Table 4.
Summary * of Performance of Three Estimators: 1) Likelihood Estimator assuming Geometric Model; 2) Likelihood Estimator assuming Poisson Model; 3) Likelihood Estimator assuming Geometric Model that drops out intercepts as well as subjects with only one measurement. Censoring process was assumed to be informative and dependent on only individual intercepts (1), non-informative (2), and informative and dependent on only individual slopes (3).
| Estimator | ||||
|---|---|---|---|---|
|
| ||||
| Simulation Parameters | Performance indicator×10 | 1) Geometric | 2) Poisson | 3) Geometric that drops out intercepts and subjects with only one measurement |
| 1) γ2 = 0 γ1 = −3.115 | Bias_α | −0.082 | −0.083 | --- |
| Bias_β | 0.038 | 0.070 | 0.083 | |
| MSE(a)_α | 0.098 | 0.100 | --- | |
| MSE(a)_β | 0.076 | 0.095 | 0.098 | |
| MSE(b)_α | 0.097 | 0.129 | --- | |
| MSE(b)_β | 0.046 | 0.048 | 0.062 | |
|
| ||||
| 2) γ2 = 0 γ1 = 0 | Bias_α | −0.078 | −0.080 | --- |
| Bias_β | 0.033 | 0.064 | 0.068 | |
| MSE(a)_α | 0.084 | 0.096 | --- | |
| MSE(a)_β | 0.071 | 0.092 | 0.095 | |
| MSE(b)_α | 0.093 | 0.118 | --- | |
| MSE(b)_β | 0.041 | 0.047 | 0.084 | |
|
| ||||
| 3) γ2 = −5.2 γ1 = 0 | Bias_α | −0.071 | −0.083 | --- |
| Bias_β | 0.042 | 0.073 | 0.077 | |
| MSE(a)_α | 0.086 | 0.099 | --- | |
| MSE(a)_β | 0.064 | 0.079 | 0.084 | |
| MSE(b)_α | 0.094 | 0.110 | --- | |
| MSE(b)_β | 0.036 | 0.040 | 0.083 | |
Datasets simulated from an underlying Geometric model with α=3.542 β=−0.131 γ0 = 5.988, , σαβ= −0.029 and , with 2000 simulations.