 0.72 [0.62; 0.77]), respectively. In the analysis by a hormone
receptor subtype, several potentially useful features were identified for predicting response to therapy in the
hormone receptor-positive and HER2-enriched cancers. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JMI.6.3.034502]
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1 Introduction
There is a large variation in the clinical presentation of, and out-
come of, breast cancer in women. It has been shown that in many
instances biological biomarkers, i.e., features, of the primary
tumor correlate with outcome. The availability of biomarkers
that can be used to assess outcome as early and as accurately
as possible is crucial to the development of successful targeted
breast cancer therapies. Tumor response to preoperative chemo-
therapy correlates with outcome and could be a surrogate for
evaluating the effect of chemotherapy on micrometastases and
rate of recurrence. Methods to assess biological biomarkers for
the prediction of outcome, however, may be invasive, expensive,
not repeatable, or not widely available. Our hypothesis is that
MR image-based features obtained through computer-extracted
radiomics, an extension of computer-aided diagnosis, will prove
useful as noninvasive biomarkers for the assessment and predic-
tion of response to neoadjuvant chemotherapy (NAC) in terms of
pathologic complete response (pCR) and post-NAC lymph node
(LN) status in patients with node-positive invasive breast cancer,
i.e., in patients with locally advanced breast cancer in whom the
cancer has started to spread locally to the axilla.

The “early” prediction of breast cancer response to treatment
using image-based phenotypes has gained interest in recent years
with research focusing mainly on radiomics of MRI scans
acquired up to after the first two cycles of NAC. We recently
showed, using MR images of 141 women with 3 cm or greater
breast cancers imaged at baseline in the publicly available
I-SPY1 dataset, that the pretreatment most-enhancing tumor
volume, an MR image-based radiomics feature, is predictive
of recurrence-free survival.1 We did not assess LNs in that study,
however, and research by others has focused on the breast cancer
itself as well. For example, looking only at pretreatment MRIs,
another relatively large study found that within a multicenter
independent validation cohort (186 patients), intratumoral spatial
heterogeneity predicted recurrence-free survival in locally
advanced breast cancer patients treated with NAC and that cancer
aggressiveness was associated with larger poor perfusion sub-
regions.2,3 Cain et al.4 found that radiomics of the tumor at pre-
treatment showed promise in the prediction of pCR in a subgroup
of HER2-enriched and triple-negative cancers (151 patients in an
independent test set of whom 28 achieved pCR). Another rela-
tively large study of 117 patients also found promising perfor-
mance of radiomics textural analysis of intratumoral and
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peritumoral regions on pretreatment breast cancer dynamic con-
trast-enhanced (DCE) MRIs, with areas under the ROC curve up
to 0.93� 0.018 for HER2-enriched and triple negative cancers
combined in a separate threefold cross-validation analysis (47
patients).5 Likewise, in a multicenter study, a radiomics signature
combined with independent clinicopathological risk factors
achieved good performances in the prediction of pCR based
on pretreatment multiparametric MRI in three external validation
cohorts (with 99, 107, and 80 patients, respectively) with areas
under the ROC curve up to 0.80.6

Several other radiomics studies using both pretreatment MRIs
and those after the first cycle of NAC in the prediction of pCR
have been reported: Dogan et al. found that DCE MRI kinetic
parameters of tumors may have a role in predicting pCR in breast
cancer.7,8 Sun et al. also looked at early prediction of pCR using
MRIs acquired pretreatment and after the first cycle of NAC, and
they obtained promising results in predicting pCR based on
changes from pretreatment to after the first cycle of NAC in a
validation sample of 34 patients.8 In a similar study, promising
results were obtained in a small sample of 24 patients with
locally advanced breast cancer.9 In another small sample of
35 patients diagnosed with stage II/III breast cancer 3 T DCE
MR images acquired before and after the first cycle of NAC were
analyzed, and it was found that analysis of tumor subregions
yielded improved performance over whole tumor analysis.2

In other work focusing on predicting pCR using only MRIs
obtained after the first cycle of NAC and comparing a pattern
recognition-based method and a pharmacokinetic modeling
approach in 35 patients, promising results were obtained for
both methods with areas under the ROC curve ranging from
0.73 to 0.90 in their small patient sample.10 High performance
in the prediction of treatment response was also reported by
Tahmassebi et al.11 in a small sample of 38 patients including
all MRI scans acquired up to after the second cycle of NAC.

