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Abstract

Recent advances defining the role of the commensal gut microbiota in the development, education, 

induction, function and maintenance of the mammalian immune system inform our understanding 

of how immune responses govern the outcome of systemic virus infection. While characterization 

of the impact of the local oral, respiratory, dermal and genitourinary microbiota on host immune 

responses and systemic virus infection is in its infancy, the gut microbiota interacts with host 

immunity systemically and at distal non-gastrointestinal tract sites to modulate the pathogenesis of 

systemic viruses. Gut microbes, microbe-associated molecular patterns and microbe-derived 

metabolites engage receptors expressed on the cell surface, in the endosome, or in the cytoplasm to 

orchestrate optimal innate and adaptive immune responses important for controlling systemic virus 

infection.

Graphical abstract

Introduction

Experiments demonstrating enhanced susceptibility of germ-free (GF) mice to virus 

infection in the 1960’s first suggested a role for the microbiota, the commensal micro-

organisms living on and in the host, in modulating virus infection (reviewed in [1]). In the 
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past decade, our increased understanding of the impact of the various constituents that 

comprise the microbiota including bacteria, archaea, viruses, protozoa and fungi on the 

development, education, induction, function and maintenance of the mammalian immune 

system (reviewed in [2–6]) has important implications for how we think about virus 

infection. Indeed, using now more-readily-available sequence-based and functional 

characterization of the microbiota as well as antibiotic (Abx) treatment to deplete the 

microbiota, culture-based techniques, and gnotobiotic mice, many groups have begun to 

dissect how the composition of microbial communities as well as specific microbial taxa 

modulate immune responses during virus infection (reviewed in [7]). While characterization 

of the impact of the local oral, respiratory, dermal and genitourinary microbiota on host 

immune responses and virus infection is ongoing, it is now appreciated that the gut 

microbiota can impact immune responses both in the local gastrointestinal (GI) tract and at 

distal non-GI tract sites (reviewed in [8,9]). Accordingly, in this review, we discuss how the 

gut microbiota interacts with host immunity and distal non-GI tract sites to modulate the 

pathogenesis of systemic viruses using insights obtained from experimental mouse models.

Role of the gut microbiota in innate immune responses at non-GI sites.

Although pattern recognition receptors (PRRs) were initially recognized for their role in 

sensing conserved molecular ligands called pathogen-associated molecular patterns 

(PAMPs) on pathogenic micro-organisms, it is now evident that signaling of commensal 

microbiota through PRRs via conserved ligands more generically termed microbe-associated 

molecular patterns (MAMPs) also shapes and modulates host immune responses (reviewed 

in [10]). Each PRR binds one or more conserved MAMPs such that sensing of viruses is 

achieved through binding of various forms of viral nucleic acids in the endosome or 

cytoplasm, while conserved components of bacteria, archaea, protozoa and fungi are 

differentially sensed by an array of PRRs on the cell surface or in the cytoplasm [reviewed in 

([11–14]). Canonically, engagement of PAMPs from bacteria, protozoa and fungi results in 

signaling cascades that drive production of certain chemokines and pro-inflammatory 

cytokines such as tumor necrosis factor α (TNF-α), Interleukin (IL)-6 and IL-1β while virus 

recognition by endosomal and cytoplasmic PRRs results in production of interferon α/β 
(Type I IFN) and interferon stimulated genes (ISGs) (Fig 1). However, an emerging 

appreciation of the cross-talk between what classically has been thought to be separate 

immune programs is changing our understanding of how pathogenic and commensal micro-

organisms elicit differential immune responses even though they engage the same PRRs 

[15–17].

Type I IFN-mediated anti-viral immune response.—The Type I IFN response and its 

induction of an innate antiviral effector program within infected and bystander cells is a 

central component of virus control (reviewed in [18]). While type I IFN production is 

canonically associated with virus infection, several studies using Abx-treatment or GF mice 

have demonstrated a role for the commensal gut microbiota in setting homeostatic type I 

IFN levels and calibrating the type I IFN response during systemic virus infection (Table 1). 

