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A critical step in the development of chronic inflammatory
diseases is the accumulation of proinflammatory macrophages
in the extracellular matrix (ECM) of peripheral tissues. The
adhesion receptor integrin �D�2 promotes the development of
atherosclerosis and diabetes by supporting macrophage reten-
tion in inflamed tissue. We recently found that the end product
of docosahexaenoic acid (DHA) oxidation, 2-(�-carboxyethyl)-
pyrrole (CEP), serves as a ligand for �D�2. CEP adduct with ECM
is generated during inflammation-mediated lipid peroxidation.
The goal of this project was to identify a specific inhibitor for
�D�2–CEP interaction that can prevent macrophage accumula-
tion. Using a specially designed peptide library, Biacore-detected
protein–protein interaction, and adhesion of integrin-transfected
HEK 293 cells, we identified a sequence (called P5 peptide) that
significantly and specifically inhibited �D–CEP binding. In the
model of thioglycollate-induced peritoneal inflammation, the
injection of cyclic P5 peptide reduced 3-fold the macrophage accu-
mulation in WT mice but had no effect in �D-deficient mice. The
tracking of adoptively transferred, fluorescently labeled WT and
�D

�/� monocytes in the model of peritoneal inflammation and in
vitro two-dimensional and three-dimensional migration assays
demonstrated that P5 peptide does not affect monocyte transendo-
thelial migration or macrophage efflux from the peritoneal cavity
but regulates macrophage migration through the ECM. Moreover,
the injection of P5 peptide into WT mice on a high-fat diet prevents
macrophage accumulation in adipose tissue in an �D�2-dependent
manner. Taken together, these results demonstrate the importance
of �D�2-mediated macrophage adhesion for the accumulation of
infiltrating macrophages in the inflamed ECM and propose P5
peptide as a potential inhibitor of atherogenesis and diabetes.

Chronic inflammation is an essential mechanism during the
development of cardiovascular and metabolic diseases. Mono-
cyte recruitment and subsequent macrophage accumulation in
the damaged tissue are critical steps that regulate inflammatory
response and disease progression (1, 2). Although monocyte
recruitment during acute inflammatory response may have a
protective effect, the excessive accumulation of macrophages at
the site of inflammation can lead to strong proinflammatory
signaling, damage to healthy tissue, and development of
chronic inflammation (3). Leukocyte integrins are adhesive
receptors that significantly contribute to the monocyte/macro-
phage migration and accumulation (4). Integrin �D�2 (CD11d/
CD18) is the most recently discovered leukocyte integrin (5)
with a unique expression pattern and specific role in inflamma-
tion. Recently, we and others demonstrated that �D�2 has a
relatively low expression on neutrophils and monocytes in cir-
culation (6, 7) but is up-regulated on tissue macrophages, par-
ticularly in atherosclerotic lesions and adipose tissue during
diabetes (8 –10) (Table S1). We revealed that high expression of
�D�2 on the cell surface promotes a strong adhesion to ECM2

proteins that leads to the retention of proinflammatory macro-
phages in inflamed tissue and supports atherogenesis and insu-
lin resistance (11, 12).

Interestingly, �D�2 shares a high level of homology and
ligand binding properties with related integrin �M�2 (CD11b/
CD18; Mac-1) (13). �M�2 is a well-studied leukocyte receptor,
which is involved in the regulation of many acute and chronic
inflammatory diseases (14 –17). �D�2 and �M�2 shares many
extracellular matrix ligands such as fibronectin, fibrinogen, and
vitronectin; however, the expression of these integrins is mark-
edly different on distinct subsets of macrophages (11). Particu-
larly, �D�2 has a low expression on resident and alternatively
activated (M2) macrophages but is dramatically up-regulated
on classically activated (M1) macrophages. �M�2 demonstrates
a high expression on resident macrophages but is expressed
moderately on M1 and M2 macrophages. This difference de-
termines the distinct role of �D�2 and �M�2 in macrophage
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migration/retention and contribution to the development of
inflammatory diseases (12). Particularly, recent data have dem-
onstrated that �M�2 has a protective effect on the development
of atherosclerosis and diabetes (16, 18), which is opposite to the
pathological role of �D�2 in chronic inflammation.

Ligand recognition, followed by specific intracellular signal-
ing, is a critical step that determines integrin-mediated leuko-
cyte migration and cellular responses. Most recently, we found
that the end product of DHA oxidation, 2-(�-carboxyethyl)pyr-
role (CEP), serves as a specific inflammatory ligand for integrins
�D�2 and �M�2 (19). CEP is formed during the oxidation of
DHA that leads to the formation of CEP adducts with ECM
proteins (20, 21). These CEP-modified proteins support �M�2-
and �D�2-mediated macrophage migration to the site of
inflammation. CEP is formed mostly during inflammation and
was abundantly detected in atherosclerotic lesions and adipose
tissue during diabetes (22, 23). Based on the �D�2-specific pat-
tern of expression on M1 macrophages, we hypothesized that
CEP can be a critical ligand for �D�2-mediated macrophage
retention at the site of inflammation, particularly because the
affinity of �D to CEP surpasses the affinity to natural ECM pro-
teins (13, 19).

Therefore, the inhibition of �D�2-mediated adhesion of
macrophages to CEP-modified proteins in the ECM may have a
strong anti-inflammatory effect. However, the overlapping
ligand binding properties of �M�2 and �D�2 complicate the
development of an effective inhibitor (13, 24).

In this project, we developed a strategy to identify the amino
acid sequences that are specific only for integrin �D�2 and have
no effect on �M�2. Using in vitro approaches, we selected the
peptide, called P5, with strong blocking ability against �D�2–
CEP interaction. Applying the model of peritoneal inflamma-
tion, we demonstrated that P5 peptide significantly reduced the
accumulation of macrophages in the peritoneal cavity, and this
effect was directly related to the �D�2-dependent migration via
ECM. Moreover, P5 does not interfere with monocyte transmi-
gration through endothelium or macrophage efflux from the
peritoneal cavity. Finally, using the model of diet-induced dia-
betes, we demonstrated that P5 peptide markedly inhibits the
accumulation of macrophages in the adipose tissue of mice,

which demonstrates the effect of P5 on the development of
chronic inflammation. Taken together, these data confirm the
significant role of integrin �D�2 during an inflammatory
response, support the concept of �D�2 as an important anti-
inflammatory target, and propose the P5 sequence as a poten-
tial inhibitor of inflammation.