The goal of our current study is to investigate computer-
extracted quantitative radiomics features of breast cancers and
of metastatic axillary sentinel LNs for use in predicting pCR
to NAC as well as in predicting the post-NAC LN status in
patients with locally advanced breast cancer. In contrast to the
work by others cited above, we use only MRIs acquired pre-
NAC, consider the post-NAC LN status separately (similar to
what we presented in a more preliminary analysis12), and
include analysis of the axillary LNs. In a recent study, other
researchers found that in head and neck cancer integrating tumor
and nodal characteristics (and including pretreatment and mid-
treatment exams) improved prediction of distant metastasis.13 It
is important to note that, while achieving pCR in itself is only a
moderate predictor of recurrence-free survival, patients with
LN-positive invasive breast cancers could potentially benefit
during treatment planning if it were possible to predict, before
any treatment (using only pretreatment breast MRIs), which
LNs and primary cancers would likely respond to NAC. For
those patients, NAC could be more aggressive while potentially
avoiding post-NAC axillary dissections and radiation, which are
associated with significant morbidity as compared to treatment
of the index lesion.

2 Methods

2.1 Dataset

Participants for our study were selected from a breast MRI
database retrospectively collected at our institution. Inclusion

criteria were that the patient had confirmed invasive node-
positive breast cancer, underwent MR imaging prior to any treat-
ment, underwent NAC with known outcome in terms of pCR
and post-NAC LN status (as determined at the time of surgery)
and that the sentinel LN could be identified on the pretreatment
MRI. Since the participants all had invasive node-positive breast
cancer, achievement of pCR is generally defined as the absence
of an invasive tumor component and the absence of nodal meta-
stases at the time of surgery and axillary dissection; patients
were defined as having achieved pCR if there was no remaining
invasive cancer component and they were post-NAC LN-nega-
tive. LNs tend to respond to NAC before the primary tumor,
however, and in our dataset this was the case for all participants.
Hence, patients who did not achieve pCR could be divided into
two (rather than three) groups in our cohort: (i) those in whom
axillary metastases could no longer be identified post-NAC even
though an invasive tumor component remained (no pCR but
post-NAC LN-negative) and (ii) those in whom invasive cancer
cells remained in both tumor and LNs at the time of surgery (no
pCR and post-NAC LN-positive). There were no patients in
whom the post-NAC LNs were positive but no invasive compo-
nent of the index cancer remained. A single tumor (the index
cancer) and a single LN (the sentinel axillary LN) were analyzed
for each participant.

MR images were acquired between March 2009 and June
2017. Using Philips equipment (Philips Achieva, Koninklijke
Philips, Eindhoven, the Netherlands) at a magnet field strength
of either 1.5 T or 3.0 T, and we used only the DCE sequences
(Table 1) between March 2009 and June 2017. Images were
acquired prior to the injection of the contrast agent (gadolinium)
and at time-intervals of ∼1 min postcontrast agent injection
with on average five postcontrast acquisitions (time-points).
Only MRI exams acquired prior to the initiation of neoadjuvant
chemotherapy were analyzed (Fig. 1).

Given that two magnet strengths were used in the acquis-
ition of the images for our dataset, we used subsets by magnet
strength in some of our analyses. The tumor sizes were similar
for those imaged at 1.5 T and 3.0 T, but several extremely large
LNs (>5 cm) were imaged at 1.5 T but none at 3.0 T (Table 1).
Hence, these subsets were size-matched by pre-NAC LN size
and contained the same number of cases acquired at 1.5 T as at
3.0 T (Table 1). The tumor size distributions remained similar
by magnet strength after size-matching by LN size (Table 1).
The hormone receptor status of the invasive breast cancer was
available for all but four patients (Tables 1 and 2). For only
about half of the patients detailed information on the
administered NAC regimen was available for this project.
At our institution, breast cancer NAC treatment is based on
the American Society of Clinical Oncology and National
Comprehensive Cancer Network guidelines and depends on
the hormone receptor subtype. The most common NAC regi-
men followed for estrogen and/or progesterone-positive but
HER2-negative cancers was cyclophosphamide, doxorubicin,
pertuzamab, and taxol. For HER2-enriched cancers, the
common regimens were (1) docetaxel with carboplatin, and
concurrent HER2-targeted therapeutics trastuzumab with or
without pertuzamab, (2) paclitaxel with carboplatin and con-
current HER2-targeted therapeutics trastuzumab with or with-
out pertuzamab, and (3) anthracycline-based regimens for
patients who lacked cardiac risk factors. The most common
regimen followed for triple negative cancers was carboplatin,
gemcitabine, and taxol.
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2.2 Radiomics Method

Lesions (both tumors and LNs) were automatically segmented
in the pre-NAC DCE-MRIs after manual localization of a seed-

point at the approximate lesion center by a breast imaging expert
with over 22 years of experience and calculated from a bounding
box drawn to enclose the entire lesion. Lesion segmentation was
performed in four-dimensions (4-D) [three-dimensional (3-D)

Table 1 Description of the 158 women with invasive node-positive breast cancer imaged with DCE-MRI and subsets used in analyses (see
“statistical analysis” section) where subsets A (acquired at 1.5 T) and B (acquired at 3 T) were size-matched by LN size and had comparable
tumor size distributions.

