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The outer membrane (OM) of Gram-negative bacteria exhib-
its unique lipid asymmetry, with lipopolysaccharides (LPS)
residing in the outer leaflet and phospholipids (PLs) in the inner
leaflet. This asymmetric bilayer protects the bacterium against
intrusion of many toxic substances, including antibiotics and
detergents, yet allows acquisition of nutrients necessary for
growth. To build the OM and ensure its proper function, the cell
produces OM constituents in the cytoplasm or inner membrane
and transports these components across the aqueous periplas-
mic space separating the two membranes. Of note, the processes
by which the most basic membrane building blocks, i.e. PLs, are
shuttled across the cell envelope remain elusive. This review
highlights our current understanding (or lack thereof) of bacte-
rial PL trafficking, with a focus on recent developments in the
field. We adopt a mechanistic approach and draw parallels and
comparisons with well-characterized systems, particularly OM
lipoprotein and LPS transport, to illustrate key challenges in
intermembrane lipid trafficking. Pathways that transport PLs
across the bacterial cell envelope are fundamental to OM bio-
genesis and homeostasis and are potential molecular targets
that could be exploited for antibiotic development.

Gram-negative bacteria are distinctively characterized by the
presence of a complex cell envelope comprising an inner mem-
brane (IM),3 a thin layer of cell wall (or peptidoglycan), and an
outer membrane (OM) (1). The IM marks the boundary of the
bacterial cytoplasm, and the OM defines a second aqueous
compartment known as the periplasm. This double-membrane
structure effectively protects the cell from external insults. In
particular, the OM restricts the entry of large hydrophobic mol-
ecules, in part conferring Gram-negative bacteria intrinsic resis-
tance against many antibiotics and detergents (1).

The OM is an essential lipid bilayer that contains integral
proteins (mostly �-barrel OMPs) and peripherally-anchored

lipoproteins. It is also highly asymmetric (2–4), whereas the
inner leaflet of the OM is composed of typical phospholipids
(PLs), the outer leaflet contains tightly-packed lipopolysaccha-
rides (LPS), which impart low fluidity and permeability to the
OM (1). This asymmetric arrangement of lipids is critical for
proper barrier function. To build a stable and functional OM,
the respective components have to be transported from their
sites of synthesis at the cytoplasm or IM, across the periplasm,
and to the OM (5). Assembly of this second bilayer is extremely
challenging not only because of the need for tight coordination
between the various transport processes, but also because there
is no obvious energy source, such as ATP, in the periplasmic
space. Furthermore, all the major components of the OM are
strongly amphipathic by nature, which necessitates distinct
mechanisms for shielding at least the hydrophobic portions of
these molecules from the aqueous environment as they transit
the periplasm. In this regard, the transport pathways for OMPs
(6), LPS (7), and lipoproteins (8) have been relatively well-char-
acterized. Despite recent advances, however, our understand-
ing of PL transport across the cell envelope is still lacking. In
this review, we summarize the current knowledge on possible
PL transport pathways that may contribute to OM biogenesis
and homeostasis in Gram-negative bacteria. Through discus-
sion of PL trafficking from a mechanistic viewpoint, and in the
context of known transport pathways for other lipidated mole-
cules (i.e. lipoproteins and LPS), we hope to highlight outstand-
ing questions in this field and pave a path toward a better under-
standing of bacterial lipid transport.

Mechanistic models for lipid transport across the
periplasm

There are three major steps to be considered for lipid trans-
port between the IM and the OM: (i) release from the first
membrane; (ii) transit across the aqueous periplasm; and (iii)
insertion into the target membrane. Largely because of the
hydrophobic effect, it is most energetically favorable to have the
acyl tails of a lipid molecule sequestered in a hydrophobic envi-
ronment (9). As one can imagine, it would be extremely difficult
to pull a lipid molecule out of the membrane and transport it
with its acyl tails exposed to aqueous solution; lipid transport
across the periplasm therefore does not occur unassisted. A
solution to this problem has been proteins that can bind to the
acyl tails and shield them from water (Fig. 1). These come in two
flavors, those that form soluble lipid–protein complexes as
exemplified in lipoprotein transport (8), and those that physi-
cally bridge the two membranes to provide a hydrophobic path
for lipids moving across the aqueous environment, such as that
observed in LPS transport (7). In both of these strategies, the
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protein-bound lipid molecule is likely in a relatively stable state,
thereby facilitating its transfer from the membrane into the
aqueous periplasm, and back. External energy input may be
required depending on whether it is more energetically favor-
able to have the lipid in the membrane or bound to transport
proteins (Fig. 2).