Results

Screening the peptide library for binding to �D and �M

I-domains

To identify the sequences that are unique for �D�2 binding
and have no cross-reactivity with �M�2 binding, we synthesized
a peptide library on the cellulose membrane spanning the
sequence of the �-module of fibrinogen (Fig. S1). It has been
shown that the �-module of fibrinogen contains multiple bind-
ing sites for �M�2 integrin (25) and is critical for �D�2 binding
to fibrinogen (13). The peptide library consisting of 9-mer pep-
tides with a 3-residue offset was tested for binding of 125I-la-
beled active �D I-domain as described previously for �M I-do-
main (25) (Fig. 1). We detected three sequences, which are
specific only for the binding of �D I-domain (spots 27–29,
49 –51, and 67–70). The identified sequences, AGHLNGVYY-
QGGTYSKAS, TGTTEFWLGNEKIHL, and GDAFDGFDF-
GDDPSD, were synthesized as soluble peptides and named P3,
P4, and P5, correspondingly.

Evaluation of inhibitory abilities of identified sequences by
surface plasmon resonance and adhesion assay

The abilities of detected peptides to inhibit �D I-domain
binding to CEP were tested by applying surface plasmon reso-
nance (Biacore 3000) (Fig. 2, A and B). �D I-domain and �M
I-domain were preincubated with 200 �g/ml P3 (106.8 �M), P4
(114.6 �M), and P5 (126.8 �M) peptides and added to the immo-
bilized CEP using previously detected concentrations (19). Two
peptides (P4 and P5) demonstrated marked inhibition of �D
I-domain binding, whereas inhibition of �M I-domain was not
significant. To extend this result, we tested peptides in the
adhesion assay using �D�2- and �M�2-transfected HEK 293
cells (Fig. 2C). CEP was immobilized on the 96-well plate, and
integrin-transfected cell lines were preincubated with 200

Figure 1. Screening the peptide library for binding to �D and �M I-domains. The peptide library was synthetized on the cellulose membrane spanning the
sequence of the �-module of fibrinogen. The library was incubated with 125I-labeled �D I-domain or �M I-domain, and binding was visualized by autoradiog-
raphy. The numbers on the left and above each panel indicate the peptide (spot) numbers. The peptide numbers correspond to the numbering of spots in the
panel. Spot analysis indicated three peptides, called P3, P4, and P5, as unique sequences that bind to �D�2 (shown in red boxes).
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�g/ml peptides. Similar to direct protein–protein assay, P3
peptide did not have a blocking effect. However, the inhibitory
ability of P4 peptide was reduced compared with direct
protein–protein interaction assay (Fig. 2A). Apparently, the
binding region for the P4 peptide is only exposed on isolated
I-domain, but it is partially blocked on �D�2 heterodimer,
which is expressed on the cell surface. Therefore, P4-binding
site is not a natural region for the �D�2–CEP interaction. In
contrast to these data, P5 peptide inhibited 50% of �D�2 adhe-
sion to CEP, which was similar to the Biacore results. The effect
of P5 peptide on adhesion of �M�2 cells was not significant. We
tested different concentrations of P5 peptide in adhesion assays
and found concentration-dependent inhibition of �D�2 bind-
ing to CEP (Fig. 2D).

Integrins �D�2 and �M�2 are multiligand receptors (13, 24).
It has been shown that several integrin ligands have overlapping
binding sites within the I-domain (24, 27-29). Based on this
information, we tested whether P5 peptide can inhibit �D�2-
mediated cell adhesion to other ligands. First, we evaluated the
adhesion of �D�2- and �M�2-transfected HEK 293 cells to
fibrinogen in the presence of P5 peptide. We found that P5
peptide blocked only the adhesion of �D�2 (Fig. 2E) in a con-
centration-dependent manner (Fig. 2A). Because integrin
�X�2, which is also expressed on macrophages, has high homo-
logy with �D and interacts with fibrinogen (Fg), we tested this
receptor in an inhibition assay. The adhesion of �X�2-trans-
fected cells to immobilized fibrinogen was not affected in the

presence of P5 peptide (Fig. S2B), which confirmed the speci-
ficity of selected inhibitor for integrin �D.

We also tested the ability of P5 to block the adhesion of �D�2

and �M�2 to another ligand, vitronectin, and received a similar
result. Namely, P5 inhibits the adhesion of �D�2-transfected
cells but has no effect on adhesion of �M�2-transfected cells
(Fig. 2F). Taken together, these data demonstrated that P5 pep-
tide can prevent the binding of �D�2 to different ECM ligands
without affecting the function of other macrophage integrins.

P5 peptide supports direct adhesion of �D�2 cells and
prevents receptor activation on the cell surface

The blocking peptide can bind directly to the binding site
within �D or may have an allosteric effect. To detect the mech-
anism of P5 inhibition, we tested the direct binding of �D�2 to
P5 peptide. Using immobilized P5 in an adhesion assay (Fig.
3A), we found that P5 peptide can support direct binding to
�D�2, whereas �M�2 does not have this ability. The adhesion of
both cell lines to Fg was used as a positive control (Fig. 3A).

The role of �D I-domain conformation for the binding to P5
peptide was assessed using biolayer interferometry. Particu-
larly, we tested the interaction of �D I-domain in active and
nonactive conformations to the biotinylated P5 peptide, which
was immobilized on a streptavidin biosensor. We found that
active form of �D I-domain has a similar binding to P5 in the
presence of 1 mM Mg2� and 5 mM EDTA. At the same time, a

Figure 2. P5 peptide is a specific inhibitor for integrin �D�2. A and B, representative profiles of the surface plasmon resonance measured by Biacore for �D
(A) and �M (B) binding to CEP-BSA coupled to the CM5 chip in the presence of 200 �g/ml P3 (106.8 �M), P4 (114.6 �M), and P5 (126.8 �M) peptides. C and D,
adhesion assay of �D�2- and �M�2-transfected HEK 293 cells in the presence of inhibitory peptides. C, a 96-well plate was coated with CEP for 3 h at 37 °C.
Calcein AM–labeled HEK 293 cells transfected with �M�2 and �D�2 were added to the wells, and cell adhesion was determined after 30 min in a fluorescence
plate reader. Some samples were preincubated with P3, P4, or P5 peptide for 20 min before the adhesion assay. Data are presented as mean � S.E. *, p � 0.05.
D, adhesion of HEK 293 cells transfected with �M�2 and �D�2 to CEP in the presence of different concentrations of P5 peptide. Data are presented as mean �
S.E. *, p � 0.05. E and F, adhesion of HEK 293 cells transfected with �M�2 and �D�2 to fibrinogen (E) and vitronectin (F). Some samples were preincubated with
P5 peptide before the adhesion assay. Data are presented as mean � S.E. (error bars). *, p � 0.05. N/S, not significant.
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nonactive conformation of �D I-domain could not interact with
P5 (Fig. 3B).