Study participants
Complete dataset, N ¼ 158

number of women (%)
Subset A, N ¼ 61

number of women (%)
Subset B, N ¼ 61

number of women (%)

Magnet strength 1.5 T 90 (57.0%) 61 (100%) 0 (0.0%)

3.0 T 67 (42.4%) 0 (0.0%) 61 (100%)

Unknown 1 (0.6%) 0 (0.0%) 0 (0.0%)

Age ≤40 28 (17.7%) 14 (23.0%) 7 (11.5%)

>40 but ≤45 18 (11.4%) 4 (6.6%) 9 (14.8%)

>45 but ≤50 28 (17.7%) 7 (11.5%) 16 (26.2%)

>50 but ≤55 24 (15.2%) 12 (19.7%) 5 (8.2%)

>55 but ≤65 29 (18.4%) 11 (18.0%) 12 (19.7%)

>65 but ≤75 17 (10.8%) 5 (8.2%) 8 (13.1%)

>75 8 (5.1%) 4 (6.6%) 3 (4.9%)

Unknown 6 (3.8%) 4 (6.6%) 1 (1.6%)

pCR Yes 19 (12.0%) 6 (9.8%) 9 (14.8%)

No 139 (88.0%) 55 (90.2%) 52 (85.2%)

Post-NAC LN status Negative 42 (26.6%) 18 (29.5%) 18 (29.5%)

Metastatic 116 (73.4%) 43 (70.5%) 43 (70.5%)

Size of pre-NAC
invasive tumor (mm)a

≤5 0 (0.0%) 0 (0.0%) 0 (0.0%)

>5 but ≤10 1 (0.6%) 0 (0.0%) 1 (1.6%)

>10 but ≤20 11 (7.0%) 4 (6.6%) 5 (8.2%)

>20 but ≤50 73 (46.2%) 29 (47.5%) 28 (45.9%)

>50 73 (46.2%) 28 (45.9%) 27 (44.3%)

Size of pre-NAC
metastatic LN (mm)a

≤5 0 (0.0%) 0 (0.0%) 0 (0.0%)

>5 but ≤10 3 (1.9%) 1 (1.6%) 1 (1.6%)

>10 but ≤20 49 (31.0%) 22 (36.1%) 21 (34.4%)

>20 but ≤50 93 (58.9%) 38 (62.3%) 39 (63.9%)

>50 13 (8.2%) 0 (0.0%) 0 (0.0%)

Hormone receptor
status

HR-positive HER2-negativeb 77 (48.7%) 32 (52.5%) 26 (42.6%)

HER2-enriched 39 (24.7%) 15 (24.6%) 19 (31.1%)

Triple-negative 38 (24.1%) 11 (18.0%) 15 (24.6%)

Unknown 4 (2.5%) 3 (4.9%) 1 (1.6%)

aMaximum linear size determined on imaging (DCE-MRI).
bHR = hormone receptor (estrogen and/or progesterone), HER2 = human epidermal growth factor receptor 2.
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space plus DCE-acquisition time].14 Forty-nine radiomics fea-
tures were extracted pertaining to seven categories describ-
ing (i) lesion size (three features), (ii) shape/geometry (three
features), (iii) margin/morphology (three features), (iv) enhance-
ment texture (14 features), (v) kinetics (10 features), (vi) vari-
ance kinetics (four features), and (vii) statistics or gray level
histogram-based charactristics (12 features) (Table 3).15–19

Feature extraction was performed in 3-D and the enhancement
texture features were calculated using the first postcontrast
time-point (the MR image acquired about 1-min postcontrast-
agent injection). Enhancement and kinetics-based features were
extracted only from the most-enhancing tumor (or LN) regions,
extracted using a second fuzzy c-means-based method within
the previously segmented tumor or LN region only.16 The most-
enhancing regions were used because of their proven merit in
our previous studies in breast lesion classification15–19 as well
as in prediction of breast cancer recurrence.1 It is important
to note that both segmentation and feature extraction were com-
pletely automated apart from the initial seed-point localization.