A second possible solution to lipid transport across the
periplasm may involve direct exchange of lipids between the
two membranes, in ways such that the lipid molecules do not
actually leave the membrane environment (Fig. 1). Theoreti-
cally, this can occur either via vesicles budding from one mem-
brane and fusing with the target membrane, thereby transfer-
ring lipids, or via physical membrane bridges connecting the
proximal leaflets of the two membranes, allowing free lipid dif-
fusion. For the former, mechanisms that generate curvature
leading to formation of vesicles would be required. For the lat-
ter, the two membranes would need to be brought into really-
close proximity for hemifusion events to occur. Both pathways
would require the assistance of proteins and likely external
energy input. At present, there is no evidence for the existence
of such transport pathways in bacteria. It has long been sug-
gested that the presence of the peptidoglycan layer and the size
of the periplasm (15–20 nm) are not compatible with vesicular
transport. Although periplasmic vesicular structures have
recently been observed in cryo-tomograms, they were largely
found in cells showing signs of envelope stress and may have
limited physiological relevance (10). It has also been hypothe-
sized that lipid transport can occur in membrane adhesion
zones between the IM and the OM (11). These regions, known
as Bayer’s patches, could contain proteinaceous or membrane
bridges used in lipid trafficking, but they have been highly con-
troversial (12, 13). Recently, intercellular transfer of periplas-
mic and OM material occurring via transient fusion events
between OMs on adjacent cells has been described in Myxococ-
cus sp. (14). The existence of such a pathway for intercellular
material exchange suggests that analogous mechanisms may be
possible for lipid transport across the periplasm.

Lipoprotein trafficking

The transport of lipoproteins from the IM to the OM is a
classic example for lipid trafficking via soluble lipid–protein
intermediates (8). Bacterial lipoproteins are produced with an
N-terminal signal peptide that directs secretion across the IM
(15). At the periplasmic leaflet of the IM, this signal peptide is
processed (16, 17), and the eventual N-terminal cysteine resi-
due is modified with three acyl tails derived from PLs (18 –20);
this triacyl moiety anchors typically soluble domains of lipopro-
teins firmly to one leaflet of the bilayer. Lipoproteins destined
for the OM are transported across the aqueous periplasm via
the Lol pathway, which in Escherichia coli comprises five essen-
tial proteins (Fig. 3). The periplasmic protein LolA serves as a
lipid chaperone, shielding the acyl tails of lipoproteins from the
aqueous environment and shuttling these lipoproteins from the
IM to the OM (21). LolCDE constitutes an ATP-binding cas-
sette (ABC) transporter that uses energy from ATP hydrolysis
to release lipoproteins from the IM and pass them on to LolA
(through LolC) (22, 23). Thus, lipoproteins bound to LolA
appear to be in a less stable state compared to when anchored in
the IM (Fig. 2). At the OM, LolA hands off the lipoprotein to
LolB, itself an OM lipoprotein (Fig. 3) (24). LolA and LolB have
similar structures, both containing a large hydrophobic cavity
for binding the triacyl moiety of lipoproteins (25). Transfer of
lipoprotein from LolA to LolB occurs spontaneously, indicating
that the transfer is affinity-driven (26). Finally, LolB inserts the
lipoprotein via its acyl tails into the inner leaflet of the OM (27,
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Figure 1. Mechanistic models for lipid trafficking across the periplasm in
Gram-negative bacteria. The movement of lipids from the IM to the OM
requires shielding of acyl chains from the aqueous periplasmic environment
and can involve proteins that act either as chaperones or bridges or may
theoretically occur via vesicular transport or hemifusion stalks at sites of
membrane juxtaposition.
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Figure 2. Possible free energy profiles for protein-mediated intermem-
brane lipid transport. Release of lipids from a membrane (donor) for unas-
sisted diffusion across an aqueous environment to another membrane
(recipient) is highly energetically disfavored. In known transport systems, lip-
id-binding proteins are central to shielding the acyl tails of lipid molecules
upon release, giving rise to lipid–protein complexes with energy levels suffi-
ciently close to those of lipids in the membrane environment; this renders
lipid transport feasible with or without external energy input, e.g. derived
from ATP hydrolysis. Shown here are three different scenarios with distinct
energetic requirements at different stages: (I) energy is required to release the
lipid molecule from donor membrane as well as to insert it into the recipient
membrane, e.g. Lpt machine (Fig. 3); (II) energy is required to release the lipid
molecule from the donor membrane only, whereas insertion into recipient
membrane is spontaneous, e.g. Lol pathway (Fig. 3); and (III) release from
donor membrane is spontaneous (due to high-affinity protein binding) but
energy is then required to release the lipid molecule from protein for inser-
tion into recipient membrane, e.g. OmpC–Mla pathway in the context of ret-
rograde transport (Fig. 4). Donor and recipient membranes are labeled as
membranes 1 and 2, respectively.
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28); the mechanism for this step is not known but is also
energy-independent, consistent with the idea that the triacyl
moiety anchored in the membrane would be the most stable
state (Fig. 2).