In a parallel experiment, we tested how binding of P5 peptide
affected the change in the conformation of the entire �D�2 het-
erodimer on the cell surface. Using activation-dependent anti-
body mAb24, we found that preincubation with P5 peptide sig-
nificantly reduced �D�2 activation (Fig. 3C). Therefore, the
binding of P5 peptide does not require a fully active conforma-
tion of �D�2 and can prevent a conformational change from the
intermediate to the active stage. In agreement with our other
data, P5 peptide did not have an effect on the activation of �M�2
cells.

Effect of P5 peptide on macrophage accumulation in the
peritoneal cavities of WT, �D

�/�, and �M
�/� mice

The blocking effect of P5 peptide on �D�2-mediated cell
adhesion might interfere with macrophage migration in vivo.
We used the model of thioglycollate-induced peritoneal
inflammation to evaluate changes in macrophage migration
after P5 treatment. WT mice were injected intraperitoneally
with P5 peptide or control peptide 30 min before the injection
of thioglycollate, and the number of peritoneal macrophages
was detected after 72 h. We selected a control peptide from the
same �-module sequence based on the absence of binding to
�D�2 and �M�2 and presence of negatively and positively
charged amino acids. Accordingly, the sequence (WNGRT-
STADYAMFKV), which corresponds to spots 37– 40, was syn-
thetized and tested. The adhesion assay in the presence of the
control peptide confirmed the lack of its effect on �D�2-medi-
ated adhesion (Fig. 4A). The injection of cyclic P5 peptide to
WT mice reduced 3-fold the accumulation of macrophages in
the peritoneal cavity, whereas the treatment with the control
peptide or PBS had no effect (Fig. 4B). Interestingly, the injec-
tion of P5 to �M-deficient mice demonstrated a reduction of
macrophages in the peritoneal cavity similar to WT mice,
whereas �D deficiency completely eliminated the blocking
effect of P5 peptide (Fig. 4C). These results demonstrate the
specificity of P5 peptide in vivo.

Mechanism of P5 peptide inhibition during peritoneal
inflammation

The model of peritoneal inflammation is a well-described
model of acute inflammation that is commonly used to evaluate
monocyte/macrophage recruitment. Macrophage accumula-
tion in the peritoneal cavity depends on several factors, includ-
ing monocyte progenitor translocation to the blood stream,
monocyte transmigration via the endothelium monolayer,
macrophage migration through the interstitium to the perito-
neal cavity, and efflux from the cavity to the lymphatics. We
sought to detect the step of macrophage accumulation with
which P5 peptide interferes.

To clarify this question, we developed several assays. First, we
isolated monocyte progenitors from WT mice, labeled cells
with PKH26 red fluorescent dye, and injected them intrave-
nously to the mice with initiated peritoneal inflammation (Fig.
5A). One group of mice was treated with P5 peptide; the second
was treated with the control. After 72 h, cells were isolated from
the peritoneal cavity, and the number of red fluorescent, adop-
tively transferred macrophages was evaluated by FACS (Fig.
5B). We found that according to our previous observations (Fig.
4B) the total number of macrophages was significantly reduced
after P5 treatment (Fig. 5C, left panel). More interestingly, the
number of labeled macrophages was also significantly de-
creased (Fig. 5C, right panel). This result demonstrated the
effect of P5 peptide on macrophage recruitment, but clearly P5
does not affect translocation from bone marrow because
labeled cells were injected to the blood stream. Also, this result
shows that the effect of P5 is mediated by monocyte-derived
macrophages and is not related to the proliferation of resident
macrophages.

Second, we tested the potential role of P5 in macrophage
efflux from the peritoneal cavity (Fig. 6A). Macrophages were
isolated at 72 h after thioglycollate injection and labeled with
PKH26 fluorescent dye. The labeled macrophages were
injected intraperitoneally to the mice at 48 h after thioglycol-
late-induced inflammation. One group was treated immedi-

Figure 3. Characterization of P5 peptide binding to integrin �D�2. A, direct adhesion of HEK 293 cells transfected with �M�2 and �D�2 to immobilized P5
peptide. Cells were added to a 96-well plate coated with P5 peptide or with Fg as control, and adhesion was performed as described in Fig. 2. B, analysis of the
activation stage of �D I-domain for binding to P5 peptide. A representative binding curve of �D I-domain binding to P5 peptide was measured by biolayer
interferometry (ForteBio). N-terminally biotinylated P5 peptide was immobilized on a streptavidin biosensor. 2 �M �D I-domain in active (solid line) and
nonactive conformations (dotted line) in the presence of 1 mM Mg2� or �D I-domain in active conformation in the presence of 5 mM EDTA (dashed line) was
incubated with immobilized P5. The binding was analyzed using ForteBio Data Analysis 11.0 software. The experiment was repeated three times with similar
results. C, P5 peptide inhibits the activation of integrin �D�2 on the cell surface. �D�2- and �M�2-transfected HEK 293 cells were preincubated with P5 peptide
for 30 min at 37 °C, and then cells were incubated with 100 nM phorbol 12-myristate 13-acetate (PMA) for 30 min at 37 °C to induce integrin activation. The
activation stage of integrins was assessed using activation-dependent antibody mAb24. Fluorescently labeled cells were detected by FACS. Data are presented
as mean � S.E. (error bars). *, p � 0.05. N/S, not significant.
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ately with P5 peptide; another group was treated with the con-
trol. After an additional 24 h, cells from the peritoneal cavity
were collected, and the number of labeled macrophages was
compared in both groups using FACS (Fig. 6B) and cytospin
(Fig. S3). Again, the number of recipient macrophages was
affected by P5 peptide (Fig. 6C). However, the amount of fluo-
rescently labeled macrophages in the peritoneal cavity was not
changed in the presence of P5 peptide, which demonstrates that
P5 treatment did not affect efflux of macrophages during peri-
toneal inflammation (Fig. 6C).

Based on these experiments, we concluded that P5 interferes
with the recruitment of monocytes/macrophages from the

bloodstream to the peritoneal cavity. Therefore, the contribu-
tion of P5 peptide may affect endothelial transmigration or
migration through the ECM.

P5 peptide has no effect on 2D transendothelial migration but
inhibits 3D migration in the matrix

Accordingly, we tested the role of P5 in monocyte transmi-
gration via endothelial monolayer in vitro. A Boyden chamber
was coated overnight with human umbilical vein endothelial
cells (HUVECs), which were labeled with green PKH67 fluores-
cent dye. Monocytes, labeled with red fluorescence (PKH26),
were added to the upper chamber (Fig. 7A). Monocyte migra-

Figure 4. P5 peptide inhibits the accumulation of macrophages in the peritoneal cavity during sterile inflammation. A, adhesion of �D�2- and �M�2-
transfected cells to CEP in the presence of 200 �g/ml control (57.2 �M) peptide (P-con). B and C, WT (B) and �M

�/� and �D
�/� (C) mice were intraperitoneally

injected with 100 �g/mouse cyclic P5 (63.4 �M) peptide, control peptide, or PBS. 20 min later, 4% thioglycollate was injected intraperitoneally to all mice to
induce inflammation. After 3 days, the amounts of WT, �M

�/�, and �D
�/� macrophages were evaluated by assessing the number and percentage of macro-

phages in the inflamed peritoneal cavities of mice. Isolated peritoneal cells were counted, and the numbers of WT, �M
�/�, and �D

�/� macrophages were
calculated based on the percentage of F4/80-positive population in flow cytometry analysis. Data are presented as mean � S.E. (error bars). *, p � 0.05. N/S, not
significant.

