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Concerns about reverse causality and selection bias complicate the interpretation of studies of body mass index
(BMI, calculated as weight (kg)/height (m)2) and mortality in older adults. The objective of this study was to investi-
gate methodological explanations for the apparent attenuation of obesity-related risks in older adults. We used
data from 68,132 participants in the Women’s Health Initiative (WHI) clinical trial for this analysis. All of the partici-
pants were postmenopausal women aged 50–79 years at baseline (1993–1998). To examine reverse causality
and selective attrition, we compared rate ratios from inverse probability of treatment– and censoring–weighted
Poisson marginal structural models with results from an unweighted adjusted Poisson regression model. The esti-
mated mortality rate ratios and 95% confidence intervals for BMIs of 30.0–34.9, 35.0–39.9 and ≥40.0 were 0.86
(95% confidence interval (CI): 0.77, 0.96), 0.85 (95%CI: 0.72, 0.99), and 0.88 (95% CI: 0.72, 1.07), respectively, in
the unweighted model. The corresponding mortality rate ratios were 0.96 (95% CI: 0.86, 1.07), 1.12 (95% CI: 0.97,
1.29), and 1.31 95%CI: (1.08, 1.57), respectively, in the marginal structural model. Results from the inverse proba-
bility of treatment– and censoring–weighted marginal structural model were attenuated in low BMI categories and
increased in high BMI categories. The results demonstrate the importance of accounting for reverse causality and
selective attrition in studies of older adults.

aging; bodymass index; reverse causality; selection bias; selective attrition

Abbreviations: BMI, body mass index; IPCW, inverse probability of censoring weights; IPTW, inverse probability of treatment
weights; WHI, Women’s Health Initiative.

The nature and shape of the relationship between body
mass index (BMI) and mortality in older adults is a frequently
debated topic in the epidemiologic and clinical literature.
Several papers have demonstrated decreasing relative risks of
high BMI in older adults, suggesting that the relationship
between high BMI and mortality is either null or slightly pro-
tective (1–3). Numerous hypotheses have been suggested to
explain the altered BMI-mortality relationship in older adults,
including both physiological and methodological explanations
(4, 5). Questions about the relationship between BMI and mor-
tality are particularly salient in older women because the pro-
portion of individuals with BMI over 30 (calculated as weight
(kg) divided by height (m) squared) is higher in women than in

men (40% vs. 35%) and life expectancy is greater for women
thanmen (6, 7).We examined the influence of reverse causality
and selection bias on the relationship between BMI and mortal-
ity, using data from a large cohort of postmenopausal women
in the United States, theWomen’s Health Initiative (WHI).

REVERSECAUSALITY

Reverse causality is defined as a phenomenon in which the
outcome precedes and causes the exposure (8–10). Technically,
using a strict definition of reverse causality, it is not possible to
have reverse causality in studies with all-cause mortality as the
endpoint. Experiencing the outcome (mortality) prior to exposure
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measurement, or having mortality cause exposure, is impossible.
However, in the context of obesity-mortality research, the term
reverse causality is often used to refer to a situation in which
disease status affects both exposure and outcome, because dis-
ease often causes weight loss and disease increases mortality
risk. Despite being called reverse causality, this is actually a
concept that fits the standard definition of confounding in epi-
demiology (see Figure 1A–C) (10, 11). This is why, in the con-
text of obesity-mortality studies, the phrase reverse causality is
often used interchangeably with the terms “confounding by
preexisting disease” or “confounding by illness-related weight
loss” (8, 10, 12). Throughout this discussion, we use the term
reverse causality to refer to a concept that most epidemiologists
would call confounding, but we are referring to it as reverse
causality for consistency with the obesity literature.

There are 2 common techniques to assess the possible
impact of reverse causation in obesity research: 1) excluding
individuals with prevalent disease at baseline and 2) exclud-
ing deaths that occur early in the follow-up period. The ratio-
nale for the first technique comes from a long-standing
tradition in observational epidemiology, that individuals
must be free of disease at baseline. It is now recognized that
such exclusions can, in certain cases, introduce bias (13–15).
It is well-known that obesity leads to cardiovascular disease
and many types of cancer; thus, excluding individuals with
these prevalent conditions at baseline amounts to condition-
ing on a variable affected by exposure (16). Therefore, while

some authors seek to use exclusions to explore reverse cau-
sality, it is likely inducing a different form of bias (17).