Lipopolysaccharide transport and assembly

LPS transport from the periplasmic side of the IM to the
outer leaflet of the OM occurs via a physical protein bridge
connecting the two membranes (7). The structure of this glyco-
lipid varies considerably across different Gram-negative spe-
cies, but in E. coli it typically comprises up to hundreds of sug-
ars anchored to the membrane by six acyl tails (29). LPS is
synthesized at the cytoplasmic leaflet of the IM as “rough” LPS
(Ra form: �10 core sugars linked to lipid A), flipped across the
IM by an ABC transporter MsbA (30, 31), and converted to
“smooth” LPS via the addition of O-antigen polysaccharides at
the periplasmic leaflet of the IM (32). The journey of this com-
pleted LPS structure to the cell surface is then mediated by
seven essential Lpt proteins (Fig. 3) (7). Here, the IM ABC
transporter LptBFGC (33–35) is physically connected to the
OM translocon LptDE (36) through interactions with the
periplasmic protein LptA (33, 37). The structurally homo-
logous �-jelly roll domains of LptC (38), LptA (39), and the
N-terminal domain of LptD (40) interact in a “head–to–tail”
fashion to form a protein bridge (41, 42), providing a continu-
ous hydrophobic groove to accommodate the multiple acyl tails
of LPS during transit across the periplasm (39). With six acyl
tails, E. coli LPS is presumably in its most stable state in a mem-
brane. Therefore, LptBFG harnesses energy derived from ATP
hydrolysis to extract LPS from the IM and loads them onto
LptC (43–45). Recent in vitro reconstitutions of this system
demonstrate that LPS transfer from LptC to LptA, and then to
LptD, along the hydrophobic groove also require ATP hydroly-
sis (46, 47). LptBFG essentially powers direct transport of LPS
from the IM all the way to the outer leaflet of the OM (Fig. 2). At
the OM, the LptDE translocon assembles incoming LPS into
the outer leaflet (Fig. 3). Here, the enormous polysaccharide

chain of the LPS molecule likely crosses the OM via the large
hydrophilic lumen of the LptD �-barrel domain, which is par-
tially constricted by the lipoprotein LptE (48, 49), whereas its
six acyl tails traverse along the side wall of the �-barrel directly
into the outer leaflet (40, 50). The placement of LPS onto the
cell surface occurs against a concentration gradient and comes
at an entropic cost. Strong lateral interactions between LPS
molecules may provide part of the driving force for establishing
the resulting lipid asymmetry in the OM; however, because
�106 LPS molecules need to be assembled at the cell surface in
every cell cycle (�20 min for E. coli), it is not surprising that the
final step of LPS translocation across the OM also requires ATP
hydrolysis at the IM (51).

