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Abstract

Purpose of review—This article reviews new research in the context of existing literature to 

identify approaches that will advance understanding of the persistence of anorexia nervosa (AN).

Recent findings—Neuroscience research in AN has yielded disparate findings: no definitive 

neural mechanism underlying illness vulnerability or persistence has been identified and no clear 

neural target for intervention has emerged. Recent advances using structural and functional 

neuroimaging research, as well as new techniques for applying and combining these approaches, 

have led to a refined understanding of changes in neural architecture among individuals who are 

acutely ill, have undergone renourishment, or are in recovery/remission. In particular, advances 

have come from the incorporation of computational and translational approaches, as well as efforts 

to link experimental paradigms with illness-relevant behavior. Recent findings converge to suggest 

abnormalities in systems involved in reward learning and processing among individuals with AN.

Summary—AN is associated with neurobiological abnormalities. Aberrant learning and reward 

processing may contribute to the persistence of illness. To better utilize new techniques to 

understand the neural mechanisms of persistent AN, it may help to distinguish stages of illness 

and to link neurobiology with maladaptive behavior.
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INTRODUCTION

Anorexia nervosa (AN) commonly begins during adolescence and early treatment is 

associated with higher rates of remission (1, 2). As duration of illness increases, so does the 

mortality rate (3). The presence of both response to treatment in some forms and severe, 

chronic illness in other forms underscores the need to better understand how persistent 

illness develops. Here, we reviewed the neuroscience of AN with an emphasis on how recent 

translational research contributes to understanding the neuropathology of illness. Much of 

the recent literature relates to new methodological and analytic tools that are becoming 

available.
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Are there differences in the way the brain is organized in AN?

One approach to neuropathology of AN is to examine whether there are changes in brain 

organization with illness. Organization can be measured both through structural imaging and 

through measures of neural activity when the brain is at rest (i.e., in the absence of any 

specified stimulus).

Structural Neuroimaging—The effects of starvation are readily apparent when viewing 

MRI images of the brains of individuals with AN: decreased grey matter and increased 

ventricular size with elevated cerebrospinal fluid are common. Numerous studies have 

verified that there are significant differences between individuals with AN and healthy 

controls (HC) in both grey and white matter (4, 5). Structural MRI scanning can measure the 

integrity of gray matter structure via techniques such as voxel based morphometry, cortical 

thickness, and cortical folding. Although there are some inconsistencies in findings, a 

preponderance of studies have reported decreases in both cortical and subcortical gray 

matter among individuals with acute AN relative to HC (4). More recent analyses of specific 

regions have suggested that there may be both increases (6, 7) and decreases (7–12) in 

regional brain volume.

Studies of individuals recovered from AN have often failed to find gray matter differences 

(9, 13, 14). Several recent studies provide evidence that nutritional status is linked to brain 

volume in AN. One study followed individuals with AN over time and found strong 

correlations between changes in BMI and changes in brain volume, even with considerable 

heterogeneity in age and duration and severity of illness (11). Longitudinal studies following 

participants from acute starvation through partial renourishment have confirmed the central 

role of starvation in the gray matter abnormalities observed in AN (9, 15). Additionally, a 

study of individuals with atypical AN, who have the psychopathology of AN but are in a 

normal weight range, did not find differences in gray matter volume (16); and another study 

assessing adolescents at the very earliest stage of illness also found no gray (or white) matter 

differences compared to HC (17). On the other hand, some studies have reported structural 

abnormalities in recovered AN long after initial illness (8, 18), which may indicate either 

long-term changes or a predisposing abnormality. However, caution is warranted in 

interpreting such effects as the confounding effects of medication use and long-term effects 

of medication use are not well understood or adequately controlled in many current studies.

