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Abstract

Enteric viruses infect the mammalian gastrointestinal tract which is home to a diverse community 

of intestinal bacteria. Accumulating evidence suggests that certain enteric viruses utilize these 

bacteria to promote infection. While this is not surprising considering their proximity, multiple 

viruses from different viral families have been shown to bind directly to bacteria or bacterial 

components to aid in viral replication, pathogenesis, and transmission. These data suggest that the 

concept of a single virus infecting a single cell, independent of the environment, needs to be 

reevaluated. In this review, I will discuss the current knowledge of enteric virus-bacterial 

interactions and discuss the implications for viral pathogenesis and transmission.
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Introduction

The microbiota is now widely recognized for being vital to human health (1). Consisting of 

bacteria, fungus, and viruses, the microbiota inhabit multiple sites on the human body where 

they have developed an ecological niche that is a benefit to both the host and colonizing 

organisms. Among these sites, the gastrointestinal tract (GI) is home to the most extensive 

collection of the microbiota, including a dense community of commensal bacteria. This 

diverse community is made up of approximately 1013 bacteria from 500-100 different 

species (2–4). A majority of these bacteria reside in the lower gastrointestinal tract, however, 

due to pH, oxygen, and nutrient availability, distinct bacterial populations inhabit both the 

small and large intestine (5). Further, intestinal bacteria vary amongst individuals and can be 

influenced by genetics, diet, and lifestyle (6–8). Additionally, imbalances in the microbial 

composition have been linked to many human diseases including inflammatory bowel 

diseases, type 2 diabetes, and obesity (9–14).
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Enteric viruses initiate infection in the mammalian GI tract where they encounter these 

microbiota. Previous data demonstrate that multiple enteric viruses utilize the microbiota to 

promote replication, pathogenesis, transmission. Many of these viruses have been shown to 

interact directly with intestinal bacteria, and in this review, I will highlight our latest 

understanding of the interaction between enteric viruses and intestinal bacteria and the 

consequences. Specifically, I will discuss the influence of bacteria on members of the 

picornavirus, reovirus, and retrovirus families. Additional enteric viruses also exploit the 

microbiota; however, these viruses will be discussed separately in this special volume. 

Overall these studies suggest that the conventional view of a single virus infecting a cell is 

too limited. Other factors, including the microbiota, need to be considered when 

investigating the outcome of viral infections in vivo.

Intestinal bacteria impact enteric viral infections

It comes to no surprise that, given the proximity of enteric viruses and intestinal bacteria, 

recent research indicates that bacteria can impact enteric viral infections. While these 

bacteria could impede viral infection by acting as a physical barrier in the intestine, recent 

compelling evidence has shown that some enteric viruses utilize bacteria to promote 

infection. Poliovirus, a non-enveloped enteric virus in the Picornaviridae family that initiates 

infection in the intestine, can disseminate to the central nervous system to cause paralytic 

poliomyelitis. In mice depleted of intestinal bacteria by antibiotics, poliovirus replication 

and lethality is significantly reduced compared to untreated mice (15). These data indicate 

that bacteria promote poliovirus intestinal replication and pathogenesis. Further, data reveal 

that poliovirus can bind to bacteria through interactions with bacterial surface components, 

lipopolysaccharide (LPS) and peptidoglycan, to enhance infectivity (16, 17).

Rotavirus, a non-enveloped RNA virus from the Reoviridae family, is a leading cause of 

diarrheal disease in children worldwide (18). Depletion of intestinal bacteria by antibiotics 

reduced diarrhea duration and rotavirus fecal shedding in mice (19). Further, germ-free mice 

also exhibit a delay in rotavirus fecal shedding, implicating a role for bacteria in rotavirus 

infection. Reovirus, another member of the Reoviridae family, also had reduced replication 

and pathogenesis when intestinal bacteria are depleted (15). Similar to poliovirus, both 

Grampositive and Gram-negative bacteria can bind and enhance reovirus infectivity (20). 