2.3 Statistical Analysis

2.3.1 Assessment of potential robustness of features
with respect to magnet field strength

Imaged tumors and axillary LNs were analyzed separately.
Since the images in our dataset were acquired at two magnet
strengths, the first step was to determine which of the radiomics
features (Table 3) were potentially robust with respect to magnet
strength. For this purpose, we used the LN size-matched subsets
A and B, acquired at 1.5 T and 3.0 T, respectively (Table 1), in
order to allow for a “fair” comparison of feature value distribu-
tions by magnet field strength. The Mann–Whitney U-test was
used with the null-hypothesis that samples were selected from
populations having the same distribution. Features for which the
distributions demonstrated a statistically significant difference
(p < 0.05) in their distribution by magnet strength (subset A
versus subset B, Table 1) were eliminated from further analysis.
That is, we considered a feature “potentially robust”with respect
to magnet field strength—and hence suitable for inclusion in

Table 2 Treatment response by hormone receptor subgroup of the imaged node-positive invasive breast cancers for the entire dataset.

Hormone receptor status

Complete dataset, N ¼ 158

HR-positive
HER2-negativea,

N ¼ 75
HER2-enriched,

N ¼ 39
Triple negative,

N ¼ 42
Unknown,
N ¼ 2

pCR Yes 3 (3.9%) 8 (20.5%) 7 (18.4%) 1 (25%)

No 74 (96.1%) 31 (79.5%) 31 (81.6%) 3 (75%)

Post-NAC LN status Negative 8 (10.4%) 18 (46.2%) 15 (39.5%) 1 (25%)

Metastatic 69 (89.6%) 21 (53.8%) 23 (60.5%) 3 (75%)

aHR = hormone receptor (estrogen and/or progesterone), HER2 = human epidermal growth factor receptor 2.

Fig. 1 Example pre-NACMR image slices acquired at 3 T: (a) invasive breast cancer and LN positive for
metastasis in a woman for whom NAC achieved pCR and (b) in a woman for whom NAC did not achieve
pCR, respectively, (top) without and (bottom) with outlines of the computer segmentation outlines.
Subtraction images (first postcontrast minus precontrast acquisitions) are shown. Note that the computer
segmentations were derived in 4-D, i.e., using all the 3-D MR images for all acquisition times in a DCE
MRI protocol.
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Table 3 Radiomics features by category extracted from the pre-NACMRIs for the invasive cancers and for the metastatic axillary sentinel LNs.15–19

Category Feature name (unit) Additional description Label

Size Volume (mm3) [equivalent to effective diameter
(mm)]

— S1

Surface area (mm2) — S2

Maximum diameter (mm) Maximum distance between any two voxels in the lesion S3

Shape/geometry Sphericity Resemblance of lesion shape to a sphere G1

Irregularity Deviation of lesion surface from that of a sphere G2

Surface area-to-volume ratio (1∕mm) — G3

Morphology Margin sharpness Mean of the image gradient at the lesion margin M1

Variance of margin sharpness Variance of the image gradient at the lesion margin M2

Variance of radial gradient histogram Degree to which the enhancement structure extends in a
radial pattern originating from the center of the lesion

M3

Enhancement
texturea

Angular second moment (energy) Image homogeneity T1

Contrast Local image variations T2

Correlation Image linearity T3

Entropy Randomness of the gray-levels T4

Sum of squares (variance) Spread in the gray-level distribution T5

Difference entropy Randomness of the difference of neighboring voxels’
gray-levels

T6

Difference variance Variations of difference of gray-levels between voxel-pairs T7

Inverse difference moment Image homogeneity T8

Sum average Overall brightness T9

Sum entropy Randomness of the sum of gray-levels of neighboring
voxels

T10

Sum variance Spread in the sum of the gray-levels of voxel-pairs
distribution

T11

Information measure of correlation 1 Nonlinear gray-level dependence T12

Information measure of correlation 2 Nonlinear gray-level dependence T13

Maximum correlation coefficient Nonlinear gray-level dependence T14

Kinetic curve
assessment

Maximum enhancement Maximum contrast enhancement K1

Time to peak (s) Time at which the maximum enhancement occurs K2

Uptake rate (1/s) Uptake speed of the contrast enhancement K3

Washout rate (1/s) Washout speed of the contrast enhancement K4

Curve shape index Difference between late and early enhancement K5

Enhancement at first postcontrast time-point Enhancement at first postcontrast time-point K6

Signal enhancement ratio Ratio of initial enhancement to overall enhancement K7

Volume of most enhancing voxels (mm3) Volume of the most enhancing voxels K8

Total rate variation (1∕s2) How rapidly the contrast will enter and exit from the lesion K9

Normalized total rate variation (1∕s2) How rapidly the contrast will enter and exit from the lesion K10
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subsequent analyses—when we failed to reject the null-hypoth-
esis (p > 0.05) for the distributions by field strength for tumors
and for the distributions by field strength for LNs. We did not
correct p-values for multiple comparisons here in order to avoid
labeling more and more features as “potentially robust” with
respect to magnet strength.

