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Summary

Precise temporal control of gene expression in neuronal progenitors is necessary for correct 

regulation of neurogenesis and cell fate specification. However, the cellular heterogeneity of the 

developing CNS has posed a major obstacle to identifying the gene regulatory networks that 

control these processes. To address this, we used single cell RNA-sequencing to profile ten 

developmental stages encompassing the full course of retinal neurogenesis. This allowed us to 

comprehensively characterize changes in gene expression that occur during initiation of 

neurogenesis, changes in developmental competence, and specification and differentiation of each 

major retinal cell type. We identify NFI transcription factors (Nfia, Nfib, and Nfix) as selectively 

expressed in late RPCs, and show they control bipolar interneuron and Müller glia cell fate 

specification and promote proliferative quiescence.

eToc blurb:

We use single-cell RNA-Seq analysis to comprehensively profile gene expression during mouse 

retinal development. We find major differences between early and late-stage, as well as primary 

and neurogenic, progenitors. We also find that NFI factors control cell cycle exit and generation of 

late-born cell types.

Introduction

Neural progenitor cells (NPCs) of the central nervous system (CNS) undergo stereotypical, 

stage-dependent transitions during neurogenesis. These include transition from a slowly 

proliferating neuroepithelial cells to actively proliferating neurogenic progenitors 

(Martynoga et al., 2012; Schmidt et al., 2013); transition from symmetric proliferative to 

asymmetric neurogenic, and ultimately to terminal neurogenic division modes n (Homem et 

al., 2015; Taverna et al., 2014); and changes in developmental competence, or the ability of 

NPCs to give rise to different subtypes of neurons and glia (Cayouette et al., 2013; Kohwi 

and Doe, 2013; Okano and Temple, 2009). While the molecular mechanisms that control 

these processes in the vertebrate nervous system mostly remain unclear, the retina is a 

tractable system for studying them, owing to its greater accessibility and lower cellular 

heterogeneity than other CNS regions. The major retinal cell types show a stereotyped and 

birth order, with retinal ganglion cells born first and Mϋller glia born last (Figure 1A). 
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Classic studies using retroviral-mediated sparse labeling of retinal progenitors in rodents 

(Turner and Cepko, 1987; Turner et al., 1990), and more recent studies using live imaging 

(Gomes et al., 2010; He et al., 2012) showed that retinal progenitor cells (RPCs) are 

multipotent, with changes in clone composition and size controlled largely by intrinsic 

mechanisms. This has raised several unanswered questions (Cepko, 2014). First, how 

heterogeneous are RPCs, and do they exhibit any cell fate biases? Second, are competence 

transitions gradual or discrete, and how are they controlled? Third, what genes direct an 

individual progenitor to exit the cell cycle and differentiate as a specific subtype of neuron or 

glia?

Past work provides some insights into each of these questions. Differential expression 

analysis has identified genes with dynamic expression amongst RPCs, both during 

neurogenesis and at specific developmental stages (Blackshaw et al., 2004; Boije et al., 

2008; Dixit et al., 2014; Farhy et al., 2013; James et al., 2004; Laboissonniere et al., 2017; 

Mochizuki et al., 2014; Trimarchi et al., 2008). With few exceptions, the functional 

significance of this heterogeneity is unknown. Cell lineage analysis of RPCs expressing 

individual transcription factors shows limited, and often temporally-regulated, cellular fate 

restriction (Brzezinski et al., 2011; Brzezinski et al., 2012; Emerson et al., 2013; Hafler et 

al., 2012; Jusuf et al., 2012), but the relationship between RPC heterogeneity and cell fate 

determination remains unclear. Furthermore, although several transcription factors are 

known to regulate RPC competence (Brzezinski et al., 2012; Elliott et al., 2008; Mattar et 

al., 2015), their contribution is either modest, or affects only retinal ganglion cell 

specification. Little is known about the transcriptional regulatory networks initiating retinal 

neurogenesis and controlling changes in mode of RPC division.