Phospholipid transport across the cell envelope

Despite being the most basic building block of lipid bilayers,
the transport of PLs from the IM to the OM is the least under-
stood. In E. coli, the three major PL species are phosphatidyle-
thanolamine (PE) 75%, phosphatidylglycerol (PG) 20%, and car-
diolipin (CL) 5% (52). Some earlier studies suggest that PL com-
positions of the IM and the OM may be slightly different, with
the OM enriched in PE (53, 54). Synthesis of PLs begins with
phosphatidic acid (PA), which is converted to cytidine-diphos-
phate diacylglycerol (CDP-DAG), a common intermediate
toward PE and PG (55, 56). CDP-DAG is either converted to
phosphatidylserine (PS) before undergoing decarboxylation to
give PE (57) or is converted to phosphatidylglycerol phosphate,
which undergoes subsequent dephosphorylation to give PG
(56, 58). CL is then produced from the condensation of two
molecules of PG or one molecule each of PE and PG (59, 60).
After their synthesis in the cytoplasmic side of the IM, PLs are
presumably flipped across the IM by yet-to-be-identified
transporters.

To get to the inner leaflet of the OM where they are predom-
inantly located, PLs need to be extracted from the IM and trans-
ported across the aqueous periplasmic space (Fig. 3). As with
lipoprotein and LPS transport, this process also requires energy
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input. Interestingly, even though a minimal requirement for
ATP hydrolysis cannot be ruled out, it has been demonstrated
that PE translocation from the IM to the OM (anterograde
transport) requires the proton motive force (pmf) across the IM
(54). Unlike lipoprotein and LPS transport, PL transport has
also been shown to be bidirectional (54, 61, 62); PS specifically
delivered to the OM, either endogenously via anterograde
transport (62) or exogenously by vesicle fusion (61), are trans-
ported back to the IM (retrograde transport), where they
become processed to give PE. To date, the pathway(s) for
anterograde transport of bulk PLs (predominantly PE and PG in
E. coli) has not been identified, whereas several systems have
been implicated in retrograde PL transport.

Anterograde (IM–to–OM) phospholipid transport

The movement of PLs from the IM to the OM is rapid. It has
been demonstrated �40 years ago that PE pulse-labeled with
radioactivity is translocated to the OM with a t1⁄2 of minutes
(54). This process depends on the presence of the pmf across
the IM. Although no protein has been identified for this trans-
port activity, it has been suggested that PL transport to the OM
is fundamentally different from the processes identified for LPS
and OM lipoproteins (63). Specifically, lipoproteins destined
for the OM can be released from the IM when E. coli sphero-
plasts are exposed to LolA-containing periplasmic extracts.
LPS transport in spheroplasts from the IM to remnants of the
OM is also intact. In contrast, PLs are neither released from the
IM in the presence of periplasmic extracts nor transported to
the OM in spheroplasts. Given that E. coli spheroplasts main-
tain an intact pmf across the IM, thus allowing study of other
known pmf-dependent processes (64 –66), these observations
suggest that anterograde PL transport is possibly independent
of a soluble chaperone or a stable trans-envelope protein
bridge.

Recently, a couple of studies suggested that an IM protein
PbgA/YejM may be involved in CL translocation to the OM

(Fig. 4) (67, 68). Using quantitative lipidomics, it was shown
that functional PbgA/YejM is required for the enrichment of
CL in the OM in Salmonella Typhimurium, which occurs when
the stress-response system PhoPQ is activated (67). Curiously, a
similar trend of PbgA/YejM-dependent increase of CL was also
observed in the IM. Although these results indicate perhaps an
overall increase in cellular CL levels, it was thought that this IM
protein functions to deliver CL to the OM. The same idea is
supported by another study of PbgA/YejM in Shigella flexneri
(68), albeit differential detergent extraction and nonquantita-
tive TLC were employed here for membrane separation and
lipid analysis, respectively, confounding interpretation. PbgA/
YejM is a tetrameric protein with an essential five-helical–
bundle transmembrane domain linked at the C terminus to a
nonessential periplasmic domain (67, 69). Deletion of the
periplasmic domain gives rise to OM permeability defects and
reduced LPS levels (69). Why it is required for viability is not
known, but overexpression of AcpT, a phosphopantetheinyl
transferase, has been shown to suppress lethality in E. coli cells
lacking YejM (69). Although the exact role of PbgA/YejM in PL
transport still requires thorough investigation, it is likely that
this protein plays a critical function in bacterial lipid biology.