There is a slightly different rationale for the second type of
exclusion, deleting deaths that occur early in the follow-up
period. This type of exclusion is intended to mitigate the con-
cern that subclinical illness leads to weight loss and then
death early in follow-up. If subclinical and then clinical dis-
ease cause weight loss, lower BMI categories will be com-
posed of a disproportionate number of individuals with
disease at cohort entry (10). Excluding early deaths is an
attempt to control for the influence of subclinical disease;
because we cannot control for undiagnosed illness using sta-
tistical techniques, early deaths are used as a proxy measure
(18). A number of studies have demonstrated that excluding
early deaths fails to account for illness-related weight loss, or
reverse causality (10, 18, 19). As Allison et al. concluded, “If
excluding early deaths resulted in elimination of all diseased
subjects, and no nondiseased subjects, the bias would be
eliminated. However, this outcome seems quite unlikely to
be achieved . . .” (18, p. 673). Excluding early deaths is
unlikely to control for bias as intended and results in substan-
tial reductions in sample size.

Instead of relying on restrictions or exclusions, statistical
methods have been developed to control for time-varying
confounding affected by prior exposure, such as marginal
structural models (8, 20, 21). In this context, the time-
varying confounder is disease status: Obesity is a cause of
disease, being ill affects body weight, and both obesity and
disease increase mortality risk (Figure 2) (22). Disease status
is on the causal pathway from obesity to mortality; thus,
using conventional adjustment techniques, such as regres-
sion adjustment or restriction, might bias the estimated effect
of obesity on mortality (13, 23). It is not possible to estimate
the obesity-mortality relationship using standard statistical
approaches because failing to account for disease status will
result in a biased effect estimate, but adjusting for disease
status will also result in a biased estimate (13).

SELECTIVE ATTRITION

Selective attrition, a form of selection bias, is a second
hypothesized explanation for the attenuated relationship
between obesity and mortality in older adults (13, 24). Selec-
tive attrition produces selection bias when the losses to
follow-up are influenced by the exposure of interest and the
outcome, or by determinants of the exposure and the out-
come. This is a particular concern in studies of obesity in old-
er adults because obesity predicts disease risk, which is
strongly associated with attrition and mortality (24). This is
depicted in Figure 2. To account for differential attrition, we
use inverse probability of censoring weights (IPCW) (13,
20, 24). IPCW were developed to correct for selection bias
using measured determinants of attrition and the outcome of
interest (25). The goal of using IPCW is to recreate the study
population that we would have observed had there been no
censoring, upweighting existing observations to account for
those who are missing.

Our objective was to understand the influence of reverse
causality and selection bias on the relationship between BMI

Confounder Z

Exposure X Outcome Y

Disease

MortalityBMI

A)

B)

C)
Disease

Weight Loss

BMI Mortality

Figure 1 Causal diagrams depicting a generic confounding sce-
nario (A), confounding due to preexisting disease (B), and confound-
ing due to illness-related weight loss (C). In all these situations, the
confounding variable is associated with the exposure and a risk factor
for the outcome. BMI, bodymass index.
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and mortality in postmenopausal women. We compared the
results from an inverse probability–weighted marginal struc-
tural model with results from a conventionally adjusted
model to add to our understanding of the magnitude and
direction of these sources of bias in aging research.

METHODS

Study population

We used data from 68,132 participants in the Women’s
Health Initiative (WHI) clinical trials in this analysis. The
WHI is a cohort of postmenopausal women recruited between
ages 50 and 79 years from 40 clinical centers across the United
States (26–28). The WHI clinical trials (1993–2005) were
focused on the effects of hormone therapy, dietary modification,
and vitamin supplementation on health outcomes in postmeno-
pausal women. Detailed information about recruitment has been
published elsewhere (26, 27, 29). During the active trial phase,
clinic visits were required semiannually and consisted of ques-
tionnaires and interviews focused on symptom reporting and
management, compliance, and safety. Once per year, partici-
pants’ anthropometric measurements were recorded, including
height and weight (26).We chose to study the participants in the
WHI clinical trials, as opposed to the entire WHI cohort, which
includes an additional 93,676 women in an observational study,
because the annual anthropometric measures provide valuable
information about weight change and disease status. Women in
the WHI observational study did not have annual in-person fol-
low-up visits. The study protocol was reviewed by institutional
review boards at each clinical center as well as the WHI coordi-
nating center (30).

Assessment of endpoints

The primary outcome of interest in this analysis is all-cause
mortality up until the end of the core WHI study follow-up
(March 31, 2005). Mortality was ascertained through annual
mail and telephone contacts, searches of medical record and
death certificates, and the National Death Index (30). Follow-up

for primary clinical endpoints (cardiovascular events, cancer,
fracture) occurred every 6 months during the WHI trials and
were adjudicated by trained physicians (27). Diagnosis of cardio-
vascular disease included angina, coronary revascularization, cor-
onary heart disease, carotid endarterectomy/angioplasty, stroke,
transient ischemic attack, heart failure, andmyocardial infarction.
Diagnosed fracture included any adjudicated fracture of hip, leg
(including knee), pelvis, foot/ankle, tailbone, spine, arm (includ-
ing elbow), and shoulder. Diagnosed cancer included all cancer
types except nonmelanoma skin cancer.