To comprehensively define changes in gene expression associated with competence 

transitions, regulation of neurogenic divisions, and cell fate specification, we conducted 

single cell RNA-Seq analysis of the developing mouse retina. We isolated single retinal cells 

at time points ranging from prior to initiation of neurogenesis through to its completion, 

including cells committed to each major cell type. Previous large-scale expression profiling 

studies of retinal development have been limited in their scope owing to their use of bulk 

dissected material (Aldiri et al., 2017; Blackshaw et al., 2001; Blackshaw et al., 2004; 

Hoshino et al., 2017). Past single cell expression profiling studies in retina either analyzed 

only small numbers of cells (Laboissonniere et al., 2017; Mullally et al., 2016; Trimarchi et 

al., 2008), or profiled mature cells (Macosko et al., 2015; Shekhar et al., 2016).

In this study, we examine the dynamics of gene expression within retinal cells to investigate 

the specifics of RPC competence, neurogenesis, and temporal cell fate specification. Using 

single cell RNA-sequencing (scRNA-seq), we can reconstruct developmental trajectories of 

distinct retinal cell fates and identify the genes and gene networks that influence RPC 

competence, retinal neurogenesis, and cell fate specification during development. We use 

these data to identify candidate genes that regulate cell fate commitment and retinal 

neurogenesis, and we show that NFI transcription factors regulate generation of late-born 

retinal cells and cell cycle exit. This work advances our understanding of retinal 

development, and provides a template for investigation of temporal patterning in all areas of 

the developing CNS.
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Results

Examination of Retinal Progenitor Cell Heterogeneity via Smart-Seq Analysis

We first performed single cell RNA-sequencing on FACS-isolated Chx10-GFP (+) mouse 

RPCs (Rowan and Cepko, 2004), using an adapted Smart-Seq2 protocol (Chevee et al., 

2018) at embryonic (E) days 14 and 18, and postnatal (P) day 2, which correspond to early, 

intermediate and late stages of retinal neurogenesis, respectively (Figure 1B). Analysis of 

747 individual cells (Figure S1A–D) revealed three major clusters expressing canonical RPC 

markers (e.g. Ccnd1, Cdk4, Pax6; Figure S1F). Clusters primarily correspond to each time 

point sampled (Figure 1B; Figure S1E) when plotted using 2-D t-stochastic neighbor 

embedding (tSNE) analysis (van der Maaten and Hinton, 2008) using genes displaying high 

expression variance across all cells (Table S1). We resolved these clusters into discrete 

groups distinguished by expression of genes marking cell cycle phases, with subclusters 

specific to G1/S (e.g. Pcna,Ccne2) and G2/M phase (e.g. Ccnbl, Ube2c), respectively 

(Figure S1G). As reported, (Kowalczyk et al., 2015; Liu et al., 2017), co-expression of 

transcripts marking multiple phases is observed, identifying cells transitioning between cell 

cycle phases (Figure S1G). A much smaller cluster, which included cells from each age, 

expressed both genes associated with active proliferation (Cdk4) and multiple neurogenic 

bHLH factors (e.g. Atoh7, Olig2, Neurog2, Neurod1; Figure S1H). Finally, many P2 cells do 

not express cell cycle regulators, and expressed markers of immature photoreceptors (e.g. 

Crx), while smaller clusters of postmitotic cells expressed genes specific to immature 

amacrine (Tfap2b) and retinal ganglion cells (Pou4f2, Isl1; Figure S1I). We annotated teach 

individual cell based on transcriptional profiles of transcripts enriched within individual 

clusters (Figure 1C).