Abt and colleagues observed decreased expression of IFN-β and ISGs in peritoneal 

macrophages (MO) isolated from naïve Abx-treated mice [19]. Moreover, peritoneal MO, 

dendritic cells (DCs) and splenocytes from Abx-treated and GF mice have an impaired 
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ability to respond to stimuli such as IFN-β, IFN-γ, polyinosinic:polycytidylic acid (poly 

(I:C)), lipopolysaccharide (LPS), Sendai virus (SeV), Influenza virus (IAV) and 

Lymphocytic choriomeningitis virus (LCMV) ex vivo potentially due to decreased promoter 

binding of Interferon Regulatory Factor 3 (IRF3) and nuclear factor kappa-light-chain-

enhancer of activated B cells (NFkB) or phosphorylation of Signal Transducer And 

Activator Of Transcription 1 (STAT1) [19–21]. Using IFN-β reporter mice, Ganal and 

colleagues observed decreased IFN-β production in multiple organs of Abx-treated mice 

after in vivo poly (I:C) stimulation [21]. Decreased production of type I IFN and antiviral 

ISGs systemically and at distal non-GI sites following IAV, LCMV, MCMV and SeV 

infection of Abx-treated and GF mice is associated with increased virus titers and/or 

enhanced susceptibility of mice to lethal infection (Table 1). In aggregate, these studies 

highlight a role for the commensal gut microbiota in priming type I IFN-dependent antiviral 

immune responses both systemically and at distal non-GI tract sites during systemic virus 

infection.

Pro-inflammatory cytokine-mediated immune response—In addition to the Type I 

IFN response, pro-inflammatory cytokines associated with NFKB and inflammasome 

activation, such as TNF-α, IL-6, IL-1β and lL-18, play a critical role in limiting viral 

replication and modulating viral pathogenesis by orchestrating tissue-specific immune 

responses through their recruitment and activation of monocytes, MO, granulocytes, DCs, 

and natural killer (NK) cells (reviewed in [22]). Studies using Abx-treatment and GF mice 

uncovered a complex relationship between the gut microbiota, pro-inflammatory cytokines 

and systemic virus infection (Table 1). The decreased expression of Nlrp3, pro-Il-1β and 

pro-Il-18 mRNA as well as the reduced amount of IL-1β protein in the bronchoalveolar 

lavage (BAL) of IAV-infected Abx-treated mice suggests that the commensal gut microbiota 

may function to stimulate the inflammasome at distal sites [23]. Moreover, the reduced 

amount of TNF-α and IL-6 detected in the BAL and spleen of Abx-treated mice during IAV 

and LCMV infection, respectively, suggests an additional role for the gut microbiota in 

stimulating pro-inflammatory cytokines at distal sites [19,23]. However, in a recent study, 

Rosshart and colleagues also observed decreased amounts of pro-inflammatory cytokines 

including TNF-α and IL-6 following IAV infection in the BAL of GF mice reconstituted 

with gut microbiota from wild mice compared to GF mice reconstituted with gut microbiota 

from specific pathogen free-mice [24]. Since GF mice reconstituted with gut microbiota 

from wild mice are protected from IAV infection, these studies suggest a more nuanced role 

for the commensal gut microbiota in calibrating pro-inflammatory cytokine responses and 

regulating viral pathogenesis during systemic virus infection that may be dependent on how 

different constituents of the gut microbiota engage distinct components of the host immune 

response.