Assessment of exposure and covariates

BMI was measured annually during the active study phase
for all WHI clinical trial participants. BMI is an index of
weight for height, calculated as weight in kilograms (kg)
divided by height in meters (m) squared. For this analysis,
participants were categorized into standard BMI groups:
≤18.5, 18.5–24.9, 25.0–29.9, 30.0–34.9, 35.0–39.9, and
≥40.0. Information on relevant confounding variables was
collected at baseline and annual study visits, either through
questionnaires or in-clinic measurements. Baseline confoun-
ders of the BMI-mortality relationship include age, trial par-
ticipation (hormone therapy, dietary modification), trial arm
(intervention or not), race/ethnicity, education, marital sta-
tus, income, health insurance, and smoking history (pack-
years). Time-varying confounders were measured through-
out the follow-up period. Time-varying confounders in this
analysis include disease status (cardiovascular disease, can-
cer, fracture), hormone therapy use, smoking status, self-
rated health status, physical activity level, alcohol intake,
physical functioning, hypertension, and diabetes.

Statistical analysis

Our primary analysis focused on understanding the influ-
ence of reverse causality and selection bias on the BMI-
mortality relationship. We first used generalized linear models
with a log link and a Poisson distribution to obtain unweighted

BMIk BMIk+1 MortalityDiseasek Diseasek+1 BMIk+2 Diseasek+2

Lk Lk+2Lk+1

Vk

Ck+1 Ck+2

Zk Zk+1

Figure 2. Directed acyclic graph for the effect of body mass index (BMI) on mortality. Vk is a vector of baseline covariates and Lk is a vector of
time-varying covariates of BMI and mortality. Subscript k represents the baseline the Women’s Health Initiative clinic visit, k + 1 represents visit 1,
and k + 2 represents visit 2. C represents censoring and Z represents a vector of time-varying covariates that influence both censoring and mortal-
ity. This directed acyclic graph is a simplified representation of these relationship for 2 Women’s Health Initiative (United States, 1993–2005) clinic
visits, but similar relationships exist for the entire range of follow-up visits.
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adjusted rate ratios for each BMI category compared with the
reference category, BMI 25.0–29.9. BMI 25.0–29.9 was used
as the reference group because it is the group associated with
the lowest risk of mortality and less likely to be affected by
illness-related weight loss than BMI 18.5–24.9 (31–33). BMI
25.0–29.9 is also the largest group, and using it as the reference
provides the most stable results. The Poisson parameter is a
collapsible effect estimate and thus can be compared with re-
sults from a marginal structural model (34). The number of
days between WHI clinic visits was included as an offset term.
All analyses were performed using Stata, version 14 (Stata-
Corp LLC, College Station, Texas).

We then fit the parameters of a marginal structural model
in a 2-step process: estimating inverse probability weights
and then using the weights to approximate the parameters of
a marginal structural model. Estimating inverse probability
of treatment weights (IPTW) accounts for time-varying
confounding by variables affected by prior exposure and
estimating IPCW accounts for differential attrition. We
estimated the weights using pooled logistic regression and
used stabilized weights to improve statistical efficiency (20,
35, 36). Due to the large range of the IPTW for BMI, we
truncated the weights at the 1st and 99th percentile. This
decision was made understanding the bias-variance tradeoff
associated with weight truncation (20). For each individual,
IPTW are the inverse of the probability of being in each BMI
category at each follow-up visit, conditional on observed
time-fixed and time-varying variables:
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Xik represents individual i’s BMI category measured at
visit k, with the start of follow-up at visit k = 0; −Xik 1 repre-
sents individual i’s BMI measured at the previous cohort
visit. Overbars represent covariate history up to and includ-
ing visit k. −Lik 1 is a vector of baseline and time-varying co-
variates measured for individual i at visit k − 1. The variables
included in L are age, cohort, smoking status, physical activ-
ity, alcohol consumption, physical functioning, cardiovascu-
lar disease, hypertension, diabetes, cancer, and any fracture.
Values of time-varying covariates included in L were from
the prior cohort visit. Implicit in this weighting model is the
Markov assumption that the individual’s probability of expo-
sure at visit k depends on their history of the time-varying
covariates included in −Lik 1. Following the assumptions
encoded in our directed acyclic graph, probability of expo-
sure at visit k depends on the history of the time-varying co-
variates included in −Lik 1 only through the most recent value