2.3.2 Prediction of response by individual features

We investigated two end-points: (1) the pre-NAC prediction of
pCR and (2) the pre-NAC prediction of the post-NAC LN status
(negative versus metastatic). For these two end-points,
“responders” were defined as those demonstrating pCR and

those demonstrating post-NAC negative LNs, respectively.
Tumors and axillary LNs were again analyzed separately.

No classifier; bootstrap resampling. The ability of indi-
vidual features on their own to distinguish between future
“responders” and “non-responders,” i.e., predicting pCR or
post-NAC LN status, was assessed using bootstrap resampling
of the data (1000 samples). ROC analysis20 was used to assess
classification performance with the area under the ROC curve
(AUC) as performance metric. Estimates for the 95% confidence
intervals and p-values for superiority with respect to random
guessing (AUC ¼ 0.5) were obtained from the bootstrap sam-
ples. This analysis was performed for the entire dataset, subsets
A + B combined, and by a hormone receptor subtype of the

Table 3 (Continued).

Category Feature name (unit) Additional description Label

Enhancement-
variance kinetics

Maximum variance of enhancement Maximum spatial variance of contrast enhancement
over time

E1

Time to peak at maximum variance (s) Time at which the maximum variance occurs E2

Enhancement variance increasing rate (1/s) Rate of increase of the enhancement-variance during
uptake

E3

Enhancement variance decreasing rate (1/s) Rate of decrease of the enhancement-variance during
washout

E4

Statistics Mean voxel value within lesion precontrast
injection

Average brightness (no contrast agent) B1

Mean voxel value within lesion first time-point
postcontrast injection

Average brightness (∼1 min after contrast-agent injection) B2

Standard deviation of voxel value distribution
within lesion precontrast injection

Spread in brightness distribution (no contrast-agent) B3

Standard deviation of voxel value distribution
within lesion first time-point postcontrast
injection

Spread in brightness distribution (∼1 min after
contrast-agent injection)

B4

Maximum voxel value within lesion precontrast
injection

— B5

Maximum voxel value within lesion first
time-point postcontrast injection

— B6

Minimum voxel value within lesion pre-contrast
injection

— B7

Minimum voxel value within lesion first
time-point post-contrast injection

— B8

Kurtosis of voxel value distribution within lesion
precontrast injection

Sharpness of the peak of the brightness distribution
(no contrast-agent)

B9

Kurtosis of voxel value distribution within lesion
first time-point postcontrast injection

Sharpness of the peak of the brightness distribution
(∼1 min after contrast-agent injection)

B10

Skewness of voxel value distribution within
lesion precontrast injection

Asymmetry of brightness distribution (no contrast-agent) B11

Skewness of voxel value distribution within
lesion first time-point postcontrast injection

Asymmetry of brightness distribution (1 min after
contrast-agent injection)

B12

aEnhancement texture features were calculated using the first DCE-MRI acquisition after injection of the contrast agent (∼1 min after contrast
agent injection in our protocol).
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invasive cancer: hormone receptor positive (estrogen and/or pro-
gesterone positive and HER2-negative), HER2-enriched, and
triple negative (Tables 1 and 2). In the analysis by a hormone
receptor subtype, ROC analysis was only used to assess the pre-
diction of post-NAC LN status, not the prediction of pCR due to
the very limited number of complete responders (e.g., three in
the hormone-receptor positive cohort) in addition to the modest
number of cases in the hormone receptor subgroups (Table 2).

Linear discriminant classifier; 632+ bootstrap training/
testing. Classification performance was subsequently as-
sessed for individual features in combination with a linear dis-
criminant analysis classifier (with as input an individual feature)
in a 632+ bootstrap training/testing paradigm (1000 iterations).21

ROC analysis20 was again used to assess classification perfor-
mance with the AUC as performance metric and estimates for
the 95% confidence intervals and p-values for superiority with
respect to random guessing obtained from the bootstrap samples
(and corrected for bias according to the 632+ bootstrap
approach). This analysis was performed for the entire dataset and
for subsets Aþ B combined. Analysis by a hormone receptor
subtype was not performed because sample sizes were too lim-
ited to perform reliable classifier training and testing (Table 2).