Innate cellular immune response—The gut microbiota plays a key role in 

hematopoiesis by regulating production of immune cell precursors in the bone marrow as 

well as controlling the turnover of myeloid cells such as neutrophils and inflammatory 

monocytes in peripheral circulation [25–28]. While a role for the gut microbiota in cell-

mediated immune responses at non-GI sites during bacterial infection is well described 

(reviewed in [9]), studies using Abx-treatment and GF mice highlighted virus-specific roles 
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of the commensal gut microbiota in promoting innate cell-mediated immune responses 

(Table 1). Belkacem and colleagues observed increased numbers of tissue resident and 

circulatory myeloid cells including alveolar and interstitial MO, DCs, and inflammatory and 

patrolling monocytes in the lungs of mice orally colonization with Lactobacillus paracasei at 

baseline, but not during IAV infection, which was associated with protection against lethal 

infection [29]. Moreover, fewer CD103+ DCs were found in the lung and mediastinal lymph 

nodes (LNs) of naïve Abx-treated mice [23]. While CD103+ DC from Abx-treated mice 

retain the ability to cross-present exogenously added antigen ex vivo, Ichinohe and 

colleagues found decreased numbers and impaired antigen-presenting capacity of CD103+ 

DC from the lungs of IAV-infected Abx-treated mice, as well as impaired migration of these 

cells into mediastinal LNs, a required site of antiviral CD8+ T cell priming during IAV 

infection [23,30]. While the development, differentiation, and maturation of splenic NK cells 

was maintained in naïve Abx-treated mice, Ganal and colleagues observed that NK cells 

from Abx-treated mice stimulated in vivo with poly (I:C), LPS, and CpG DNA were 

impaired in ex vivo cell-mediated cytotoxicity and IFN-γ production [21]. Moreover, the 

impaired NK cell priming by CD11c+ DCs or other bystander cells in Abx-treated mice 

resulted in increased virus titers during Murine cytomegalovirus infection (MCMV) [21]. 

Together, these studies demonstrate a role for the commensal gut microbiota in priming cell-

mediated innate immune responses at distal non-GI sites during systemic virus infection.

Role of the gut microbiota in adaptive immune responses at non-GI sites

A role for the commensal gut microbiota in shaping the adaptive immune response is now 

extensively documented (reviewed in [31,32]). The commensal gut microbiota is required 

for the development of secondary lymphoid structures, as well as the differentiation, 

maturation and function of T and B cells including virus-specific effector CD4+ and CD8+ T 

cells, FoxP3+ CD4+ T regulatory cells (Tregs) and Th17 cells, CD4+ helper T cells, and B 

cells. Priming and activation of CD8+ T cells by antigen-presenting cells (APCs) results in 

virus-specific effector T cells armed with the ability to kill virus-infected cells through the 

expression of effector molecules such as perforin and granzyme B, as well as the production 

of cytokines such as IFN-γ and TNF-α (reviewed in [33]). Additional interactions between 

APCs and CD4+ T cells drive a cytokine-mediated Th1-polarized cellular program in other 

immune cells such as MO (reviewed in [34]). Moreover, CD4+ T cells also have a crucial 

role following virus infection coordinating the generation of an optimal humoral immune 

response through their involvement in the germinal center reaction (reviewed in [35]). In 

short, an adaptive immune response requires complex coordination between innate immune 

cells and lymphocytes to initiate an optimal antiviral immune response capable of 

controlling systemic virus infection.

T cell-mediated adaptive immune response—While the commensal gut microbiota is 

known to regulate the differentiation and function of CD8+ T cells and Tregs [36,37], its role 

in T cell-mediated antiviral responses during systemic virus infection is less well 

established. Studies using Abx-treatment and GF mice investigated the role of the 

commensal gut microbiota in the generation of virus-specific T cells and T regulatory cells 

(Tregs) during systemic virus infection (Table 1). Fewer virus-specific effector CD8+ T cells 

are found systemically in blood and at distal sites including the lung, spleen, and brain of 
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Abx-treated mice following Hepatitis B virus (HBV), IAV, LCMV, and West Nile Virus 

(WNV) infection [19,23,30,38,39]. Increased virus burden and/or increased susceptibility to 

lethal HBV, IAV, LCMV and WNV infection was likely in part due to decreased virus 

clearance by virus-specific effector CD8+ T cells. While not examined in most studies, 