Figure 5. P5 peptide regulates the recruitment of macrophages. A, schematic representation of the experiment. Bone marrow– derived monocytes were
isolated from donor WT mice and labeled with a red fluorescent dye, PKH26. Recipient WT mice were intraperitoneally injected with P5 peptide and 20 min later
with 4% thioglycollate (TG) to induce inflammation. Then fluorescently labeled monocytes were injected into the tail veins of the recipient mice. After 72 h, the
numbers of total macrophages and labeled macrophages were assessed by flow cytometry (B). The total macrophage number was calculated based on the
percentage of F4/80-positive population in flow cytometry analysis. The labeled macrophage number was assessed based on the percentage of red-positive
cells and the total number of macrophages in the sample (C). Data are presented as mean � S.E. (error bars). *, p � 0.05. Con, control.
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tion was stimulated with MCP-1 added to the lower chamber.
One group of monocytes was pretreated with P5 peptide 20 min
before the experiment. Transmigration was evaluated after 3 h
by confocal microscopy and analyzed by IMARIS software (Fig.
7B). We did not detect an effect of P5 on transmigration that
corresponds to the relatively low level of integrin �D�2 on the
circulatory monocytes (Fig. 7C).

To test a contribution of P5 peptide to macrophage migra-
tion in the matrix, we used an in vitro 3D migration assay in
fibrin gel (Fig. 8A). Thioglycollate-induced peritoneal macro-
phages were isolated from WT and �D

�/� mice and labeled
with green (PKH67) or red (PKH26) fluorescent dyes, respec-
tively. An equal number of cells was loaded on one side of a 3D
fibrin gel, and MCP-1 was added to the opposite side to stimu-
late the migration. One group of samples was pretreated with
P5 peptide. P5 was also added to the fibrin matrix. Migration
was evaluated after 48 h by confocal microscopy (Fig. 8, B and

C). Preincubation with P5 peptide markedly reduced migration
of nonpolarized macrophages. Therefore, this experiment con-
firmed that P5 peptide affects migration of macrophages
through ECM during acute peritoneal inflammation.

Usually, further development of inflammation promotes
polarization of macrophages to the proinflammatory M1 phe-
notype. We recently showed that expression of �D�2 is up-reg-
ulated on M1-polarized macrophages and �D�2’s high expres-
sion generates a strong adhesion followed by macrophage
retention (11, 12). Therefore, we hypothesized that P5 peptide
treatment may have the opposite effect on the migration of
M1-activated macrophages. WT and �D

�/� peritoneal macro-
phages were stimulated with interferon-� (IFN�) for 4 days and
tested in a 3D migration assay in the fibrin matrix. As we have
shown previously, M1-polarized WT macrophages demon-
strate significantly lower migration compared with nonacti-
vated macrophages; however, �D

�/� M1 macrophages demon-

Figure 6. P5 peptide does not affect the efflux of macrophages from the peritoneal cavity. A, schematic representation of the experiment. Recipient and
donor WT mice were intraperitoneally injected with thioglycollate (TG). After 48 h, macrophages were isolated from the peritoneal cavities of donor mice and
labeled with a red fluorescent dye (PKH26). The recipient mice were intraperitoneally injected with labeled macrophages and P5 peptide. After an additional
24 h, the total macrophage number and percentage of labeled macrophages were evaluated by flow cytometry as described for Fig. 5. B and C, data are
presented as mean � S.E. (error bars). *, p � 0.05. N/S, not significant.

Figure 7. P5 peptide does not affect the transendothelial migration of monocytes. A, PKH67-fluorescently labeled (green) HUVECs were coated on the
membrane of the upper chamber of the Transwell. Monocytes were labeled with PKH26 red fluorescent dye and added on top of endothelial cells. MCP-1 was
added to the lower chamber of the Transwells to stimulate monocyte migration. After 3 h, monocyte transmigration was detected by a Leica confocal
microscope. B, side view of the Transwell. In the P5 group, the monocytes were preincubated with P5 peptide for 20 min. The results were analyzed by IMARIS
8.0 software and plotted (C). Statistical analyses were performed using Student’s paired t tests (n � 4 per group). Scale bars, 100 �m. Data are presented as
mean � S.E. (error bars). *, p � 0.05. N/S, not significant; Con, control.
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strate enhanced migration compared with WT (Fig. 8D, left
panel). Accordingly, the addition of P5 peptide improved
migratory properties of WT M1 macrophages (Fig. 8D, right
panel). Apparently, P5-mediated inhibition of �D�2 adhesion
induces macrophage migration. Notably, the migration of
�D

�/� macrophages is not significantly changed after P5 pep-
tide treatment, which is in agreement with our previous obser-
vations (Fig. 4C). Based on these results, we can predict that the
effect of P5 peptide on the development of chronic inflamma-
tion would be more complex and would include inhibition of
macrophage migration to the site of inflammation and inhibi-
tion of macrophage retention at the site of inflammation.

Inhibition of macrophage accumulation in the adipose tissue
of diabetic mice by P5 peptide

To test P5 effects on chronic inflammation, we analyzed an
accumulation of macrophages in adipose tissue of prediabetic
mice. Mice after 8 weeks on a high-fat diet were injected with
fluorescently labeled WT (PKH26 red) and �D

�/� (PKH67
green) monocytes. One group was injected with cyclic P5 pep-
tide; another group was injected with the control. After 48 h,
the number of red- and green-labeled macrophages in the adi-
pose tissue was evaluated using classical FACS (Fig. 9A) and
imaging flow cytometry (Fig. 9B). We have previously shown
that �D deficiency reduced macrophage accumulation in the
adipose tissue. Now, we demonstrate that P5 peptide possesses
a similar effect on WT macrophages. The accumulation of
P5-treated WT macrophages was reduced by 2.5-fold. Interest-
ingly, the migration of �D

�/� macrophages was not affected.

Specifically, the ratio of WT to �D
�/� macrophages in adipose

tissue of control mice was 3-fold, whereas this ratio was
reduced to 1 after P5 peptide treatment (Fig. 9, C and D).