Retrograde (OM–to–IM) phospholipid transport

It is known that PL transport across the cell envelope is bidi-
rectional (54, 61, 62). By monitoring PS–to–PE conversion, a
process that only takes place in the IM, it was demonstrated
that radioactive PS accumulated in the OM can be translocated
back to the IM (61, 62). However, despite making these obser-
vations close to 40 years ago, the significance and possible
mechanism(s) of retrograde PL transport have not been
revealed until recently. Below, we describe two molecular sys-
tems implicated in the retrograde transport of PLs (Fig. 4). The
Tol–Pal complex is thought to be involved in the movement of
bulk PLs presumably from the inner leaflet of the OM to the IM
(70), whereas the OmpC–Mla system is believed to maintain
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OM lipid asymmetry by transporting a small population of PLs
that is mislocalized in the outer leaflet of the OM back to the IM
(71, 72).

The Tol–Pal complex

The Tol–Pal complex is a trans-envelope system highly con-
served in Gram-negative bacteria (Fig. 4) (73, 74). It comprises
the TolQRA and TolB–Pal sub-complexes in the IM and the
OM, respectively, and these complexes interact with each other
in a manner dependent on the pmf (75). The Tol–Pal complex
has always been thought to be important for maintaining OM
integrity and stability, as mutants are highly sensitive to antibi-
otics and detergents, leak periplasmic contents, and produce
large amounts of OM vesicles (73, 76). However, the exact func-
tion of this complex, and how its absence gives rise to the
observed phenotypes, was not known. The Tol–Pal complex
was also shown to be important for the invagination of the OM
during cell division (77, 78).

A recent systematic study by our group has now revealed that
the Tol–Pal complex plays an important role in the mainte-
nance of OM lipid homeostasis in E. coli (70). Using steady-
state radioactive labeling of cellular lipids, it was demonstrated
that cells lacking the Tol–Pal complex maintain WT levels of
LPS but accumulate excess PLs in the OM. This molecular
defect, which is also observed in S. Typhimurium (79), likely
destabilizes the OM and can potentially account for the OM
phenotypes described above. It was further established that PL
buildup in the OM in tol–pal mutants is due to defects in ret-
rograde PL transport. Here, by monitoring the turnover of
pulse-labeled radioactive anionic PLs (PG/CL) in the OM
through processes that occur only in the IM, it was shown that
a functional Tol–Pal complex is required for efficient transport
of bulk PLs from the OM back to the IM. This assay, which
couples PL transport to turnover, is similar to those previously
employed to demonstrate retrograde transport in cells (62).
The Tol–Pal complex thus represents the first molecular
machine implicated in bulk PL transport.

Even so, it is still not clear whether the Tol–Pal complex
directly mediates PL transport between the two membranes.
One possibility is that the Tol–Pal complex indirectly affects
the function of a true PL transport system. Cells lacking the
Tol–Pal complex exhibit delayed invagination of the OM dur-
ing division (77); the resulting wider distance between the two
membranes (around the division site) may somehow give rise to
nonspecific effects on other processes, including retrograde PL
transport. Alternatively, the Tol–Pal complex may physically
move PLs, which could potentially happen in three ways. First,
parts of the complex might bind PLs. However, PL-binding
activities for various periplasmic domains of the complex have
not been detected in vitro.4 Second, the complex may interact
with a PL-binding protein, a yet-to-be-identified component of
this system. Third, the Tol–Pal complex may bring the two
membranes in close proximity to allow hemifusion and thus
lipid diffusion to occur (i.e. Bayer’s patch/bridge model). Each
of these speculative transport mechanisms needs to account for
the proposed directionality of transport and may require energy

input. In this regard, the TolQRA complex is homologous to the
ExbBD–TonB (80, 81), MotAB (80, 82), and AglQRS (83) sys-
tems, which transduce energy from the pmf for the generation
of force involved in siderophore uptake, flagella motility, and
cell gliding, respectively. How this force is utilized in the Tol–
Pal complex to maintain OM lipid homeostasis requires further
investigation.

