Skip to main content
. Author manuscript; available in PMC: 2020 Jan 1.
Published in final edited form as: Commun Stat Theory Methods. 2018 Sep 19;48(12):2982–3004. doi: 10.1080/03610926.2018.1473599

Table 4.

Summary * of Performance of Three Estimators: 1) Likelihood Estimator assuming Geometric Model; 2) Likelihood Estimator assuming Poisson Model; 3) Likelihood Estimator assuming Geometric Model that drops out intercepts as well as subjects with only one measurement. Censoring process was assumed to be informative and dependent on only individual intercepts (1), non-informative (2), and informative and dependent on only individual slopes (3).

Estimator

Simulation Parameters Performance indicator×10 1) Geometric 2) Poisson 3) Geometric that drops out intercepts and subjects with only one measurement
1) γ2 = 0 γ1 = −3.115 Bias_α −0.082 −0.083 ---
Bias_β 0.038 0.070 0.083
MSE(a)_α 0.098 0.100 ---
MSE(a)_β 0.076 0.095 0.098
MSE(b)_α 0.097 0.129 ---
MSE(b)_β 0.046 0.048 0.062

2) γ2 = 0 γ1 = 0 Bias_α −0.078 −0.080 ---
Bias_β 0.033 0.064 0.068
MSE(a)_α 0.084 0.096 ---
MSE(a)_β 0.071 0.092 0.095
MSE(b)_α 0.093 0.118 ---
MSE(b)_β 0.041 0.047 0.084

3) γ2 = −5.2 γ1 = 0 Bias_α −0.071 −0.083 ---
Bias_β 0.042 0.073 0.077
MSE(a)_α 0.086 0.099 ---
MSE(a)_β 0.064 0.079 0.084
MSE(b)_α 0.094 0.110 ---
MSE(b)_β 0.036 0.040 0.083
*

Datasets simulated from an underlying Geometric model with α=3.542 β=0.131 γ0 = 5.988, σα2=0.070,σβ2=0.033, σαβ= −0.029 and σε2=0.12, with 2000 simulations.