−Lik 1 (20, 24, 37). Vi0 is a subset of Li, a vector of variables
measured at baseline (visit k = 0), including trial participa-
tion and arm, race/ethnicity, education, marital status, health
insurance status, self-rated health, pack-years smoked, and
prior hormone therapy use. Cik = 0 indicates that individual i
was not censored by visit k (i.e., to be included in the IPTW
model for visit k, individual i still had to be part of the study
cohort). We explored numerous additional functional forms
for the pooled logistic model used to estimate the IPTW,
including product terms for interaction between BMI and

disease status variables, restricted cubic splines for BMI and
age with 4 knots, and a broader set of covariates (including the
use of a continuous variable for systolic and diastolic blood pres-
sure, number of years since menopause, age at menarche, age at
menopause, hysterectomy status, specific fracture types, differ-
ing types of hormone use, and more detailed information about
smoking history, such as pack-years). However, the alternative
specifications did not appreciably alter study results.

IPCW are the inverse of the probability of remaining in
the study cohort (i.e., uncensored) at each follow-up visit:
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Where the denominator is the probability that participant i is
not censored by visit k, conditional on individual i not being
censored at a previous clinic visit, BMI category at visit k,
and a defined set of baseline and time-varying covariates that
influence censoring and mortality (Zik−1). Accounting for
selective attrition using IPCW requires that we identify a
complete set of confounders of censoring and mortality (38).
For individual i, the numerator of the IPCW is the condi-
tional probability of remaining alive and uncensored up to
visit k, given that they had not been censored between visits
k − 1 and k, their exposure status at visit k (Xik), and a vector
of baseline covariates (Vi0) that are a subset ofZik.

Finally, using the product of the IPTW and IPCW as an ana-
lytical weight, we fit marginal structural models with a robust
variance estimator to estimate the adjusted effects of BMI on
mortality. Baseline confounders of the BMI-mortality relation-
ship (V) were included in the final marginal structural model,
given that they had been previously included in the numerator of
the stabilized weight models (39). The final Poisson marginal
structural model, including the offset term log Ti, was:

( ( | ) = β + β + +Y X X B V Tlog E logk i0 1

As a secondary analysis, we investigated the influence of
baseline age on the relationship between BMI and mortality.
In this analysis, we included a product term for interaction
between baseline age cohort (A; 50–59 years, 60–69 years,
or 70–79 years) and BMI (X) in the marginal structural model
(40, 41):

( ( | ) = β + β + β + β +Y X X A XA B Vlog Pr 0 1 2 3 4

The results from this supplemental analysis allowed us to
calculate stratum-specific effects and examine whether the
relationship between BMI and mortality differed among women
whowere younger versus older at cohort entry.

RESULTS

Demographic characteristics of the study population at
baseline are presented in Table 1. There were 5,310 women
in the estrogen-alone trial, 8,506 women in the estrogen-and
progestin trial, and 19,541 women in the dietary-modification
trial. Mean BMI was consistent across age strata, but there
were interesting differences in the proportions of women in
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specific BMI categories according to age at baseline. The
proportion of women in the lower 3 BMI groups (<18.5,
18.5–24.9, 25.0–29.9) increased across age strata, while the
proportion of women in the higher 3 BMI groups (30.0–34.9,
35.0–39.9, ≥40.0) decreased across baseline age strata. Of the
68,132 women in the WHI clinical trials, there were 3,769
deaths (5.5%) up to the end of the core WHI trial follow-up in
2005, an average of 8.6 years of follow-up. As expected, a
greater proportion of women who died were older at baseline:
By the end of follow-up, 720 women (2.6%) who were aged
50–59 years had died, 1,750 women (5.8%) who were 60–69
years had died, and 1,299 women (12.3%) who were 70–79
years had died.

The primary study results are illustrated Figure 3, compar-
ing results from an unweighted Poisson regression model
and 2 marginal structural models, one weighted by IPTW
and the second weighted by the product of the IPTW and
IPCW. The mean of the weights was 0.99 (SD, 0.07) and
ranged from 0.61 to 1.41. At low BMI levels (<18.5 and
18.5–24.9), IPTW and IPCW attenuated the mortality rate
ratio compared with the unweighted regression results. Add-
ing IPCW to the IPTW-weighted marginal structural model
resulted in no change in estimates, indicating no influence of
selective attrition at low BMI levels. At high BMI levels
(30.0–34.9, 35.0–39.9, and ≥40.0), including IPTW and
IPCW resulted in increased rate ratios. Resulting values from

Table 1. Baseline Demographic Characteristics of Participants in theWomen’s Health Initiative Clinical Trials, United States, 1993–1998

Characteristic Total Cohort, % (n = 68,132)
AgeGroup, years

50–59 (n = 27,408), % 60–69 (n = 30,193), % 70–79 (n = 10,531), %

Age, yearsa 62.1 (7.0) 55.2 (3.0) 64.7 (2.8) 73.1 (2.3)