The OmpC–Mla system

The OmpC–Mla system has been shown to play an impor-
tant role in the maintenance of OM lipid asymmetry in Gram-
negative bacteria (71, 72). It comprises the OmpC–MlaA com-
plex at the OM, a periplasmic protein MlaC, and an ABC
transporter MlaFEDB at the IM (Fig. 4). Removing any member
of the OmpC–Mla system results in aberrant accumulation of
PLs at the outer leaflet of the OM in E. coli, thereby disrupting
lipid asymmetry; this system is believed to remove the mislo-
calized PLs from the OM and transport them back to the IM
(71, 72). Transport between the two membranes occurs via a
soluble PL–protein intermediate. MlaC has been crystallized
with a PL bound, revealing a hydrophobic pocket that shields
both acyl tails of the PL molecule from the aqueous periplasm
(84). In addition, MlaC has been shown to interact with both
OM and IM complexes in vitro (84) and in vivo (85). Although
removing MlaC does not cause observable defects in retrograde
PL transport in cells, it was recently demonstrated that over-
production of MlaC together with the MlaFEDB complex is
able to partially rescue defects in PL transport in cells lacking
the Tol–Pal complex (70). Therefore, the OmpC–Mla system
does in fact transport PLs in a retrograde fashion, even though
it may only be important to remove a small subset of PLs from
the OM, particularly those mislocalized to the outer leaflet.

The OM lipoprotein MlaA forms complexes with trimeric
porins, including OmpC and OmpF, in the OM of E. coli, but it
appears that only the OmpC–MlaA complex is important for
the maintenance of lipid asymmetry (72). This complex is pro-
posed to extract PLs from the outer leaflet of the OM presum-
ably without external energy input. Despite being a lipoprotein,
recent structural and biochemical studies revealed that MlaA is
really an integral membrane protein that binds porin trimers
within the bilayer, at one or more of its dimeric interfaces (86,
87). Interestingly, MlaA forms a hydrophilic channel across the
OM, likely providing a path for PL translocation across the OM.
In this context, even though a single amino acid change gives
rise to OM lipid asymmetry defects, the exact function of
OmpC within the complex remains unclear (87). Based on the
architecture of MlaA, it has been proposed that PLs extracted
from the outer leaflet of the OM do not enter the inner leaflet
but are delivered directly to MlaC in the periplasm in an energy-
independent fashion. Such a pathway circumvents the need to
work against a PL concentration gradient at the OM; however,
it necessitates that PLs in the outer leaflet of the OM are in a less
stable state compared with those bound to MlaC. In support of
this idea, molecular dynamic simulations have shown that the
size of the hydrophobic pocket of MlaC can change with PL
occupancy (88), suggesting MlaC may have conformational
flexibility that possibly allows it to maximize its affinity for PLs
via an induced fit mechanism. High affinity binding of PLs by4 A. Z. H. Tan and S.-S. Chng, unpublished observations.
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MlaC is also corroborated by the observation that MlaC does
not spontaneously transfer PLs to the second lipid-binding pro-
tein in this system MlaD in vitro (85).

PLs are delivered from MlaC into the IM via the MlaFEDB
complex, which is an ABC transporter (89). MlaF and MlaE
represent the nucleotide-binding domain and transmembrane
domain of the transporter, respectively. Biochemical character-
ization of the complex elucidated functions of auxiliary pro-
teins MlaB and MlaD (89). MlaB is important for the assembly
of the transporter and its ATP hydrolytic activity, whereas
MlaD forms stable hexamers that bind PLs in vitro (84, 89). The
crystal structure of the periplasmic domain of MlaD reveals six
protomers organized in a donut-shaped architecture contain-
ing a central hydrophobic pore (84), presumably for interac-
tions with the acyl tails of PLs. MlaD also interacts directly with
MlaC in cells (85), indicating that MlaC transfers PLs to MlaD
within the MlaFEDB complex. Here, because MlaC has high
affinity for PLs (85), the energy derived from ATP hydrolysis in
the complex may then be required to release the bound PLs
and/or activate transfer to MlaD and then into the IM. Whether
these PLs get flipped back to the cytoplasmic leaflet of the IM is
not known.