Ichinohe and colleagues also observed fewer virus-specific effector CD4+ T cells in the 

spleens of IAV-infected Abx-treated mice suggesting a role for the commensal gut 

microbiota in priming both antiviral effector CD4+ and CD8+ T cells during systemic virus 

infection [23]. In contrast, the role of the commensal gut microbiota in Treg induction 

appears to be more virus-specific: fewer FoxP3+ CD4+ Tregs were found in the lung and 

spleen of Abx-treated mice following SeV and WNV infection, respectively, while a greater 

frequency of FoxP3+ CD4+ Tregs was found in the lung of Abx-treated mice following IAV 

infection [23,30,40]. In aggregate, these studies demonstrate a role for the commensal gut 

microbiota in generating an optimal effector and regulatory T cell response, the balance of 

which determines the outcome of systemic virus infection.

B cell-mediated adaptive immune response—While a role for the gut microbiota in 

shaping intestinal and systemic humoral immunity has been defined (reviewed in [41]), the 

mechanism by which the commensal gut microbiota regulates antibody responses during 

systemic virus infection is not known (Table 1). Virus-specific antibody responses are 

diminished systemically in Abx-treated mice following HBV, IAV, and LCMV, but not 

WNV, infection [19,23,30,38,39]. While these studies demonstrate that the commensal gut 

microbiota influences the humoral response during systemic virus infection, it remains to be 

determined if this effect is mediated directly through the influence of the gut microbiota on 

B cell function or indirectly through its influence on CD4+ T helper cells that drive virus-

specific antibody responses in the germinal center.

Potential mechanisms by which the commensal microbiota controls systemic virus 
infection

Although the molecular pathways through which the commensal gut microbial signals to 

generate optimal antiviral immune responses remain to be well defined, several groups have 

identified specific microbial constituents and signaling molecules that modulate host 

immunity and viral pathogenesis during systemic virus infection (Table 1). Consistent with 

the idea that the commensal gut microbiota modulates antiviral immune responses through 

the engagement of PRRs by MAMPs (Fig 1), the intrarectal administration of multiple toll-

like receptor (TLR) agonists (LPS, peptidoglycan, poly (I:C), and CpG DNA) can restore 

inflammasome-dependent cytokines, CD103+ DC priming and migration, and effector CD8+ 

T responses in IAV-infected Abx-treated mice resulting in protection from lethal infection 

[19,23]. In addition, intravenous administration of a specific peptidoglycan component, 

Muramyl dipeptide (MDP), induces a NOD2-dependent type I IFN response which is 

protective against lethal IAV infection [42,43]. Recently, Jiang and colleagues found that 

oral administration of Candida albicans and Saccharomyces cerevisiae or the intrarectal 

administration of fungal-derived Mannan could also restore antiviral effector CD8+ T cell 

responses resulting in protection of IAV-infected Abx-treated mice [39]. This observation is 

consistent with the idea that the commensal gut microbiota acts to prime host immunity 

through the engagement of PRRs, since mannan can engage TLRs and C-type lectins 
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(reviewed in Ref [13]). Signaling through TLR4 may be required for the commensal gut 

microbiota to clear HBV antigen, while TRIF and MyD88-dependent signaling is required 

for microbiota-mediated priming of NK cells and control of MCMV infection [21,38]. In 

summary, these studies suggest that commensal gut microbiota-derived MAMPs engage 

PRRs to orchestrate innate immune responses that in turn generate optimal adaptive immune 

responses during systemic virus infection.

Commensal gut microbial-derived metabolites play an important role in the regulation of 

host immunity (reviewed in Ref [44]), however, the role of microbiota-derived metabolites in 

systemic virus infection is not well defined (Table 1). Recently, Steed and colleagues 

identified a microbial-derived metabolite, desaminotyrosine (DAT), that is produced by the 

human-associated commensal gut bacteria Clostridium orbiscendens [45]. Oral 

administration of C. orbiscendens or DAT protected mice from lethal IAV infection through 

reduced immunopathology in the lung in a phagocyte-dependent process potentially through 

augmentation of the Type I IFN amplification loop (Fig 1). When coupled with the major 

role of commensal gut microbial-derived metabolites in the regulation of host immune 

responses, this study suggests that many other metabolites will modulate the outcome of 

systemic virus infection.