This interaction is likely facilitated by viral binding to LPS and peptidoglycan, suggesting 

that reovirus, like poliovirus, may utilize a broad array of different intestinal bacterial 

isolates to facilitate infection in the intestine.

Finally, mouse mammary tumor virus (MMTV) is an enveloped retrovirus that infects 

lymphoid cells in Peyer’s patches of the intestine (21). MMTV can establish persistence in 

mice and is transmitted from infected females to suckling pups in milk. Commensal bacteria 

are required to maintain viral persistence as the virus can be abolished in germ-free mice 

(22) Specifically, MMTV can bind to LPS via LPS-binding proteins that become integrated 

into the viral envelope during egress (23). Overall these data provide compelling evidence 

that some enteric viruses have evolved to utilize intestinal bacteria to promote infection.
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Bacteria enhance viral thermostability

Recent advances have shed light on the mechanistic outcome for these virus-bacterial 

interactions. Data suggest that enteric viruses bind to bacteria to stabilize the virion to retain 

infectivity. For example, both Gram-positive and Gram-negative bacteria enhance the 

thermostability of poliovirus (Fig. 1A) (15). Binding of poliovirus to LPS retain viral 

particles in their infectious state, limiting inactivation and premature release of viral RNA. 

(16). Further a mutation in the poliovirus VP1 capsid protein, T99K, reduces LPS binding 

and environmental fitness, suggesting that bacterial enhancement of thermostability may 

also play an essential role in viral transmission from host-to-host. These effects are also seen 

in other members of the Picornaviridae family as well. LPS and peptidoglycan enhance the 

thermostability of Coxsackievirus A21, Coxsackievirus B5, and Echovirus 30 (24), and 

bacteria improve the stability of Coxsackievirus B3, Aichi, and mengovirus during bleach 

treatment (25). Overall, these data suggest that bacterial-mediated enhancement of 

thermostability may be a shared mechanism for picornaviruses.

Similar to poliovirus, recent evidence suggests that bacteria also enhance the stability of 

reovirus. Both Gram-positive and Gram-negative bacteria improve reovirus thermostability 

in vitro through interactions with LPS and peptidoglycan (20). Furthermore, intermediate 

infectious subvirion particles (ISVPs) also are stabilized by LPS and peptidoglycan. These 

ISVPs are formed by proteolytic processing of the virion and required for attachment and 

entry of reovirus into host cells and contribute to intestinal infection (26–28). These data 

suggest that the binding site of these bacterial components to reovirus does not involve 

capsid proteins, μ1 or σ3, since they are either cleaved or absent on ISVPs. Interestingly, 

individual bacterial components have different effects on specific strains of reovirus. While 

LPS and peptidoglycan enhance have both the Type 1 Lang (TIL) and Type 3 Dearing (T3D) 

strains of reovirus, lipoteichoic acid and chitin only enhanced T3D thermostability, but not 

the TIL strain. Therefore, specific reovirus strains may have different affinities for distinct 

bacterial components; however, if these affinities affect strain-specific replication and 

pathogenesis differences remains unknown.

Bacteria enhance viral attachment to host cells

Another mechanism for bacterial-viral interactions is through enhancement of viral 

attachment to the host cell. In addition to enhancing poliovirus thermostability, incubation of 

poliovirus with bacteria increase attachment to poliovirus receptor (PVR)-expressing cells 

(Fig. 1B) (15). Evidence suggests that this enhancement is through direct interaction with 

the receptor since poliovirus, incubated with LPS, bound to significantly more purified PVR 

than virus incubated in PBS alone (16). Interestingly, the VP1-T99K poliovirus mutant, 

which reduces LPS binding, still retained LPS-mediated enhancement of cell attachment. 