There has in fact been some controversy regarding the direc-
tionality of lipid transport for the OmpC–Mla system. ABC
transporters found in chloroplasts (TGD2) and mycobacteria
(Mce1/4 complexes) but homologous to the MlaFEDB complex
are known to be involved in PA and fatty acid/cholesterol
uptake, respectively (90, 91). In E. coli, the OmpC–Mla system
was thus initially annotated to function in retrograde PL trans-
port, especially given that overexpressing OM phospholipase
PldA rescues asymmetry defects in the OM of ompC–mla
mutant strains (71, 72); in this scenario, if outer leaflet PLs in
the OM cannot be removed (by transport), they can be
degraded instead. More recently, evolution experiments re-
vealed that removing the Mla system in Acinetobacter bauman-
nii improves growth and restores OM barrier function in
strains that do not make lipooligosaccharides (LOS) (92); this
makes sense in the context of retrograde PL transport given
that cells would require sufficient PLs in the outer leaflet of the
OM when no LOS is made. Although these studies inferred
function solely from genetic interactions, it has also been
shown that overexpressing the mlaFEDCB operon partially res-
cues retrograde PL transport defects in tol–pal mutants (70).
Therefore, both genetics and biochemical data support a role of
the OmpC–Mla system in retrograde PL transport. Interest-
ingly, there have also been some recent observations support-
ing anterograde PL transport. A separate group characterizing
mla mutants in A. baumannii found that these strains have
severely compromised OM function due to reduced PL content
in the OM. By monitoring the rate of appearance of newly-
synthesized PLs relative to existing PLs in the IMs and OMs
using MS, the authors propose a role for Mla proteins in antero-
grade PL transport (93). Unfortunately, because existing PL lev-
els are supposedly lower in the OMs of mla mutants, it may not
be straightforward to infer about overall changes in PL trans-
port from the rates of change of new versus existing PLs in these
strains (as compared with that in WT cells). In vitro reconsti-
tution experiments also suggest a role for the OmpC–Mla sys-

tem in anterograde transport (94). It has been shown that the
complete MlaFEDB complex may transfer PLs spontaneously
to MlaC in vitro. However, proper inactive enzyme controls
were lacking. Furthermore, this in vitro reaction did not appear
to be dependent on or modulated by ATP hydrolysis, which is
quite puzzling indeed for an ABC transporter. Overall, addi-
tional studies are definitely needed to provide more clarity to
this problem.

Other putative lipid transporters

The periplasmic domain of MlaD contains the mammalian
cell entry (MCE) domain, which is widely conserved in proteo-
bacteria and actinomycetes (95). Based on homology, two other
MCE domain proteins have been described in E. coli, and they
have recently been proposed to also be involved in lipid trans-
port (Fig. 4) (95, 96). PqiB and YebT contain three and seven
MCE domains, respectively, and both have been co-purified
with PLs (84). Structural characterization of these proteins
revealed that they form hexameric assemblies via their MCE
domains, giving rise to structures that can span the entire
periplasmic space between the IM and the OM (84), potentially
facilitating transport of lipid substrates or other hydrophobic
molecules. Even though cells lacking both proteins have some
perturbations to the OM (95, 96), the true functions of these
proteins are not yet clear.

OM lipid homeostasis via retrograde PL transport

The processes of lipid transport are inherent for the synthesis
and maintenance of the OM in Gram-negative bacteria.
Anterograde PL transport is essential for OM biogenesis. In
contrast, the role(s) of retrograde PL transport pathways is less
clear until recently, where they have been implicated in OM
lipid homeostasis (70). The current model (proposed by our
group) suggests cells transport more PLs than required to the
OM to fill up spaces that may arise from changes in the OM; this
process ensures that the bilayer is always complete. To main-
tain OM stability, however, excess PLs must then be continu-
ously removed, particularly via retrograde transport to the IM
in a manner dependent on the Tol–Pal complex. This model
makes sense in the context of unidirectional (IM–to–OM)
transport of LPS, �-barrel proteins, and lipoproteins and
directly alleviates the need for fine control over the levels of
these components in the OM.

Lipid homeostasis in the OM also impacts structural organi-
zation such as lipid asymmetry. It is perhaps logical to assume
that both bulk anterograde and retrograde PL transport deliv-
ers PLs to and removes them from the inner leaflet of the OM,
respectively. In the absence of the Tol–Pal complex, the cell
would accumulate a large excess of PLs in the inner leaflet of the
OM, which generates instability in the bilayer. This presumably
allows PLs to flip across the OM, leading to subsequent accu-
mulation in the outer leaflet and thus loss of lipid asymmetry
(70). Even in a WT cell (with an intact Tol–Pal complex), new
OM needs to be continuously synthesized for growth and divi-
sion. As such, it is conceivable that anterograde PL transport
would still be faster than retrograde transport; this scenario
may inevitably lead to a slight buildup of PLs in the inner leaflet
of the OM and subsequently the outer leaflet. Besides employ-
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ing PL-degrading enzymes (PldA (97) and PagP (98)) to correct
such perturbations in OM lipid asymmetry, retrograde PL
transport mediated by the OmpC–Mla system additionally
contributes to OM homeostasis by removing this small amount
of PLs that ended up aberrantly in the outer leaflet of the OM
(71, 72).