Race/ethnicity

Non-Hispanic white 81.7 76.9 83.8 87.8

Non-Hispanic black 10.3 12.7 9.2 6.9

Hispanic 4.2 6.1 3.4 1.7

Other 3.8 4.3 3.5 3.6

Education

Some high school 5.6 4.76 5.8 7.2

High-school diploma or equivalent 18.5 15.4 20.9 19.6

Postsecondary school 50.0 50.9 49.2 50.3

Postgraduate school 25.9 29.0 24.1 22.9

Smoking status

Current smoker 7.9 10.4 7.1 4.1

Former smoker 41.0 40.6 42.0 39.1

Never smoker 51.1 49.0 51.0 56.8

Marital status

Married 60.9 65.5 61.7 47.2

Widowed 17.1 6.9 18.8 38.5

Divorced 16.3 20.5 14.9 9.7

Had health insurance 93.8 89.7 95.6 99.5

Employed 39.4 65.0 27.4 10.4

History of CVD 19.0 13.6 20.6 28.6

BMI categoriesb

<18.5 0.43 0.36 0.42 0.62

18.5–24.9 26.9 27.2 25.6 30.2

25.0–29.9 35.7 33.7 36.5 38.6

30.0–34.9 22.3 22.2 22.9 21.3

35.0–39.9 9.9 10.8 10.1 7.2

≥40.0 4.7 5.8 4.5 2.1

BMIa,b 28.9 (5.9) 29.2 (6.2) 29.0 (5.8) 27.9 (5.2)

Years sincemenopausea 14.4 (9.0) 8.1 (6.4) 16.4 (7.3) 24.7 (7.0)

Abbreviations: BMI, bodymass index; CVD, cardiovascular disease.
a Values are expressed asmean (standard deviation).
b Weight (kg)/height (m)2.
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an IPTW-weighted marginal structural model were higher
than from the unweighted model, and adding IPCW to the
model further increased estimates.

Numeric results comparing the mortality rate ratios and 95%
confidence intervals from unweighted adjusted and marginal
structural models are presented in Table 2. Comparedwith those
for BMI 25.0–29.9, rate ratios from the multivariate adjusted
unweighted model were 4.20 (95% confidence interval (CI):

3.22, 5.48) for BMI <18.5, 1.46 (95% CI: 1.32, 1.62) for BMI
18.5–24.9, 0.86 (95% CI: 0.77, 0.96) for BMI 30.0–34.9, 0.85
(95% CI: 0.72, 0.99) for BMI 35.0–39.9, and 0.88 (95% CI:
0.72, 1.07) for BMI ≥40.0. Corresponding estimates from the
marginal structural model weighted by IPTW and IPCWwere:
3.51 (95% CI: 2.57, 4.44) for BMI <18.5, 1.39 (95% CI: 1.26,
1.54) for BMI 18.5–24.9, 0.96 (95% CI: 0.86, 1.07) for BMI
30.0–34.9, 1.12 (95% CI: 0.97, 1.29) for BMI 35.0–39.9, and
1.31 (95%CI: 1.08, 1.57) for BMI≥40.0.

Results from secondary analyses stratified by baseline age
cohort are presented in Table 3 and Figure 4, comparing
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Figure 3. Graphical comparison of log mortality rate ratio results
from unweighted, inverse probability of treatment–weighted (IPTW)
and IPTW × inverse probability of censoring–weighted (IPCW) mar-
ginal structural model, Women’s Health Initiative cohort, United
States, 1993–2005.

Table 2. Incidence Rate Ratios for the Effect of BodyMass Index on
Mortality Among PostmenopausalWomen in theWomen’s Health
Initiative Clinical Trials, United States, 1993–2005

BMIa

Adjusted,
Unweighted
Resultsb

IPTW-Weighted
Marginal
Structural
Modelc

IPTW × IPCW
Weighted
Marginal
Structural
Modelc

IRR 95%CI IRR 95%CI IRR 95%CI

<18.5 4.20 3.22, 5.48 3.34 2.61, 4.25 3.51 2.57, 4.44

18.5–24.9 1.46 1.32, 1.62 1.33 1.21, 1.46 1.39 1.26, 1.54

25.0–29.9 1.0 Referent 1.0 Referent 1.0 Referent

30.0–34.9 0.86 0.77, 0.96 0.94 0.85, 1.04 0.96 0.86, 1.07

35.0–39.9 0.85 0.72, 0.99 1.05 0.92, 1.20 1.12 0.97, 1.29

≥40.0 0.88 0.72, 1.07 1.20 1.01, 1.43 1.31 1.08, 1.57

Abbreviations: CI, confidence interval; BMI, body mass index; IPCW,
inverse probability of censoring weights; IPTW, inverse probability of
treatment weights; IRR, incidence rate ratio.