In summary, first features were assessed for potential robust-
ness with respect to magnet field strength, then several subsets
of the data were used to assess classification performance in the

task of predicting response to treatment (in terms of pCR and
post-NAC LN status) (Table 4). We corrected p-values for multi-
ple comparisons using Holm–Bonferroni22 assessing cancer and
LN features separately. Features with a corrected p-value <0.05
were defined as outperforming random guessing. Note that the
gold standard “truth” was determined at pathology, i.e., after
surgery, rather than based on imaging. Also note that only single
radiomics features, not feature combinations, were assessed—
even in the analyses in which a classifier was used—and that
all features were extracted from pre-NAC MRIs, i.e., before any
treatment (Fig. 1).

3 Results

3.1 Assessment of Potential Robustness of
Features with Respect to Magnet Field Strength

Many of the features demonstrated a statistically significant dif-
ference (p < 0.05) in their distribution by magnet strength. For
18 features, we were unable to reject the null-hypothesis that
samples acquired at the two magnet strengths were drawn from
the same distributions and thus were considered “potentially
robust” with respect to magnet strength (Fig. 2). Only these fea-
tures were included in further analyses and consequently the
Holm–Bonferroni correction was applied to p-values for 18
comparisons throughout.

Fig. 2 Features for which we failed to reject the null-hypothesis for both tumors and LNs that the samples
(obtained from images acquired at 1.5 T and 3.0 T, respectively) were drawn from populations with the
same distribution, i.e., features “potentially robust” with respect to field strength within our dataset, shown
in color and indicated with arrows.

Table 4 Overview of the different analyses performed, data subset(s) used, and performance assessment methods (LDA = linear discriminant
analysis).

Subset(s) used

“Potential robustness” assessment

Prediction of response

No classifier,
bootstrap resampling

(ROC)

LDA classifier, 632þ
bootstrap training/
testing (ROC)

Comparison of feature
value distributions by
field strength (U-test) pCR

post-NAC
LN-status pCR

post-NAC
LN-status

Subset A (1.5 T) versus subset B (3.0 T)a
p

N/A N/A N/A N/A

Entire dataseta N/A
p p p p

Subsets Aþ B combineda N/A
p p p p

HR-positive onlyb N/A —
p

— —

HER2-enriched onlyb N/A —
p

— —

Triple-negative onlyb N/A —
p

— —

aTable 1.
bTable 2.
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3.1.1 Prediction of Response by Individual Features

No classifier; bootstrap resampling. In the pre-NAC pre-
diction of pCR and the pre-NAC prediction of the post-NAC LN
status, a single tumor feature and several LN features demon-
strated initial promise but after correcting p-values for multiple
comparisons, we failed to prove superiority to random guessing
for any tumor feature. On the other hand, seven pre-NAC LN
features were predictive of pCR when considering the entire
dataset (Fig. 3) with corrected p-values in ascending order of
0.015, 0.016, 0.017, 0.018, 0.024, 0.026, and 0.028, respec-
tively. A larger effective diameter of the LNs (feature S1), a
smaller surface area to volume ratio (G3), and a more inhomo-
geneous appearance (the statistics features) were predictive of a
positive outcome of NAC in terms of pCR. Even though the
AUC values for the pre-NAC LN size-matched subsets
Aþ B combined appeared similar to those for the entire dataset,
fewer remained statistically significantly different from random
guessing due to the smaller sample size (Fig. 3). In the predic-
tion of post-NAC LN status, five statistics features performed
significantly better than random guessing within the entire data-
set (Fig. 3) with corrected p-values in ascending order of 0.015,
0.016, 0.017, 0.018, and 0.028, respectively. Again, fewer
features remained predictive when considering the smaller sam-
ple of subsets Aþ B combined. It is interesting to note that, in
the prediction of post-NAC LN status, only statistics features
describing the pre-NAC imaged LNs appeared to be useful
while the nodal size and geometry did not appear to be predic-
tive in contrast to what was observed in the prediction of pCR.