Conclusions and outlook

There are still huge gaps in our knowledge of OM biogenesis.
Although significant advances have been made in understand-
ing OM lipoprotein trafficking, LPS transport and assembly,
and �-barrel protein folding over the past 2 decades, we have
made little progress in deciphering PL transport across the cell
envelope. This contrasts with the major advances made toward
elucidating nonvesicular PL transport pathways within single
organelles (i.e. chloroplast (90) and mitochondria (99)) or
between separate ones (i.e. membrane contact sites (100)) in
eukaryotic cells. The obvious major mystery in Gram-negative
bacteria cell envelope biology is anterograde PL transport. Why
these systems have remained elusive may be due to the lack of
targeted genetic approaches to discover factors. One compo-
nent of the �-barrel protein-folding machine (BamB) was iden-
tified in a chemical genetic selection as a mutation that rescues
OM leakiness in an lptD mutant (101), which has now been
shown to be a �-barrel assembly defect (102, 103). One may
therefore argue that a genetic selection targeted at correcting
OM lipid dyshomeostasis, such as those found in tol–pal strains
(70) or gain– of–function mlaA mutants (104), could instead
lead to new information regarding PL transport across the cell
envelope. Genetic screens based specifically on direct detection
of defects in OM lipid homeostasis and/or lipid asymmetry may
also aid in the identification of PL transport pathways. It is
especially intriguing what the (main) anterograde PL transport
system could be, given that the process differs from OM lipo-
protein and LPS transport in its requirement for energy derived
from the pmf (54).

The functions of various proposed PL transport systems
should also be thoroughly investigated. It is not yet clear
whether the Tol–Pal complex directly mediates retrograde PL
transport nor is it known whether PbgA/YejM, PqiB, and YebT
are in fact lipid transporters. The transport directionality of the
OmpC–Mla system also requires further clarification. In gen-
eral, functional assignment of PL transport systems should
include both cell-based and in vitro assays monitoring PL
movement between the two membranes. The cell-based PL
transport assays are clearly nontrivial (even in model organisms
like E. coli), and extra caution should be taken to ensure proper
separation of and minimal lipid mixing between IM and OM
fragments during analysis. In this regard, current studies,
including ours, employ IM and OM integral membrane pro-
teins and LPS (very different properties from PLs) as molecular
markers in membrane separation, which cannot truly inform
the extent of PL mixing, if any. Therefore, methods that may
influence the propensity of PL mixing between membranes
should be avoided. Specifically, removal of the cell wall layer
and divalent cations by use of lysozyme (2) and EDTA (106),
respectively, is known to disrupt lipid asymmetry in the OM,
and it could have other unexpected effects on membrane sta-

bility and thus PL mixing between membranes. In addition, cell
lysis by sonication or French press at high pressures (�12,000
p.s.i.), albeit after spheroplasting, has been shown to cause sig-
nificant membrane mixing or cross-contamination (107). Care-
ful evaluation of protocols for cell lysis and/or membrane sep-
aration would go a long way to ensure more robust and reliable
tracking of PL movement across the cell envelope. Beyond
these intricate cell-based assays, in vitro reconstitutions of each
putative PL transport system would ultimately be required for
definitive assignment of function. In vitro approaches to study
lipid transfer between two membranes are likely highly chal-
lenging yet feasible, as exemplified by the recent elegant dem-
onstration of intermembrane LPS transport using purified Lpt
proteins and artificial membranes (46).

Gram-negative bacteria are intrinsically resistant to many
clinically-used antibiotics due in part to the OM permeability
barrier. The OM is also essential for bacterial growth and there-
fore is a great molecular target for novel antibiotic intervention.
To this end, small molecule inhibitors against the Lol (108, 109)
and MsbA/Lpt pathways (105, 110) have already been identi-
fied. Continued efforts in deciphering PL-trafficking processes
will ultimately yield new targets that can be exploited for com-
bating Gram-negative bacterial pathogens.
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