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Abstract

Background: Mediation analysis is a powerful tool for understanding mechanisms, but 

conclusions about direct and indirect effects will be invalid if there is unmeasured confounding of 

the mediator-outcome relationship. Sensitivity analysis methods allow researchers to assess the 

extent of this bias but are not always used. One particularly straightforward technique that requires 

minimal assumptions is nonetheless difficult to interpret, and so would benefit from a more 

intuitive parameterization.

Methods: We conducted an exhaustive numerical search over simulated mediation effects, 

calculating the proportion of scenarios in which a bound for unmeasured mediator–outcome 

confounding held under an alternative parameterization.

Results: In over 99% of cases, the bound for the bias held when we described the strength of 

confounding directly via the confounder–mediator relationship instead of via the conditional 

exposure–confounder relationship.

Conclusions: Researchers can conduct sensitivity analysis using a method that describes the 

strength of the confounder–outcome relationship and the approximate strength of the confounder–

mediator relationship that, together, would be required to explain away a direct or indirect effect.
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Introduction

It is now widely recognized that valid mediation analyses require adjustment for mediator–

outcome confounding.1,2 Failing to adjust for such confounders does not bias the total effect 

of the exposure, but the extent of mediation (i.e., the size of the indirect effect through the 

mediator relative to the direct effect through other pathways) may be over- or 

underestimated.1-3 However, it is not always the case that researchers collect data on these 
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confounders, particularly when mediation is secondary to the primary exposure–outcome 

analysis for which a study has been designed and for which confounders have been 

measured. Here we discuss a straightforward, although approximate, approach to sensitivity 

analysis for direct and indirect effects that essentially corresponds to the mediational 

equivalent to the “E-value”4 – a metric that was introduced as an approach to quantify 

robustness to confounding for total effects.

Recently a sensitivity analysis technique was proposed to examine the extent to which 

unmeasured confounding of the mediator–outcome relationship could explain observed 

mediation effects.1,2 Specifically, a bound for the bias can be used to assess the possible 

influence of an unmeasured confounder U on the observed direct or indirect effects (more 

formally, the natural direct and indirect effects; see eAppendix for counterfactual 

definitions). The bound describes the maximum extent to which unmeasured confounding by 

U could have resulted in the overestimation of the indirect effect and the corresponding 

underestimation of the direct effect, or vice versa.

Under the assumption that U is marginally independent of the exposure, A (see Figure), 

conditional on measured covariates C (omitted for simplicity from a probability statements 

that follow), the bound depends on the strength of the relationship of the unmeasured U with 

the outcome Y, specifically, the following risk ratio (RR):

RRUY ∣ (A = 1, M) = max
m

max
u

Pr(Y = 1 ∣ A = 1, M = m, U = u)

min
u

Pr(Y = 1 ∣ A = 1, M = m, U = u) ,

as well as on the strength of the relationship between U and A that is induced within levels 

of mediator M, specifically,

RRAU ∣ M = max
m

max
u

Pr(U = u ∣ A = 1, M = m)
Pr(U = u ∣ A = 0, M = m) .

With these two parameters specified, the maximum ratio by which the estimate of the 

indirect effect (and correspondingly direct effect), on the RR scale, could differ from the true 

value was shown to be given by:

RRAU ∣ M × RRUY ∣ (A = 1, M)
RRAU ∣ M + RRUY ∣ (A = 1, M) − 1 .

The interpretation of the parameter RRUY∣(A=1,M) is relatively straightforward as the 

maximum direct effect, among the exposed, of U on Y not through M. However, the 

interpretation of the second parameter RRAU∣M is more complex. That the RRAU∣M 

parameter differs from 1 is due to so-called collider bias, which occurs when conditioning 

on the common effect (M) of two variables (A and U). However, the fact that A and U are 

not related except within levels of M makes the magnitude of this relationship difficult to 

intuit or speculate about.
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Citing previous work by Greenland,3 the authors proposing this bound claimed that in most 

but not all situations, the relationship between U and M would be at least as strong as the 

conditional A-U relationship and could therefore potentially be used as its proxy in 

sensitivity analysis.1 Specifically, instead of the parameter RRAU∣M, defined as the 

maximum RR of A on some value of U within a level of M, the authors proposed using the 

maximum RR comparing two values of U on M within a level of A:

RRUM = 1 ∣ A = max
a

max
u

Pr(M = 1 ∣ A = a, U = u)

min
u

Pr(M = 1 ∣ A = a, U = u) .

This is a more intuitive parameter to specify as it directly reflects the strength of the 

confounder–mediator relationship, which is of course necessary for confounding to be 

present.

The purpose of the present study was to investigate to what extent this alternative parameter 

could be used to perform approximate instead of exact sensitivity analysis for natural direct 

and indirect effects.

METHODS

To evaluate the extent to which the bound for unmeasured confounding would hold if 

RRUM=1∣A were used instead of RRAU∣M, we conducted an exhaustive numerical search via 

simulation. Our main analysis searched over all possible probability combinations of binary 

exposure, mediator, outcome, and unmeasured confounder, without making functional form 

assumptions. We did this to ensure no restrictions on the size or direction of any interactions 

or on the prevalence of any of the variables.