These data suggest that the affinity and concentration of LPS molecules may influence 

poliovirus cell attachment and thermostability.
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Bacteria can facilitate viral co-infection and promote viral genetic 

recombination

In addition to the virion thermostability and cell attachment, Erickson et al. demonstrated 

that binding of poliovirus to specific bacterial strains increased viral co-infection of host 

cells (Fig. 1C) (17). Using DsRed- and GFP-expressing poliovirus, the authors found that 

poliovirus mixed with certain bacterial isolates increased the number of dual-infected HeLa 

cells. These data are not surprising since electron microscopy studies revealed that multiple 

poliovirus virions bound to a single bacterium. Interestingly, the increase in co-infection 

rates correlated with viral binding to bacterial isolates that had increased adherence to HeLa 

cells. Further, using drug- and temperature-sensitive poliovirus mutants, the authors found 

that bacterial enhancement of co-infection also increased the likelihood of genetic 

recombination amongst poliovirus virions. Overall, these data suggest that poliovirus may 

utilize bacteria to improve viral fitness in the mammalian GI tract through increased genetic 

recombination.

Bacteria promote viral immune evasion

Commensal bacteria provide vital stimulation to develop a mature host immune system (29, 

30). While these immune signals from bacteria promote colonization resistance to 

pathogenic organisms, evidence suggests that some enteric viruses have exploited these 

pathways to evade the immune system. For example, antibiotics enhance the antibody 

response to a rotavirus infection, suggesting that bacteria can modulate the immune response 

to rotavirus (19). The mechanism behind this response, however, is unclear. Similarly, 

MMTV can subvert the host immune response to establish persistence in mice. Immune 

evasion for MMTV requires functional Toll-like receptor 4 (TLR-4) signaling and the 

immunosuppressive cytokine IL-10; however, the mechanism was largely unclear (31). Kane 

et al. shed light on this mechanism when they demonstrated that MMTV uses commensal 

bacteria to facilitate persistence by binding to bacterial LPS (Fig. 1D) (22). To enable 

binding to LPS, MMTV incorporates LPS-binding factors, such as MD-2 and CD14, into the 

viral envelope during egress from infected cells (23). These LPS-binding factors play a 

critical role in the transfer of the LPS molecule to TLR-4 and can help trigger LPS-induced 

signaling pathways (32). Upon binding of LPS to the viral membrane, MMTV can stimulate 

the TLR-4 pathway leading to IL-6 production of the immunosuppressive IL-10 cytokine. 

This cascade activates an immune evasion pathway, facilitating persistent MMTV infections.

Negative or unclear effects of bacteria on enteric viruses

While this review focuses on the beneficial outcome of bacterial and viral interactions, these 

effects may not be conserved. Mouse adenovirus 1 does not require intestinal bacteria for 

intestinal infection (33). Additionally, defensins, host antimicrobial peptides induced in 

response to intestinal bacteria, can neutralize some adenoviruses types (34). Interestingly, 

recent data suggest that α-defensin may enhance mouse adenovirus type 2, a mouse enteric 

pathogen, suggesting that further work is necessary to determine the role of intestinal 

bacteria on enteric adenoviruses (35). Further, even though some experimental data suggest 

that intestinal bacteria may promote rotavirus infection, other data contradict this. For 
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example, probiotics have been shown to reduce the duration of viral diarrhea and 

administration of Lactobacillus rhamnosus GG reduces rotavirus shedding (36–38). 

Additionally, soluble factors from commensal bacteria can block rotavirus infection in vitro, 

and bacterial flagellin can eliminate chronic rotavirus infection through induction of IL-22 

and IL-18 in vivo (39). Overall, these data suggest that some enteric viruses may utilize 

intestinal bacteria to promote infection, while others may not.