a Weight (kg)/height (m)2.
b The unweightedmodel adjusted for baseline covariates plus time-

varying confounders (age, trial arm, race/ethnicity, education, marital
status, income, health insurance status, smoking status and history,
disease status (cardiovascular disease, cancer, fracture), hormone
therapy use, self-rated health, physical activity level, alcohol intake,
physical functioning, hypertension, and diabetes).

c Adjusted only for baseline covariates (age, trial participation and
assignment arm, race/ethnicity, education, marital status, income,
health insurance status, and smoking status and history).

Table 3. Incidence Rate Ratios, Stratified by AgeGroup at
Baseline, for the Effect of BodyMass Index onMortality in
Postmenopausal Women in theWomen’s Health Initiative Clinical
Trials, United States, 1993–2005

AgeGroup and BMIa

Adjusted,
Unweighted
Resultsb

IPTW × IPCW
WeightedMarginal
Structural Modelc

IRR 95%CI IRR 95%CI

50–59 years

<18.5 5.17 2.07, 8.28 5.97 3.27, 10.91

18.5–24.9 1.44 1.08, 1.81 1.52 1.18, 1.97

25.0–29.9 1.0 Referent 1.0 Referent

30.0–34.9 0.96 0.71, 1.21 1.05 0.80, 1.37

35.0–39.9 1.17 0.84, 1.52 1.53 1.13, 2.06

≥40.0 0.91 0.59, 1.24 1.43 1.00, 2.05

60–69 years

<18.5 3.42 1.91, 4.93 2.83 1.80, 4.44

18.5–24.9 1.53 1.30, 1.76 1.44 1.24, 1.68

25.0–29.9 1.0 Referent 1.0 Referent

30.0–34.9 0.85 0.71, 0.99 0.96 0.82, 1.14

35.0–39.9 0.88 0.71, 1.07 1.03 0.83, 1.26

≥40.0 0.80 0.58, 1.02 1.11 0.85, 1.46

70–79 years

<18.5 4.80 2.92, 6.67 3.46 2.29, 5.22

18.5–24.9 1.41 1.17, 1.65 1.29 1.10, 1.51

25.0–29.9 1.0 Referent 1.0 Referent

30.0–34.9 0.83 0.66, 1.00 0.86 0.73, 1.07

35.0–39.9 0.59 0.40, 0.77 0.84 0.62, 1.12

≥40.0 1.27 0.78, 1.77 1.35 0.89, 2.05

Abbreviations: CI, confidence interval; BMI, body mass index; IPCW,
inverse probability of censoring weights; IPTW, inverse probability of
treatment weights; IRR, incidence rate ratio.

a Weight (kg)/ height (m)2.
b The unweightedmodel adjusted for baseline covariates plus time-

varying confounders (age, trial arm, race/ethnicity, education, marital
status, income, health insurance status, smoking status and history,
disease status (cardiovascular disease, cancer, fracture), hormone
therapy use, self-rated health, physical activity level, alcohol intake,
physical functioning, hypertension, and diabetes).

c Adjusted only for baseline covariates (age, trial participation and
assignment arm, race/ethnicity, education, marital status, income,
health insurance status, and smoking status and history).
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mortality rate ratio estimates for an unweighted model and a
marginal structural model with IPTW and IPCW. In women
who were 50–59 years of age at baseline, results from the
marginal structural model were greater than results from the
unweighted adjusted model in all of the BMI categories. In
the youngest age group, results from the marginal structural
model indicated an elevated risk at low BMI (<18.5 and
18.5–24.9) and high BMI (35.0–39.9 and ≥40.0) compared

with BMI 25.0–29.9. In the oldest age group, 70–79 years,
comparing results from the unweighted adjusted and mar-
ginal structural model indicated differing effects in the low
and high BMI categories. In the lowBMI categories, the results
from the marginal structural model were lower than the results
from the unweighted adjusted model, but in the high BMI cate-
gories, results from the marginal structural model were higher
than results from the unweighted adjusted models.

DISCUSSION

Using prospectively collected data from the WHI clinical
trials, we fitted inverse probability–weighted marginal struc-
tural models to examine the influence of reverse causality
and selective attrition on the BMI-mortality relationship in
postmenopausal women. The final weighted model demon-
strated the mortality risks associated with being either in the
low (<18.5 and 18.5–24.9) or high (35.0–39.9 and ≥40.0)
BMI categories compared with having a BMI of 25.0–29.9.
There was no strong evidence of an increased mortality risk
for women with BMI 30.0–34.9.