In the pre-NAC prediction of post-NAC LN status by hor-
mone receptor subgroup of the primary cancer (Table 2), only

three features outperformed random guessing after correcting
the p-values for multiple comparisons (Fig. 3), and they all per-
tained to the pre-NAC metastatic LNs: two nodal statistics fea-
tures for the hormone receptor-positive subgroup and a single
nodal statistics feature for the HER2-enriched subgroup; for the
hormone receptor-positive subgroup, the minimum precontrast
(B7) and kurtosis precontrast (B9) within the nodes were predic-
tive with AUC values of 0.77 [0.62 to 0.89] and 0.77 [0.63; 0.88]
(corrected p-values of 0.034 and 0.036, respectively). For
the HER2-enriched subgroup, the minimum postcontrast (B8)
within the nodes was predictive with an AUC value of 0.78
[0.62; 0.92] (corrected p-value = 0.018). For the triple negative
subgroup, we failed to find any features predictive of response
even though the total rate variation (K9, a kinetics feature) and
the variance enhancement decreasing rate (E4, an enhancement
variance feature) appeared somewhat promising with AUC val-
ues of 0.67 [0.47; 0.85] and 0.66 [0.48; 0.83], respectively. But
since the 95% confidence intervals for AUC for these features
included 0.5, we failed to prove superiority to random guessing.

Linear discriminant classifier; 632+ bootstrap training/
testing. While overall the AUC values using the 632+ boot-
strap classifier training/testing approach were very similar to
those found in bootstrap resampling without a classifier, the
95% confidence intervals were slightly wider and perhaps a
bit more pessimistic, which resulted in fewer features outper-
forming random guessing in the prediction of response, espe-
cially after correcting the p-values for multiple comparisons
(Table 5). In the prediction of pCR, two LN features—surface
area-to-volume ratio (G3) and the maximum at the first post-
contrast acquisition (B6)—proved superior to random guessing

Fig. 3 Areas under the ROC curve (no classifier and bootstrap resampling) of individual pre-NAC LN fea-
tures in the tasks of predicting pCR and post-NAC LN status, respectively, for the entire dataset, subsets
A + B combined, HR-positive only, HER2-enriched only, and triple-negative subgroups as indicated. An
asterisk indicates that performance remained significantly better than random guessing after correcting for
multiple comparisons (18 comparison, see the text for p-values). Error bars are not shown for clarity.
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(corrected p-values 0.044 and 0.048, respectively) in the analy-
sis of the entire dataset. For subsets Aþ B combined, only B6

was proven to be superior to random guessing (Table 5). In the
prediction of post-NAC LN status, two different LN features
emerged as being able to predict response (both for the entire
dataset and for subsets Aþ B combined): minimum precontrast
(B7) and kurtosis precontrast (B9) with adjusted p-values of
0.017 and 0.018 (Table 5).

4 Discussion
In the pretreatment prediction of response to NAC in patients
with node-positive invasive breast cancer, features of the pri-
mary tumors imaged pre-NAC with DCE-MRI appeared to have
limited usefulness even though we previously found some of
these tumor features to be useful in predicting recurrence-free
survival in a different patient cohort,1 and several other research-
ers found radiomics tumor features to be useful in the prediction
of pCR as detailed in the Introduction3–6 as well as in the pre-
diction of the pre-NAC LN status in breast cancer patients.23,24

Features of pre-NAC imaged metastatic axillary sentinel LNs,
on the other hand, demonstrated promise in the prediction of
treatment response, with the areas under the ROC curve in the

bootstrap 632+ analyses up to 0.82 [0.70; 0.88] in the prediction
of pCR and up to 0.72 [0.62; 0.77] in the prediction of post-
NAC LN status. More compact, more inhomogeneous appearing
pre-NAC metastatic axillary LNs were predictive of more suc-
cessful NAC treatment in terms of pCR, and statistics features
of the imaged metastatic LNs were most successful in predict-
ing post-NAC LN status. In the analysis by hormone receptor
subgroup, the prediction of response to treatment showed prom-
ise in the hormone receptor-positive and HER2-enriched sub-
groups but image features failed to be predictive for triple
negative breast cancers even though the response rate for triple
negative cancers and HER2-enriched cancers were similar in our
dataset.

The fact that pretreatment tumor features extracted fromMRI
may not be informative in predicting treatment response was
also found by Nilsen et al.25 in a diffusion-weighted MRI study
of 25 patients with locally advanced breast cancer. These
authors found that the pretreatment tumor apparent diffusion
coefficient failed to predict treatment response and that the
increase in the apparent diffusion coefficient observed mid-way
in the course of NAC failed to show correlation with tumor vol-
ume changes. Another larger study using diffusion-weighted

Table 5 Areas under the ROC curve (linear discriminant analysis classifier, 632+ bootstrap training/testing) in the tasks of predicting pCR and
post-NAC LN status, respectively, for the entire dataset and subsets Aþ B combined: AUC values for features that outperformed random guessing
(AUC ¼ 0.5) before correcting statistical significance for multiple comparisons (regular font) and AUC values for features that remained significantly
better than random guessing after correcting for multiple comparisons (18 comparisons, see text for p-values) (bold font).