Conclusions and Future Questions

Although many investigations using Abx-treated, GF and gnotobiotic mouse models over the 

past 50 years demonstrate a role for the commensal gut microbiota in priming antiviral 

innate and adaptive immune responses at non-GI tract sites during systemic virus infection 

(Table 1), many details about this long-distance interaction remain to be answered. While 

past studies have established a role for commensal bacteria and fungi in modulating host 

immunity during infection with several systemic viruses (Table 1), the role of commensal 

viruses and protozoa is not well understood (reviewed in Ref [46,47]). Moreover, due to the 

pervasive influence of the commensal gut microbiota on host immunity, additional systemic 

viruses may also be impacted. More recent studies have identified a role for specific bacteria 

and fungi, as well as MAMPs, metabolites, PRRs and down-stream signaling molecules in 

the regulation of host immunity during systemic virus infection (Table 1). However, a more 

thorough understanding of the molecular mechanisms by which specific constituents of the 

commensal gut microbiota modulate host immunity is needed. Furthermore, despite studies 

which suggest that both the gut and local microbiota can independently influence host 

immunity in the lung during infection with several respiratory viruses [48–50] the relative 

contributions of the distal gut microbiota and local oral, respiratory, dermal and 

genitourinary microbiota during systemic virus infection are not well established. Lastly, 

while this review has focused on regulation of systemic and distal non-GI tract host immune 

responses by the commensal gut microbiota, studies showing that systemic virus infection 

alters the commensal gut microbiota [51–53] suggest an additional layer of complexity in 

the interaction between the commensal gut microbiota and systemic virus infection that 

should be explored.
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Figure 1. Receptor-mediated signaling pathways that modulate host immune responses during 
virus infection.
The interaction of microbe-associated molecular patterns and microbe-derived metabolites 

with host receptors such as pathogen-recognition receptors alters the type I interferon and/or 

pro-inflammatory cytokine response following viral infection. IFNAR, interferon-α/β 
receptor; Jak, Janus Kinase; STAT, Signal transducer and activator of transcription ;IRF, 

IFN-regulatory factor; poly (I:C), polyinosinic:polycytidylic acid; CpG ODN, CPG 

oligodeoxynucleotide; IAV, Influenza Virus; LCMV, Lymphocytic choriomeningitis virus; 

TLR, Toll-Like Recptor; TRIF, TIR-domain-containing adaptor protein inducing IFNβ; 

MyD88, myeloid differentiation primary-response gene 88; IFN, interferon; MCMV, Murine 

Cytomegalovirus; LPS, lipopolysaccharide; PG, peptidoglycan; HBV, Hepatitis B Virus; 

TRAF, TNF receptor-associated factor; IRAK1, Interleukin-1 receptor-associated kinase 1; 

TBK1, TANK-binding kinase 1; IKKβ, inhibitor of nuclear factor kappa-B kinase subunit 

beta; TAK1, TGF-β-activated Kinase 1; TRADD, Tumor necrosis factor receptor type 1-

associated DEATH domain; NFκB, Nuclear Factor Kappa Beta; MDA5, melanoma-

differentiation-associated gene 5; MAVS, mitochondrial antiviral signaling; RIG-I, retinoic-

acid-inducible gene; NOD, nucleotide-binding oligomerization domain; RICK, receptor-

interacting serine/threonine kinase; IPAF, ICE-protease-activating factor; ASC, apoptosis-

associated speck-like protein containing a CARD (caspase-recruitment domain; SYK, spleen 

tyrosine kinase; NLRP, NOD-like receptor protein; MDP, muramyl dipeptide; IL, 

interleukin; TNF, tumor necrosis factor; DAT, desaminotyrosine; Tyk2, tyrosine kinase.
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