Discussion

Our previous results demonstrated that modification of
ECM proteins with the product of DHA oxidation, CEP, gener-
ates new inflammation-specific substrates in the tissue (19). We
found that CEP is a ligand for �D�2- and �M�2-mediated
macrophage adhesion and migration (19). Importantly, we and
others detected CEP-modified proteins in different inflamed
tissues such as atherosclerotic lesions, pathological angiogene-
sis, adipose tissue during diabetes, and peritoneal tissue during
sterile inflammation (19, 22, 30, 31). Our other recent results
demonstrated that the up-regulation of integrin �D�2 at the site
of inflammation promotes strong adhesion of macrophages to
the substrate, related macrophage retention, and disease pro-
gression (11).

The proposed study was designed to develop an inhibitor of
�D�2-medited adhesion of macrophages to the inflamed ECM,
focusing on CEP as an inflammation-specific ligand. Because
�M�2 and �D�2 have different, rather opposite roles during
chronic inflammation (11, 12, 16, 18), our goal was to identify
an inhibitor that will work specifically only with integrin �D�2.
The lack of commercially available monoclonal antibodies
against �D�2 as well as a focus on specific �D�2 ligand led us to
search for a peptide-based inhibitor. Based on different affini-
ties between CEP–�D I-domain (KD, 1.81 � 10�7) and CEP–�M
I-domain (KD, 2.1 � 10�6) (19), we hypothesized that ligand-

Figure 8. 3D migration of macrophages was regulated by P5 peptide. A, schematic representation of the experiment. Labeled cells were mixed in equal
amounts and added to the Transwell. Before the initiation of migration, the background was verified by scanning samples with a confocal microscope. The
migration was stimulated by adding 30 nM MCP-1 to the opposite side of the fibrin gel. B, after 48 h, the migration was evaluated using a Leica confocal
microscope. A 3D view of the migrating cells in fibrin matrix is shown. C and D, side view of the migration of nonactivated (C) and M1-activated (D) macro-
phages. The results were analyzed and reconstructed by IMARIS 8.0 software. Statistical analyses were performed using Student’s paired t tests (n � 4 per
group). Scale bars, 500 �m. Data are presented as mean � S.E. (error bars). *, p � 0.05. Con, control.
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binding sites for CEP within �D�2 and �M�2 have a different
structure.

We selected the �-module of fibrinogen for the generation of
a cellulose-bound peptide library based on our earlier finding
that the �-module contains several independent sites that can
be recognized by integrin �M�2 (25). We also showed that �D�2
interacts with fibrinogen via the �-module (13). Utilizing this
library, we identified three unique peptides that are specific
only for binding to integrin �D�2 (Fig. 1). The inhibitory abili-
ties of the identified sequences were tested in a protein binding
assay (surface plasmon resonance) and an adhesion assay,
which narrowed our search to one peptide, called P5 (Fig. 2). P5
peptide has a strong negative charge due to six aspartic acids.
Because the critical molecular group of CEP is a carboxyl group
(21), P5 peptide mimics the multiple CEP modifications on a
protein surface. We cannot exclude that some other peptides
with strong negative charge may have a similar effect on �D�2-
mediated macrophage adhesion. However, a number of tested
peptides with several aspartic/glutamic acids in the structure
do not interact with �D I-domain (Fig. S1 and Fig. 1, spots 47,
48, 58, and 59).

�D�2 is a multiligand receptor. The previous data demon-
strated that binding sites within �D for different ligands are
overlapping (13). Accordingly, we found that P5 peptide can
also block the binding to vitronectin and fibrinogen, which
broadens the inhibitory ability of P5. However, the KD of �D
binding to CEP surpasses the binding to Fg or vitronectin (13,
19); therefore, during inflammation, CEP-modified proteins
will be preferential ligands for �D�2. Moreover, the formation
of adducts between CEP and natural ligands of �D�2 will pro-

mote �D�2 interaction with these ligands via the CEP-binding
site.

Integrin ligand binding requires interaction of a negatively
charged amino acid of the ligand with the metal ion– dependent
adhesion site (MIDAS) in the integrin I-domain structure (32).
MIDAS is a binding site for Mg2�, which is coordinated by five
side chains of amino acids from I-domain and an acidic residue
from the ligand. Such coordination stabilizes the active confor-
mation of I-domain and promotes ligand binding (33). The abil-
ity of P5 peptide to interact with �D I-domain in the presence of
EDTA demonstrates that P5 is not involved in the interaction
with MIDAS via one aspartic acid. Moreover, the lack of P5
peptide interaction with integrin �M (Figs. 1 and 3), which con-
tains the same MIDAS structure, confirms that the P5-binding
site is located in a separate part of the I-domain. One of the
potential explanations of the P5 mechanism is prevention of
�D�2 full activation. Preincubation of �D�2 cells with P5 pep-
tide inhibits the following activation/conformational change of
�D�2 (Fig. 3C), which was detected with a conformation-de-
pendent antibody, mAb24. The binding of mAb24 reflects a
conformational change from the intermediate to full activation
stage. It can be mediated either by initial ligand docking or by
inside-out strong signaling. It has been shown that integrin can
interact with ligands with intermediate affinity (34). The ligand
docking can change the integrin conformation to an active form
and increase affinity of binding. Therefore, the effect of P5 pep-
tide on �D�2 binding to different ligands can be explained by
prevention of the conformational change from the intermedi-
ate to the active stage. Further studies are required to localize
the binding motif for P5 peptide within �D�2.

Figure 9. P5 peptide inhibited accumulation of macrophages in adipose tissue of mice during diet-induced diabetes. Isolated WT and �D
�/� bone

marrow monocytes were labeled with red PKH26 (WT) or green PKH67 (�D
�/�) fluorescent dyes, respectively; mixed in an equal amount; and injected into the

tail veins of WT mice fed a high-fat diet (45% kcal from fat) for 8 weeks. Experimental groups were intraperitoneally injected with 100 �g/mouse P5 (63.45 �M)
peptide 20 min before the injection of labeled cells. After 3 days, visceral adipose tissue was isolated, digested, and analyzed using flow cytometry. A, Q1 and
Q4 quadrants represent the labeled cells in digested adipose tissue. B, imaging flow cytometry. The upper panels represent the injected monocytes, isolated
from WT and �D

�/� mice, labeled with red and green fluorescent dyes, respectively. The lower panels represent macrophages isolated from adipose tissue. The
population of single, alive cells was analyzed on red and green channels. Channel 1 (Ch01), brightfield (BF), channel 2 (Ch02), 488-nm wavelength (PKH67);
channel 3 (Ch03), 566-nm wavelength (PKH26); channel 6 (Ch06), side scattering (SSC); channel 11 (Ch11), F4/80 represents macrophage staining. C, macro-
phage number was calculated based on flow cytometry data and presented as mean � S.E. (error bars). *, p � 0.05. D, the ratio of WT and �D

�/� macrophages
in each mouse was calculated and presented as mean � S.E. (error bars). *, p � 0.05. Con, control; PE, phycoerythrin.
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Mouse and human integrins �D have a high level of homo-
logy (identity, 71%). CEP formation is similar in human and
mouse tissues (35). P5 peptide inhibited the binding of CEP to
human �D I-domain, human �D�2–transfected HEK 293 cells,
and mouse macrophages in vitro and in vivo. Therefore, P5
peptide represents the common inhibitor for human and
mouse systems.