The anatomical loci of structural abnormalities in AN have been quite widespread, but there 

has been particular focus on subcortical regions, including striatal nuclei, the amygdala, 

hippocampus, and thalamus. Interestingly, some data identify increased gray matter volume 

in AN in regions that are also implicated in studies using other measures of brain function 

(e.g. caudate). Some reported increases in brain volume in specific regions may only be 

apparent after normalization relative to overall brain atrophy (7). One interesting possibility 

is that overall brain volume decreases due to malnutrition may mask regional increases that 

could be disease rather than nutrition related.

There are fewer studies of white matter abnormalities in AN. Myelin is dependent on fatty 

acids, some of which are supplied through diet; therefore, the extreme fat avoidance by 

individuals with AN might be expected to be particularly devastating to white matter. The 
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few existing studies show abnormalities in the underweight state in AN that are not present 

after acute renourishment, among long-term recovered AN, or among those with atypical 

AN (19–22).

Functional Neuroimaging: Resting State Connectivity—Resting state connectivity 

is a measure of the functional organization of the brain, examining temporal associations in 

neural activity between different regions that are not evoked by experimenter presented 

stimulation. Notably, structurally similar brains may show different patterns of spontaneous 

activity at rest. Organizational abnormalities may play a role in vulnerability to AN, result 

from starvation, or contribute to the persistence of illness. Resting state functional 

connectivity abnormalities have been reported in a variety of brain networks (23–25), 

including default mode network, frontoparietal (26) and frontostriatal (27, 28) systems.

A recent, small study in adolescents and adults with AN (restricting subtype) found 

hypoconnectivity in both ventral (nucleus accumbens with superior frontal gyrus) and dorsal 

(caudate with widely distributed cortical and subcortical regions) frontostriatal systems (29). 

Another small study of adolescents and adults (restricting and binge-purge subtype) also 

found ventral frontostriatal abnormalities, but in the opposite direction (hyperconnectivity) 

(30), partially replicating a prior finding (31). Of note, the abnormalities in this study were 

not readily reversed with nutrition and weight restoration (30).

Newer methods for understanding brain organization have emerged (14, 17, 30, 32–34). 

Some of these offer new windows into resting state neuronal activity, which may prove 

informative (33, 34). For example, one study found that a measure of local spontaneous 

neuronal fluctuation (ALFF) is affected by starvation in AN (34). Others offer new ways to 

examine connectivity between networks (17, 30). One of these studies included only 

adolescents with recent onset of illness, and found some organizational differences even at 

that early stage (17).

Although the effect of starvation on the brain appears dramatic, the evident resolution of 

structural abnormalities with weight restoration offers hope that long-term consequences of 

AN on the brain may be mitigated, especially if intervention is timely. Taken together, recent 

work using resting state fMRI methods provides novel windows into brain organization in 

AN. Future work informing the relationship between functional and structural organization 

and how that may differ between AN and HC will be important for understanding this 

illness.

Are there differences in the way the brain behaves in AN?

Task-based fMRI provides an opportunity to more directly link functional brain 

abnormalities to specific cognitive and behavioral processes that are hypothesized to be 

important in the development and maintenance of AN.

Reward Systems—Research to date has not identified one clear neural mechanism of 

AN, but data are beginning to converge around reward and decision-making and associated 

neural systems (35). Reward systems, which are involved in both passive responses to 

stimuli as well as more complex processes of reinforcement learning, are important in 
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shaping behavior. Several models of AN have proposed that abnormal reward processing is 

central in the disorder (36–38). These models find support in existing studies showing 

impaired learning from feedback (39–41), and abnormal temporal discounting with a 

preference for delayed reward (42). In addition, passive viewing of food images during fMRI 

scanning has tended to show hypoactivation in reward related regions (43, 44). At face value, 

measuring brain responses to food seems to be a form of symptom provocation, but the 

relevance to symptoms and eating behavior has not been established (45). Furthermore, 

fMRI tasks that do not require action by the participant are likely probing distinct cognitive 

and neural processes from those that do (46, 47), which may limit reliability in interpreting 

measures of brain function as related to maladaptive behaviors in AN. Examining active 

food choice (48) has demonstrated that patients with AN differ from HC in the neural 

circuits related to decision making: patients with AN engage dorsal frontostriatal neural 

circuits during food based decision making, which may reflect a fundamental difference in 

mechanisms of eating behavior (49).