Results highlight that the influence of reverse causality
and selection bias differs in low and high BMI categories. In
the total cohort, in the low BMI categories, using an IPTW
marginal structural model resulted in attenuated effect esti-
mates, relative to an unweighted model with adjustment, and
minimal change when IPCW were included in the model.
These results support the hypothesis that the lower BMI cate-
gories are composed of individuals who have experienced
disease-related weight loss. Accounting for the confounding
by disease status using an IPTW marginal structural model
resulted in a lower mortality rate than a standard model with
adjustment. We did not find evidence that selective attrition
influenced the BMI-mortality relationship in the low BMI
categories.

In high BMI categories, using an IPTW marginal struc-
tural model resulted in greater effect estimates than in the
unweighted model with adjustment, and adding IPCW to the
model further increased the mortality rate. These findings
support our 2main hypotheses regarding the influence of reverse
causality and selective attrition: Illness-related weight loss biases
the relative risks downward in high BMI categories, because in-
dividuals who have experienced disease-related weight loss are
less likely to be in the high BMI categories, thus leaving an arti-
ficially “healthy” group in the high BMI categories (10). Also,
individuals with high BMI aremore likely to drop out of a study,
and also have a higher mortality risk, artificially attenuating
effect estimates (42). After accounting for these 2 sources of
downward bias, we saw the mortality rate ratio increase, which
is consistent with prior research on reverse causality and selec-
tion bias (24, 25, 43, 44). It is important to note that the confi-
dence intervals for the unweighted and weighted models were
largely overlapping. This makes it difficult to draw a definitive
conclusion about the potential influence of reverse causality in
this analysis.

We also presented results from analyses stratified by base-
line age cohort. The stratified results demonstrated notable
differences in the BMI-mortality relationship in women who
were older versus younger at cohort entry. The unweighted,

1.5

–0.5

0.5

2.0

1.0

0.0L
o

g
(M

o
rt

a
lit

y
 R

a
te

 R
a

ti
o

)

<1
8.

5

18
.5

−2
4.

9

25
.0

−2
9.

9

30
.0

−3
4.

9

35
.0

−3
9.

9

≥4
0.

0

BMI

A)

B)

C)

1.5

–0.5

0.5

2.0

1.0

0.0L
o

g
(M

o
rt

a
lit

y
 R

a
te

 R
a

ti
o

)

<1
8.

5

18
.5

−2
4.

9

25
.0

−2
9.

9

30
.0

−3
4.

9

35
.0

−3
9.

9

≥4
0.

0

BMI

1.5

–0.5

0.5

2.0

0.0

1.0

L
o

g
(M

o
rt

a
lit

y
 R

a
te

 R
a

ti
o

)

<1
8.

5

18
.5

−2
4.

9

25
.0

−2
9.

9

30
.0

−3
4.

9

35
.0

−3
9.

9

≥4
0.

0

BMI

Unweighted

Weighted

Unweighted

Weighted

Unweighted

Weighted

Figure 4. Comparison of results from an unweighted model with
adjustment and inverse probability of treatment–weighted (IPTW) and
inverse probability of censoring–weighted (IPCW) marginal structural
models for women who were 50–59 years old (A), 60–69 years old (B),
and 70–79 years old (C) at baseline,Women’s Health Initiative cohort,
United States, 1993–2005.
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stratified results are consistent with previous research in the
WHI, demonstrating attenuated risks among women who
were 70–79 years old at cohort entry compared with those who
were 50–59 or 60–69 years old (1, 3). There are several plausi-
ble explanations for these findings, including selective sur-
vival, birth cohort effects, and effect measure modification, or,
in all likelihood, a combination of these potential explanations.
In research on older adults, there is a concern that obese indivi-
duals might experience premature mortality, dying prior to
cohort entry and leaving a selected study sample of survivors
to be enrolled into the analytical cohort. Survival up to cohort
entry is recognized as an important form of selection bias
known as selective survival (13, 45, 46). Selection bias due to
selective survival is a challenging methodological concern
when studying obesity in older adults (47).