To evaluate the effect of P5 peptide in vivo, a mouse perito-
neal model of inflammation was applied. Thioglycollate-in-
duced peritoneal inflammation represents a sterile acute
inflammation. In contrast to chronic inflammatory diseases,
the expression of integrin �D�2 on peritoneal macrophages is
intermediate (10). However, this model is commonly used to
study the mechanism of neutrophil and macrophage migration
and provided important information regarding the effect of P5
peptide inhibition in vivo. Macrophage accumulation in the
peritoneal cavity at 72 h after injection of sterile thioglycollate
allows tracking monocyte recruitment and macrophage efflux
during inflammation (36 –38). We demonstrated the specificity
of P5 peptide–mediated inhibition because P5 peptide signifi-
cantly blocked accumulation of WT and �M

�/� macrophages
but had no effect on the accumulation of �D-deficient macro-
phages in the peritoneal cavity (Fig. 4).

The monocyte/macrophage recruitment to and efflux from
the peritoneal cavity is a complex process that can be divided
into several stages: translocation of monocytes from bone mar-
row/spleen, monocyte transmigration through the endothe-
lium, migration via ECM, and efflux from the cavity to lymphat-
ics. Because each step is regulated by leukocyte integrins, we
tested a potential role of P5 in these processes. Using adoptively
transferred macrophages, we found that P5 peptide has no
effect on macrophage efflux from the peritoneal cavity (Fig. 6).
This corresponds to the previous results that macrophage
efflux is regulated by integrin �4�1 (37, 38) and �M�2 (36). In
contrast, the injection of fluorescently labeled monocytes to the
bloodstream in the presence of P5 peptide significantly reduced
the accumulation of labeled macrophages in the peritoneal cav-
ity (Fig. 5). This result demonstrated that P5 peptide inhibits
monocyte endothelial transmigration and/or migration via
ECM (peritoneal wall) toward the cavity. Also, this result indi-
cated that the P5 effect is not related to monocyte translocation
from the bone marrow. These data are in agreement with the
fact that �D�2 has a low expression on monocyte progenitors
that reduces the potential contribution of �D�2 to this step (39).

To further determine the role of P5 peptide in the recruit-
ment, we tested P5 in monocyte transmigration (Fig. 7) and
migration through the extracellular matrix in vitro (Fig. 8). We
did not detect a difference in monocyte transmigration via the
endothelial monolayer in the presence of P5 peptide. This cor-
responds to the previous results that monocyte diapedesis
depends on integrins �L�2, �4�1, and to some extent �M�2
(40 –42). It also in agreement with our previous data that �D
deficiency does not change transmigration of monocytes dur-
ing atherogenesis (11).

In contrast to these data, P5 had a strong effect on the migra-
tion of WT macrophages in a 3D matrix. Macrophages can
apply a mesenchymal (adhesion-dependent) or amoeboid
(adhesion-independent) migration mode in the 3D environ-

ment (43–47). We recently found that integrin �D�2 can regu-
late mesenchymal migration (12), and the density of �D�2 on
macrophage surfaces is important for this outcome. The inter-
play between integrin density and cell migration is based on the
theory of cell migration, which postulates that intermediate
adhesion supports migration, whereas very strong adhesion will
inhibit cell locomotion (48, 49). In our current experiments, we
used nonactivated peritoneal macrophages, which have a mod-
erate level of �D�2 expression (10). Clearly, �D deficiency
reduced migration of nonactivated macrophages (Fig. 8C, left
panel (�D

�/� green fluorescence versus WT red fluorescence)),
which confirmed a supportive role of �D�2 in migration.
Accordingly, P5 peptide reduced the migration of WT nonac-
tivated macrophages (Fig. 8C, right panel) but did not have an
effect on migration of �D-deficient macrophages.

In our previous project, we found that high expression of
�D�2 on M1 macrophages serves to inhibit cell migration due to
strong adhesion (11, 12). We verified this result by demonstrat-
ing a reduced migration of �D-deficient M1-activated macro-
phages (green fluorescence) (Fig. 8D, left panel). Accordingly,
the migration of WT M1-activated macrophages in the pres-
ence of P5 peptide was improved because �D�2-mediated adhe-
sion was reduced (Fig. 8D, right panel). The migration of �D-de-
ficient macrophages (green fluorescence) surpassed WT (red
fluorescence) in the control sample but had a similar level after
P5 treatment (Fig. 8, C and D). These data demonstrate that P5
peptide may differently affect macrophage migration depend-
ing on the subset of macrophages and level of �D�2 expression
on the surface. The obtained result is in agreement with our
previous data that integrin �D�2 has a different role during
migration depending on receptor density on the cell surface
(10, 12). The intermediate expression of �D�2 during acute
inflammation supports macrophage migration to the site of
inflammation (50), whereas up-regulation of �D�2 on proin-
flammatory macrophages promotes macrophage retention at
the site of chronic inflammation.

To further confirm that P5 may affect macrophage accumu-
lation during chronic inflammation, we applied the model of
diet-induced insulin resistance. Recently, we demonstrated
that �D deficiency improved glucose tolerance and reduced
insulin resistance in C57BL6 mice (12). Using adoptive transfer
of fluorescently labeled WT and �D

�/� monocytes, we demon-
strated that the ratio of WT to �D

�/� macrophages in the adi-
pose tissue was reduced after P5 peptide treatment (Fig. 9).
Macrophage accumulation in adipose tissue is a critical marker
of inflammation and development of diabetes. This result con-
firmed the important role of integrin �D�2 in the development
of inflammation and proposes P5 peptide as a potential tool for
the development of an anti-inflammatory treatment that can
prevent macrophage accumulation and the development of dif-
ferent inflammatory diseases, particularly type 2 diabetes.