Conditional probabilities for M, U, and Y were randomly drawn from a uniform (0,1) 

distribution to ensure that all possible probabilities were encountered. However, because 

allowing the probabilities to vary over any range results in many unrealistic situations, we 

also considered several possibly more plausible restrictions when generating the data, 

including following a log-linear model for the mediator and restricting interactions so that 

all effects were in the same direction.

After randomly generating the necessary probabilities to define the joint distribution of 

exposure, mediator, outcome, and confounder, we calculated the true direct effect on both 

the risk ratio and risk difference (RD) scales, as well as the effects that would be observed if 

the confounder were unmeasured. From these values we computed the bias as the ratio of 

observed to true direct effect on the RR scale and as the difference on the RD scale. We also 

computed the exact bound as defined above.

Next we computed the bound using RRUM=1∣A instead of RRAU∣M. We considered this 

alternative bound to be successful when it, like the true bound, was greater than the bias. We 

also “corrected” the observed effects using both the true and alternative bounds by dividing 

(for RRs) or subtracting (for RDs) the bound from the observed effect. When the alternative 
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bound failed to bound the bias, we computed the magnitude of the bias that would remain if 

we used it to correct the mediated effects anyway.

Because not only the bias parameters but also the bias itself is conditional on measured 

confounders that have been adjusted for in the estimation of the observed effects, we did not 

explicitly include C as one of the random variables in the numerical search. Instead, we 

assumed, as we do throughout the text, that we are working within strata of C.

More details can be found in section 2 of the eAppendix. R code can also be found in the 

eAppendix.

RESULTS

As expected, the bound computed with the appropriate parameters was always greater than 

or equal to the bias. We found that in 99.3% of simulation settings, the value calculated 

using the RRUM=1∣A parameter did indeed also bound the bias (eTable 1). However, we did 

not discover any complete characterization that distinguished the failed bounds from the 

successes, although they occurred more frequently when the bias was larger (eTable 2). On 

average, the bound constructed with the alternative parameter was weaker than the true 

bound (eFigure 1), but overall effects corrected by both bounds had relatively similar 

distributions (eFigure2). When the alternative bound did fail, the residual bias after 

correcting with it was generally small. Over 80% of the time, the corrected effect was less 

than 1.2 times as great as the true effect (eFigure 3). On the risk-difference scale, the 

remaining bias was less than 0.02 around 50% of the time that the bound failed (eTable 4).

We found similar results when we varied the data-generating distribution. While the 

distributions we assumed for the variables are unlikely to directly reflect reality, the few 

situations in which the bound failed were unremarkable and did not appear more likely to 

occur in practice than those in which the bound held. In section 4 of the eAppendix we 

consider continuous M and U as well as derive conditions under which other alternative 

bounds will hold.

DISCUSSION

These results support the claim that this sensitivity analysis technique can, at least roughly, 

be based on the proposed strength of the relationship between an unmeasured confounder 

and the mediator, which better matches intuition about the source and size of confounding. 

When unmeasured confounding is suspected, bounds can be computed by researchers or 

readers with values for RRUM=1∣A that seem reasonable for a given situation in order to see 

how bias of that magnitude would affect the direct and indirect effects.

It is also possible to calculate the minimum size of the two parameters that would be 

necessary to completely explain away a direct or indirect effect. This is essentially a 

mediational analogue to the E-value to assess robustness to unmeasured confounding for 

total effects.4 For an observed natural direct or indirect effect risk ratio of magnitude RRobs, 

this is given by:1,4
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Mediational E‐value = RRobs + RRobs × (RRobs − 1)

If both of the parameters are at least as large as the mediational E-value, conditional on the 

measured confounders, it is possible that unmeasured confounding is entirely responsible for 

a direct or indirect effect, and that effect is truly null. The mediational E-value expression 

applies exactly to the sensitivity analysis parameters RRUY∣(A=1,M) and RRAU∣M and 

approximately, as above, to the parameters RRUY∣(A=1,M) and RRUM=1∣A.

As an example, Oberg et al.5 examined the indirect effect of fertility treatment on preterm 

birth mediated through multiple gestations (see Figure). They estimated an indirect effect 

risk ratio of 1.55 (95% CI: 1.52, 1.59). The mediational E-value for the estimate is 2.47, and 

for the limit of the CI closest to the null it is 2.41. We are then able to make statements of 

the form, “To completely explain away the observed indirect effect, an unmeasured 

confounder associated with both multiple gestations and preterm birth with approximate risk 

ratios of 2.47-fold each, above and beyond the measured covariates, could suffice, but 

weaker confounding could not. To shift the confidence interval to the null, an unmeasured 

confounder associated with both multiple gestations and preterm birth with approximate risk 

ratios of 2.41-fold each, above and beyond the measured covariates, could suffice, but 

weaker confounding could not.”

We hope that by simplifying an already straightforward sensitivity analysis method with a 

more easily specified parameter, researchers will increasingly assess the robustness of their 

mediation analyses to unmeasured confounding.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure. 
Directed acyclic graph representing a mediated effect subject to unmeasured mediator–

outcome confounding. A represents the exposure of interest, M the mediator, and Y the 

outcome. C includes all measured confounders of both the exposure–outcome and mediator–

outcome relationships, and U is an unmeasured confounder of the latter. In the example in 

the text, A is fertility treatment, M multiple gestations, and Y preterm birth. C includes all 

confounders the authors were able to measure and adjust for, and U the mediator–outcome 

confounders they were not able to measure.
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