Pre-NAC LN feature in prediction of pCR Pre-NAC LN feature in prediction of post-NAC LN-status

Feature Entire dataset (N ¼ 158) Subsets Aþ B (N ¼ 122) Entire dataset (N ¼ 158) Subsets Aþ B (N ¼ 122)

S1 0.73 [0.58; 0.82] — — —

S2 0.71 [0.51; 0.79] — — —

S3 — — — —

G1 — — — —

G2 — — — —

G3 0.73 [0.62; 0.80] 0.77 [0.61; 0.85] — —

M2 — — — —

M3 — — — —

T11 — — — —

K9 — — — —

E4 — — — —

B4 0.73 [0.53; 0.81] 0.78 [0.60; 0.87] 0.68 [0.51; 0.76] 0.69 [0.55; 0.76]

B6 0.79 [0.69; 0.85] 0.82 [0.70; 0.88] 0.68 [0.51; 0.77] —

B7 0.80 [0.61; 0.82] 0.74 [0.55; 0.83] 0.71 [0.62; 0.79] 0.72 [0.62; 0.77]

B8 — — — —

B9 0.69 [0.53; 0.77] 0.71 [0.51; 0.80] 0.70[0.59; 0.78] 0.71 [0.60; 0.77]

B11 — 0.75 [0.52; 0.84] 0.66 [0.53; 0.75] 0.66 [0.52; 0.74]

B12 — — — —
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MRI in 164 breast cancer patients also found that the pretreat-
ment apparent diffusion coefficient failed to be predictive of
treatment response.26 On the other hand, there was a statistically
significant difference in the apparent diffusion coefficient for
responders and nonresponders after the second cycle of NAC
and also the change in the apparent diffusion coefficient over
time was predictive of treatment response.26 Interestingly, a
study in 83 patients with locally advanced breast cancer found
that the texture on PETwas an independent predictor of pCR.27

To our knowledge, our current study is the first investigating
pre-NAC LN features in patients with locally advanced breast
cancer for the prediction of response to NAC, both in terms
of pCR and in terms of post-NAC LN status. Our analysis
by a cancer hormone receptor subtype is of interest since it was
shown that pCR predicts recurrence-free survival more effec-
tively by cancer subtype.28

Limitations of the current pilot study included the modest
size of the dataset (however, the dataset was comparable in size
to the I-SPY1 dataset), the imbalance of the dataset (few patients
achieved pCR or post-NAC negative LNs), the unavailability of
specific details of the NAC regimens for many patients, the
unavailability of survival data for most patients, and the different
magnet strengths used in MRI acquisition (1.5 T and 3.0 T). We
ameliorated the latter by assessing only features that appeared
unaffected by magnet strength. We are also currently expanding
our investigation of the dependence of MRI radiomics mass
features on magnet field strength.29 One should note that the
most-enhancing tumor volume, which was shown to be predic-
tive of recurrence-free survival in prior work1 using the publicly
available I-SPY1 dataset30–32 (in which all MRIs were acquired
at 1.5 T), was found to depend on magnet strength and was
hence not included in the current analysis combining images
acquired at 1.5 T and at 3.0 T. One should also note that pCR
and post-NAC LN status are intermediate outcomes, not neces-
sarily predictive of long-term recurrence-free, or overall, sur-
vival. For example, patients with hormone receptor-positive
breast cancer (estrogen and/or progesterone positive and
HER2-negative) generally have a good prognosis in spite of rel-
atively weak response to NAC due to the success of surgery and
adjuvant treatment with hormone therapy drugs.33,34 However,
the ability to predict pCR and post-NAC LN status could pos-
itively impact treatment plans by identifying patients in whom
NAC is likely to be successful and hence could be used more
aggressively while subjecting fewer of these patients to unnec-
essary, and potentially harmful, procedures such as axillary
dissection. In patients for whom NAC is identified as less likely
to be successful, on the other hand, treatments other than NAC
could be considered.

Future work will include the collection of a larger and longi-
tudinal dataset including patient outcome and assessment of
tumor and LN signatures (multiple features in combination with
a classifier) as well as recurrence-free survival, building upon
our current study and prior publication.1
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