Materials and methods

Reagents

Reagents were purchased from Sigma-Aldrich and Thermo
Fisher Scientific (Waltham, MA). Human fibrinogen and
thrombin were obtained from Enzyme Research Laboratories
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(South Bend, IN). The synthesis of peptides (P-con, WNGRT-
STADYAMFKV; P3, AGHLNGVYYQGGTYSKAS; P4, TGT-
TEFWLGNEKIHL; P5, GDAFDGFDFGDDPSD; and cyclic P5)
was carried out by Peptide 2.0 Inc. (Chantilly, VA). The cycli-
zation was done by amide cyclization from N to C terminus.
The schematic sequence of cyclic peptide is shown in Fig. S1.
Recombinant mouse IFN� was purchased from Thermo Fisher
Scientific. Phorbol 12-myristate 13-acetate was purchased from
Sigma. Recombinant murine JE/MCP-1 (CCL2) was purchased
from PeproTech (Rocky Hill, NJ). Anti-human �D mAb (clone
240I) was generously provided by Eli Lilly Corp. Mouse FITC-
and allophycocyanin-conjugated anti-�M mAb (clone M1/70)
and F4/80 mAbs were from eBioscience (San Diego, CA). The
conformation-dependent antibody mAb24 against �2 integrin
was from Hycult Biotechnology (The Netherlands). mAb44a
directed against the human �M integrin subunit was purified
from the conditioned media of the hybridoma cell line obtained
from American Type Culture Collection (ATCC, Manassas,
VA) using protein A-agarose (GE Healthcare). PKH26 (red) and
PKH67 (green) fluorescent dyes were purchased from Sigma.

Animals

WT (C57BL/6J), integrin �D-deficient (B6.129S7-
Itgadtm1Bll/J), and integrin �M-deficient (B6.129S4-
Itgamtm1Myd/J) mice were bought from The Jackson Labora-
tory (Bar Harbor, ME). �D-deficient and �M-deficient mice
were backcrossed to C57BL/6 for at least 10 generations. To
develop insulin-resistant mice, C57BL/6 WT mice were fed a
high-fat diet with 45% kcal from fat (TD08811, Envigo) for 8
weeks. All procedures were performed according to animal
protocols approved by the East Tennessee State University
Institutional Animal Care and Use Committee.

Expression and isolation of recombinant �D and �M I-domains
in active and nonactive conformations

The constructs for �D I-domains and �M I-domains were
generated, and recombinant proteins were isolated as described
in our previous studies (13, 19). Briefly, �D in the nonactive
conformation (Pro128–Ala323) and �M in the active conforma-
tion (Glu123–Lys315) were inserted into PGEX4T-1 vector. In
“active” �M I-domains, the unpaired Cys128 was substituted to
Ser to prevent I-domain dimerization. Proteins were expressed
in Escherichia coli and purified using affinity chromatography
on GSH-agarose, and its fusion part was removed by thrombin.
�D in the active conformation (Pro128–Lys314) was inserted in
pET15b vector, expressed in E. coli as a His tag fusion protein,
and purified using affinity chromatography on Ni-chelating
agarose (Qiagen Inc., Valencia, CA).

Analyses of the �D I-domain binding to CEP, Fg, and P5
peptide by surface plasmon resonance and biolayer
interferometry

The interaction between I-domains and CEP or fibrinogen in
the presence of P3, P4, and P5 peptides was measured using
surface plasmon resonance (Biacore 3000 instrument, Biacore,
Uppsala, Sweden) as we described previously (13, 22). Fibrino-
gen and CEP conjugated to albumin were immobilized on the
CM5 biosensor chip using standard amine coupling chemistry

(1000 response units/flow cell). Steady-state experiments were
performed at room temperature in 10 mM HEPES (pH 7.4)
buffer containing 150 mM NaCl, 1 mM MgCl2, 1 mM CaCl2, and
0.005% surfactant P20 at a flow rate of 20 �l/min. Surface plas-
mon resonance sensorgrams were obtained by injecting various
concentrations of �D and �M I-domains. In some samples, ana-
lytes were preincubated with blocking peptides for 15 min at
room temperature. All data were corrected for the response
obtained using a blank reference flow cell that was activated
with N-ethyl-N�-(dimethylaminopropyl)carbodiimide/N-hy-
droxysuccinimide and then blocked with ethanolamine. Non-
specific binding to the blank flow cell was subtracted. The chip
surfaces were regenerated by injecting a short pulse of 25 mM

NaOH. The resulting sensorgrams were analyzed in overlay
plots using BIAevaluation software (version 4.01, GE
Healthcare).

The interaction between the �D I-domain (in active and non-
active conformations) and P5 peptide was measured using bio-
layer interferometry (ForteBio, Fremont, CA). N-terminally
biotinylated P5 peptide was immobilized on a streptavidin bio-
sensor. Different concentrations of the I-domains in 20 mM

HEPES (pH 7.4) buffer containing 150 mM NaCl, 1 mM MgCl2,
1 mM CaCl2, and 0.05% Tween 20 were added to immobilized
P5 peptide. For some experiments, Mg2� and Ca2� were
exchanged for 5 mM EDTA. All data were corrected for the
response obtained using a blank reference biosensor. The bio-
sensor surface was regenerated using 2 M NaCl and 25 mM

NaOH. Data were analyzed using the ForteBio Data Analysis
11.0 program (ForteBio).

Synthesis of cellulose-bound peptide library

The fibrinogen �-module– derived peptide library assembled
on a single cellulose membrane support was prepared by paral-
lel spot synthesis as described previously (25, 26). The libraries
were synthesized as 9-mer overlapping peptides with a 3-ami-
no-acid offset. Peptides were C-terminally attached to the cel-
lulose via a (�-Ala)2 spacer and were acetylated N-terminally.
The membrane-bound peptides were tested for their ability to
bind the �M I-domain and �D I-domain. In brief, membranes
were blocked with 1% BSA and incubated with 5 �g/ml 125I-
labeled �M I-domain or �D I-domain in 20 mM Tris buffer solu-
tion containing 1 mM MgCl2, 0.1% BSA, and 2 mM DTT. Mem-
branes were washed with Tris buffer solution containing 0.05%
Tween 20 and dried, and �M and �D I-domain binding was
visualized by autoradiography and analyzed by densitometry.

Flow cytometry analysis

Flow cytometry analysis was performed to assess the expres-
sion and activation of receptors on the surface of cells trans-
fected with �D�2, �M�2, and �L�2 integrins and to evaluate the
number of fluorescently labeled mouse macrophages isolated
from the peritoneal cavity or adipose tissue. Transfected HEK
293 cells were incubated with anti-�D (clone 240I), anti-�M
(clone M1/70), and anti-�2 (clone IB4) antibodies and analyzed
using Fortessa X-20 (BD Biosciences) as described (13, 24). The
isolated prelabeled WT (red PKH26) bone marrow– derived
macrophages, peritoneal macrophages, or adipose tissue
macrophages (WT, red; �D

�/�, green) were washed with PBS,
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counted, and analyzed by flow cytometry (Fortessa X-20) and
imaging flow cytometry (ImageStream Mark II, Amnis).
Macrophage numbers were calculated based on the percentage
of F4/80-positive population in flow cytometry.