Additional advances in neuroimaging come from translationally-based fMRI paradigms that 

can help refine understanding of the neuropathology of AN. One translational approach pairs 

visual stimuli with receipt of liquid to assess the prediction error when liquid is not received 

as expected (or is received unexpectedly) (50). Such a prediction error is thought to be 

reported through dopamine signaling in the midbrain and striatum in non-human animals 

when a reward-expectation is violated (51). In humans, a similar prediction error signal is 

observed in BOLD responses in the striatum (52). Using computational modeling with 

fMRI, prediction error has been associated with increased activation in the striatum among 

adolescents and young adults with AN (38). More recently, this research has been extended 

by exploring the computational parameters associated with expected value (differentiated 

from prediction error) (53). This research suggests abnormalities in the basic functioning of 

the dopamine reward system, which may have implications for learning – and, by extension, 

for changing behavior.

Further parsing basic differences in reward and learning processes, one study compared 

learning rate changes to positive and negative feedback during fMRI scanning between 

individuals (adolescents and young adults) with AN and HC. Individuals with AN showed 

more rapid learning from negative feedback. This behavior was associated with differential 

activation in AN in the posterior medial prefrontal cortex (54), a region involved with 

learning on the task.

One study has examined how patients with AN respond to food odors (55), which adds a 

sensory dimension that has the potential to augment existing literature on taste (50) and food 

choices (49). The individuals with AN showed decreased sensory pleasure for the odors of 

high energy dense foods (as compared with the rest of the odors), which is intriguing as 

individuals with AN are known to specifically restrict intake from dietary fat (56, 57). 

Consistent with prior studies of responses to food, the AN group had hyporesponsiveness in 

reward pathways (specifically, the ventral tegmental area) and in the precuneus (55).

Body awareness—Somatosensory and interoceptive awareness has gained increasing 

attention in AN as one approach to integrating body image distortions with abnormal eating 
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behavior (58), and studies have had mixed findings. Models that emphasize these 

components of AN pathology postulate abnormalities in a range of regions and often include 

insula abnormalities (59), but the assessment relies on quite varied modalities and methods. 

In response to images of bodies, individuals recovered from AN showed abnormal 

frontostriatal activation (60). Adults with AN have also shown difference in the social and 

perceptual processes related to self-assessment, with related differences in activation in the 

insula (61). Pleasantness ratings of light touch and activation patterns during fMRI scanning 

show inconsistent results in patients with AN (or a history of AN) (62, 63). Patients with AN 

did not show the predicted differences in insula activation (63), whereas individuals 

recovered from AN differed from HC in insula activation during parts of the touch 

experience (62).

Affect/Limbic Systems—Mood and anxiety symptoms are part of the common 

presentation of AN. Emotions and emotion regulation have been studied primarily through 

self-report measures (64), with a few efforts to understand the neural correlates. Aberrant 

activation in parts of the limbic system has been demonstrated in some studies (65, 66), 

including amygdala activation during passive viewing of food images (43). In a recent fMRI 

study using an emotion regulation task (67) the group of adolescents and young adults with 

AN differed somewhat from HC in the strategies utilized to create distance from an 

emotionally arousing stimulus. The degree of emotional arousal was not significantly 

different between groups, though the individuals with AN showed greater amygdala 

response to negative pictures. There were no differences in activation during emotion 

regulation. The centrality of affect and anxiety disturbances in AN point to a need for greater 

effort in connecting these symptoms to specific cognitive and neural processes in order to 

understand their role in maintaining persistent illness.