Conclusions

Traditionally, viral infections have been viewed in the context of a single virus infecting a 

host cell. This straightforward view has allowed a reductionist approach to understanding the 

fundamental processes of the viral life cycle. This reductionist approach, however, does not 

always paint a full picture of the complex interactions that arise during a viral infection in 
vivo. In light of this potential complexity, recent evidence indicates that additional extrinsic 

factors, such the microbiota, may play a significant role in establishing a viral infection 

within a host. Overall, these new factors have established a new field of study in virology 

where viral infections are understood in the context of the environment for which they 

initiate infection. Future experiments identifying these complex interactions and their 

mechanisms need to be elucidated to provide a clear picture of the viral cycle, not only 

within the cell, but within the entire host.

In light of all these recent findings, there is clearly a need for more studies to understand 

how intestinal bacteria and the microbiota impact viral infections. Many questions remain as 

to the precise mechanisms of bacterial-mediated viral enhancement. First, which specific 

bacteria are required to enhance viral infection? Specific bacteria required to enhance 

infection for one enteric virus likely not enhance another. Data suggest that poliovirus and 

reovirus have different binding affinities to particular bacteria and bacterial components, and 

identifying the mechanism behind these binding affinities may provide potential therapeutic 

targets. Second, does biological sex influence these interactions? Microbiota differences 

between males and females exist and have been shown to influence type 1 diabetes in a 

mouse model (40). Recently, Coxsackievirus B3 replication in the intestine was shown to be 

sex-dependent (41). Since bacteria interact with Coxsackievirus B3 (25), perhaps sex-

dependent microbiota may influence viral replication through direct or indirect mechanisms. 

Third, do bacteria affect other non-enteric viruses? Data suggest that bacteria can affect the 

immune response to influenza virus (42–45); however, the impact of bacteria on other 

viruses is unclear. Since the bacteria colonize multiple sites on the human body, likely other 

viruses have interactions with bacteria. Additionally, viruses may play a complementary role 

in promoting bacterial infections (46); however, additional data is required to determine if 

this impacts infections in the gastrointestinal tract. Finally, what is the role of other 

components of the microbiota? Much of the current data has focused on the effect of the 

bacterial component of the microbiota on enteric viruses, but fungal inhabitants of the 

intestine and other viruses may also influence enteric viral infections as well. Additional 

studies are needed to investigate these interactions in the intestine to determine their 

influence on viral infection.
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Finally, it is important to note that while current data suggest that antibiotics may be an 

effective antiviral therapy, the side effects of disruption of commensal bacteria would largely 

outweigh any potential gain. Antiviral effects in mice require a substantial depletion of 

intestinal bacteria, with multiple antibiotics given prophylactically, which would likely 

disrupt the health benefits that these bacteria provide. Future experiments identifying 

specific interactions between enteric viruses and specific bacteria or bacterial components 

may offer a better opportunity for therapeutics. For example, the precise modulation of these 

virus-bacteria interactions may provide benefits in controlling outbreaks by disrupting viral 

transmission.

In conclusion, the role of the microbiota on enteric viruses represents a promising area of 

future study. It is imperative that this field moves forward so that we can truly understand the 

overall environmental factors that underlie a viral infection within a host. While we are only 

beginning to uncover the mechanisms behind interactions between enteric viruses and 

bacteria, I anticipate that future studies will continue to shed light on other factors of the 

microbiota that influence enteric viral infections. This knowledge will be vital as we 

continue to understand the complex interactions and environments within the human body 

that influence viral infections.
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Figure 1. 
Bacteria promote enteric virus infection. (A) The binding of bacteria to poliovirus and 

reovirus enhance thermostability. For poliovirus, enhanced thermostability limits premature 

release of viral RNA. Poliovirus and reovirus adapted from PBD 1HXS and 2CSE 

respectively. (B) Bacteria increase poliovirus binding to the poliovirus receptor on 

permissive cells. (C) Poliovirus bound to bacteria increase co-infection and genetic 

recombination between progeny virions. (D) MMTV bound to LPS induce an antiviral 

response to allow for viral persistence.
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