Weuve et al. (48) report that this form of selective survival
could be responsible for apparent “muting” of certain risk fac-
tors in older ages, whereby harmful risk factors appear less det-
rimental. Our results are consistent with this hypothesis but do
not preclude other plausible explanations. This bias is structur-
ally similar to the type of selection bias discussed by authors
examining the relationship between cigarette smoking and
dementia risk, a situation in which it is nearly impossible to
claim any real benefit of exposure (24, 47). Unlike cigarette
smoking, biological explanations for beneficial effects of BMI
in old age might be plausible, but selection bias is also a rea-
sonable explanation. Stratifying on age at cohort entry is one
approach that can be used to understand and compare the
obesity-related mortality risk among individuals who are dif-
ferent ages at cohort entry (baseline age). In this context, strati-
fication does not eliminate the influence of selective survival,
but could help us to understand it better. Simulation methods
exist (44, 49) to quantify the magnitude of bias under scenarios
that mimic the real-life survival experience of a cohort of older
adults, and it is possible to use an estimand such as the “survi-
vor average causal effect” that theoretically applies to indivi-
duals who would have survived to old age, regardless of
exposure status (46). However, when seeking to understand
the effect of obesity in a real-life cohort of older adults, neither
approach fully answers the question of interest. It is difficult to
provide a single explanation for why the BMI-mortality rela-
tionship differs across age strata because the reasons for these
differences are complex and multifactorial, including both bio-
logical andmethodological factors.

In addition to the use of marginal structural models, other
methods have been suggested to control for reverse causality
or confounding by disease status, including using weight histo-
ries, lifetimemaximumBMI, instrumental variables, orMende-
lian randomization studies (43, 50–54). Although the rationale
and assumptions for each approach vary, the underlying theory
is that these methods are techniques for understanding the effect
of BMI on mortality in later life, unconfounded by illness
related weight loss. For instance, in the case of instrumental
variables, offspring BMI has been used as an instrument for an
individual’s own BMI, because offspring BMI is highly corre-
lated with parental BMI, and an illness (i.e., cancer) that might
affect parental BMI would not simultaneously affect offspring
BMI (51). Mendelian randomization is an extension of this
concept, whereby genetic variants are used as an instrumental
variable to estimate the effect of BMI on mortality because

disease status would have no influence on an individual’s
genetic makeup (53). Using lifetime maximum BMI is a dif-
ferent approach, where individuals are asked to recall their
highest adult weight, and that is used as an exposure variable
in analyses in place of current weight. This approach is appeal-
ing because it identifies an individual’s BMI status in adult-
hood prior to any illness-related weight loss (43). Finally, other
approaches leveraging weight histories include studies with
repeated measures of BMI starting in early adulthood, ostensi-
bly capturing the direct influence of changes in BMI, and
potentially illness-related weight loss, on mortality (54).

There are several assumptions required to estimate causal
effects from observational data. We assumed the model was
correctly specified, that there was no unmeasured confound-
ing (exchangeability assumption), no measurement error,
and that the positivity assumption was satisfied (20). A limi-
tation of our results is a potential violation of the consistency
assumption (55, 56). One of the key identifiability assump-
tions for causal inference requires that interventions be well-
defined; BMI is not a well-defined intervention because there
are numerous ways for an individual to be assigned to their
actual BMI (57, 58). It is possible to imagine several inter-
ventions that could affect an individual’s BMI (e.g., a diet
and/or exercise program, medication), and each of these in-
terventions might be associated with a different counterfac-
tual outcome (57, 59). Cole and Frangakis (56) expand on
the standard version of consistency to allow for multiple
routes for a particular treatment to be assigned, where consis-
tency is defined as = ( ) =Y Y x k x X, ifj

obs
j j, no matter the

value of k. This definition assumes that for any individual the
exposure is only from the route observed for that individual
(56). Other authors, such as VanderWeele and Hernán, have
also discussed estimating causal effects when there are multi-
ple versions of treatment (58, 60). An interesting direction
for future work would be a simulation study and sensitivity
analysis examining the effect of a series of different specifi-
cations for BMI as an exposure. If the results demonstrated
that the effect of BMI on mortality is consistent across speci-
fications, it would be evidence to support Cole and Franga-
kis’s definition of consistency (56).

The goal of this paper was to examine reverse causality
and selection bias in the context of BMI-mortality studies in
postmenopausal women. The strengths of the present work
include a large, well-characterized cohort with detailed follow-
up information and outcome ascertainment. Using methods
from the causal inference literature, we avoided excluding indi-
viduals at baseline, deaths that occur early in the follow-up
period, or making any unrealistic assumptions that censoring is
ignorable. Given that the WHI cohort includes only women,
further research is needed on this topic to explore differences
by sex, as well as race or ethnicity (61). Another limitation is
that the use of BMI to accurately characterize adiposity in post-
menopausal women has been questioned (5, 62). BMI might
be a less reliable indicator of adiposity in older women due to
physical changes that occur after menopause and loss of lean
muscle mass (63). This might have introduced some nondif-
ferential exposure misclassification into our analysis (63).
Despite these limitations, the conclusions from this study
provide insight into common methodological concerns for
researchers studying the effects of BMI in older adults. Our
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study highlights the mortality risk associated with having a
very low or high BMI in postmenopausal women, which
runs counter to the prevailing conclusion that BMI is a “less
important”mortality risk factor in older adults.
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