Identifying illness relevant paradigms is challenging, and existing approaches have certain 

limitations. Notably, behavioral results do not always match expectations (e.g., sweet liquid 

being rated equally pleasant by AN and HC, whereas AN might be expected to like sugary 

liquids less). Continued development of paradigms should proceed with explicit testing of 

illness relevance (assessing relationship with symptoms and behavior) rather than rely on 

apparent/surface validity.

What do we know about the neuroprogression of AN?

A central challenge in understanding existing research is that patients have been studied at 

various stages of illness. While some studies differentiate between adolescent and adult 

populations, just as often, studies include a wide range of ages. Furthermore, while duration 

of illness is reported, populations are not compared based on duration of illness or stages of 

disease, with the exception of some research that differentiates individuals who have 

recovered from AN. In addition, the interpretation of the presence of brain abnormalities in 

individuals recovered from AN can be complicated by the confounding effects of long-term 

use of psychotropic medication. It may be that more homogeneity of populations will be 

helpful. Staging framework models for AN have been proposed (68), but these have not been 

widely adopted, and the data to empirically delineate stages of illness do not yet exist.
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The heterogeneity in clinical characteristics in existing studies raises important general 

issues about how to design studies that are capable of answering the most important 

questions. Is the neurobiology of the development of AN similar or different from the 

neurobiology of persistent AN? Can findings from individuals who have recovered from the 

illness be extrapolated to draw inferences about the pathophysiology of AN, or are those 

individuals a unique subgroup? Furthermore, the differences in findings between studies 

(hyperactivity versus hypoactivity in similar regions) underscores the need for reliable 

experimental paradigms. In this respect, structural neuroimaging findings may be more 

robust than functional neuroimaging, but may be less sensitive to any variation that is 

informative about illness vulnerability and prognosis. Ongoing development of paradigms 

with demonstrated relevance to disturbances in eating may contribute to reliability of 

findings (69).

The impact of data analysis choices on the directionality of results points to the need for 

standardization of measurement approaches, and for reporting raw and normalized outcomes 

to facilitate comparison across studies. Many researchers are increasingly sophisticated 

about the pitfalls of imaging analysis choices and are applying the rapidly developing tools 

(32, 70), which is likely to generate more definitive, reproducible results. An additional 

concern that is also increasingly being redressed is the need for much larger sample sizes, 

with more adequately powered studies emerging in recent years (9, 22). Together, these 

developments bode well for beginning to understand the brain in AN. Computational 

psychiatry approaches, including machine learning methods, are currently nascent but have 

potential to aid diagnosis and prognosis through the combination of rich datasets and 

techniques that identify critical factors (70).

Conclusions

Neurobiological understanding of AN is slowly advancing. Neuroscience methods evolve 

rapidly and analytic techniques as well as cognitive and computational methods hold 

promise. And yet, existing data raise numerous questions about how to understand the 

causes and consequences of structural and functional abnormalities in AN. The rapid 

remediation of brain volume with renourishment suggests that studies of brain size during 

acute illness are unlikely to fully explain neurobiology of illness vulnerability. And, the 

effect of illness duration and age of onset on “normalization” of brain volume is not well 

understood--the effect of starvation on brain volume may be more extreme during 

adolescence (4), but so may be the ability to recover. Further longitudinal studies across a 

broader range of ages and illness durations will be needed to understand the contribution of 

brain alterations to maintenance and persistence of severe illness. By understanding the 

neurobiology and neuropathology of illness, we can clarify the progression of illness and 

improve opportunities for intervention.
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KEY POINTS

• Neural mechanisms that contribute to the persistence of anorexia nervosa 

(AN) are not clear.

• Convergent data from different types of research suggest that there are 

abnormalities in reward processing systems, and in behavioral aspects of 

reward learning and processing in AN.

• Approaches that link brain findings with actual maladaptive behavior can 

contribute to understanding the mechanisms that underlie psychopathology.

• More standardized characterization of participant populations to compare 

early illness with persistent illness may further advance understanding of 

progression of illness and clarify treatment targets.
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