Cell adhesion assay

The adhesion assay was performed as described previously
with modifications (13, 24). Briefly, 96-well plates (Immulon
2HB, Cambridge, MA) were coated with fibrinogen, CEP, P5, or
vitronectin for 3 h at 37 °C. The wells were postcoated with 0.5%
polyvinyl alcohol for 1 h at 37 °C. HEK 293 cells transfected with
�M�2, �X�2, or �D�2 integrins were labeled with 10 �M Calcein
AM (Molecular Probes, Eugene, OR) for 20 min at 37 °C,
washed with Dulbecco’s modified Eagle’s medium, and resus-
pended in the same medium at a concentration of 1 � 106

cells/ml. Aliquots (50 �l) of the labeled cells were added to each
well. For inhibition experiments, cells were mixed with various
concentration of peptides (P3, P4, and P5) and incubated for 20
min at 37 °C before they were added to the ligand-coated wells.
After 30 min of adhesion at 37 °C in a 5% CO2 humidified atmo-
sphere, the nonadherent cells were removed by washing with
Hanks’ balanced salt solution. The fluorescence was measured
in a Synergy H1 fluorescence plate reader (BioTek, Winooski,
VT), and the number of adherent cells was determined from a
labeled control.

Isolation of peritoneal macrophages and activation of M1
macrophages

WT and �D
�/� 8 –10-week-old mice were intraperitoneally

injected with 1 ml of 4% thioglycollate, and 3 days later, perito-
neal cells were harvested with 5 ml of sterile PBS by lavage of the
peritoneal cavity. The cells were washed with PBS and resus-
pended in RPMI 1640 medium. The cell suspension was trans-
ferred into 100-mm Petri dishes and incubated for 2 h at 37 °C
in humidified air containing 5% CO2 atmosphere. Nonadherent
cells were washed out with RPMI 1640 medium, and the adher-
ent macrophages were replenished with RPMI 1640 medium.
The macrophages were differentiated to M1 phenotype by
treatment with recombinant mouse IFN� (100 units/ml) for 4
days. Medium with IFN� was changed every 2 days or as
required. The M1-phenotype macrophages from WT and
�D

�/� mice were labeled with red fluorescent marker PKH26
and green fluorescent marker PKH67, respectively, according
to the manufacturer’s instructions (Sigma-Aldrich). The fluo-
rescently labeled cells were dissociated from the plates using 5
mM EDTA in PBS and used for the experiments thereafter.

Adoptive transfer in the recruitment of macrophages to the
peritoneal cavity

The approach is based on our previous publication with
some modifications (11). Bone-marrow monocytes were iso-
lated from WT mice using a magnetic bead separation kit
(Miltenyi Biotec, Gaithersburg, MD). Monocytes were labeled
with red PKH26 (WT) fluorescent dye. Recipient WT mice
were intraperitoneally injected with 100 �g/mouse P5 (63.4
�M) peptide. After 20 min, 1 ml of 4% thioglycollate was intra-
peritoneally injected to all mice to induce inflammation. Then
fluorescently labeled WT (red PKH26 dye) bone marrow

monocytes were injected into the tail veins of the recipient
mice. After 72 h, the peritoneal macrophages were harvested
and assessed by fluorescence microscopy and flow cytometry
(Fortessa X-20).

Adoptive transfer in macrophage efflux from the peritoneal
cavity

The adoptive transfer was performed as described previously
with some modifications (11). Briefly, recipient and donor WT
mice were intraperitoneally injected with 4% thioglycollate.
After 48 h, macrophages were isolated from the peritoneal cav-
ity of donor mice, labeled with PKH26 red fluorescent dye, and
injected into the peritoneal cavity of the recipient mice (1 � 106

cells/mouse). Immediately, the recipient mice were intraperi-
toneally injected with 100 �g/mouse P5 (63.4 �M) peptide or
control. After an additional 24 h, macrophages were harvested
from the peritoneal cavity and counted, and the number of fluo-
rescently labeled macrophages was assessed by fluorescence
microscopy and flow cytometry (Fortessa X-20).

Adoptive transfer in the model of diet-induced diabetes

The adoptive transfer was performed as described previously
(12). Briefly, WT and �D

�/� bone marrow monocytes were
isolated and purified by a magnetic bead separation kit (Milte-
nyi Biotec); labeled with red PKH26 (WT) or green PKH67
(�D

�/�) fluorescent dye, respectively; mixed in an equal
amount (1 � 106 cells/color/mouse); and injected into the tail
veins of WT mice fed a high-fat diet (45% kcal from fat) for 8
weeks. Mice in the experimental group were intraperitoneally
injected with 100 �g/mouse P5 (63.4 �M) peptide 20 min before
the injection of labeled cells. After 3 days, visceral adipose tissue
was isolated, digested, and analyzed using flow cytometry
(Fortessa X-20) and imaging flow cytometry (ImageStream
Mark II).

Transendothelial migration assay

HUVECs were seeded at 105 cells/well in the upper chamber
of Transwell inserts (diameter, 6.5 mm; pore size, 5.0 �m;
Corning), labeled with PKH67 green fluorescence, and cultured
overnight in vascular cell basal medium with vascular endothe-
lial growth factor (ATCC). On the next day, isolated bone mar-
row monocytes were labeled with PKH26 red fluorescent dye
and added to the top of endothelial cells, and MCP-1 was added
to the lower chamber of the wells to stimulate the migration of
monocytes. In some experiments, the monocytes were preincu-
bated with 200 �g/ml P5 (126.8 �M) peptide for 20 min. After
3-h incubation at 37 °C, the number of migrated cells was deter-
mined by a Leica confocal microscope, and the results were
reconstructed and analyzed using IMARIS 8.0 software.

Migration of macrophages in 3D fibrin gel

The migration assay was performed as described previously
(12, 19). WT and �D

�/� peritoneal nonactivated macrophages
were labeled with PKH26 red fluorescent dye and PKH67 green
fluorescent dye, respectively. The cell migration assay was per-
formed for 48 h at 37 °C in 5% CO2 in a sterile condition. An
equal number of WT and �D

�/� macrophages was evaluated by
cytospin of mixed cells before the experiment and at the start-
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ing point before migration. Labeled WT (1.5 � 105) and �D
�/�

(1.5 � 105) activated macrophages were plated on the mem-
branes of Transwell inserts with a pore size of 8 �m and 6.5 mm
in diameter (Costar, Corning) precoated with Fg. Fibrin gel (100
�l/sample) was generated by mixing 0.75 mg/ml Fg containing
1% fetal bovine serum, 1% penicillin/streptomycin, and 0.5
unit/ml thrombin. 30 nM MCP-1 was added on the top of the gel
to initiate the migration. Migrating cells were detected by a
Leica TCS SP8 confocal microscope, and the results were ana-
lyzed and reconstructed using IMARIS 8.0 software.

Statistical analysis

Statistical analyses were performed using Student’s t test or
Student’s paired t tests where indicated in the text using Sigma-
Plot 13. A value of p � 0.05 was considered significant.
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