Differential gene expression testing across primary RPCs - all RPCs excluding neurogenic 

cells - identifies 1195 genes (q-val < 1.0 e-10, mean expression > 1.0 RNA copies per cell; 

Table S2) with significant differential expression amongst progenitor populations across 

development. However, within individual ages, we do not observe subclusters amongst these 

RPCs, except for those defined by markers of cell cycle phase. Conversely, differential 

expression testing across annotated cell types identified 4754 genes (q-val < 1.0 e-10; Table 

S3), including transcription factors that promote retinal neurogenesis (Atoh7, Neurog2, 
Ascl1) and photoreceptor specification (Neurod1, Crx) (Figure 1D). Genetic lineage analysis 

has suggested RPCs expressing neurogenic bHLH factors such as Atoh7, Olig2, and 

Neurog2 are substantially more likely to undergo terminal neurogenic divisions (Brzezinski 

et al., 2011; Brzezinski et al., 2012; Hafler et al., 2012). Together, these results indicate 

RPCs undergo significant transcriptional changes across developmental time, consistent with 

a change in developmental competence, and that both cell cycle phase and neurogenic 

potential influence the transcriptional heterogeneity of RPCs. This dataset also provides an 

unbiased, high-depth analysis of gene expression in RPCs and a subset of postmitotic neural 

precursors, at multiple timepoints during retinal neurogenesis.
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Droplet-based scRNA-Seq reveals the full transcriptional landscape of mouse retinal 
development.

We next sought to profile retinal development more comprehensively using droplet-based 

single cell RNA sequencing, which can analyze more cells and time points. We profiled 

120,804 single cells from whole retinas at 10 select developmental time points, ranging from 

prior to the onset of neurogenesis (E11) through terminal fate specification (P14), using the 

10× Genomics Chromium 3’ v2 platform (PN-120223) (Figure S2A). Libraries were 

sequenced to a mean depth of ~110,220,000 reads per library, corresponding to a mean UMI 

count of 2099.75 and 1153.43 genes per cell (Figure S2B–E). Preliminary clustering and cell 

type annotation was performed on single cell profiles from individual timepoints using a 

modified Monocle dpFeature workflow (Qiu et al., 2017) (Figure S3–S4). All time points 

were then aggregated into a single dataset for further analyses. Using 3290 high-variance 

genes across all cells (Table S4), we established a reduced three-dimensional representation 

of the developing retina using UMAP (McInnes and Healy, 2018) (Figure S2F–G; Movie 1). 

A second round of clustering (Figure S2H) and cell type annotation was performed in which 

doublets and extra-retinal cells were identified and removed (Figure 1E–F; Figure S2I; 

Movie 2).

The resulting representation contains a core manifold consisting of primary RPC at all ages 

between E11 and P8 that express canonical RPC markers (Pax6, Vsx2, Lhx2, etc; Figure 

1G). We also observe a population of proliferating (Ccnd1-positive) cells expressing 

multiple neurogenic bHLH genes (Olig2, Neurog2), and show reduced expression of Vsx2 
and Lhx2 compared to other RPCs (Figure 1G). This population corresponds to the 

neurogenic RPC population identified in the Smart-Seq analysis (Figure 1C–D), and is seen 

between E12 and P8 (Figure 1E). The neurogenic population is adjacent to, and extends 

from, primary RPCs (Figure 1F). Trajectories of differentiating cells corresponding to all 

major retinal neuronal subtypes, with the exception of horizontal cells, can be seen emerging 

as separate branches from this population of neurogenic RPCs. A branch corresponding to 

differentiating Müller glial precursors, in contrast, emerges from the primary RPC cluster. 

The proximity of Müller glia and primary RPCs is consistent with the cell populations 

exhibiting overlapping gene expression profiles (Blackshaw et al., 2004; Nelson et al., 2011; 

Roesch et al., 2008). Closer examination identified cells with high levels of horizontal cell-

specific (Lhx1; Figure S5A) (Liu et al., 2000; Poche et al., 2007) or horizontal cell-enriched 

genes (Prox1; Figure S5B) (Dyer et al., 2003) present within the presumptive amacrine 

trajectory. Recursive analysis of the amacrine trajectory identified both starburst amacrine 

and horizontal cells as separate populations distinct from other developing amacrine cells 

(Figure S5C–D).

Within the reduced dimensional embedding, most cells are distributed along a single 

contiguous manifold, indicating we have profiled most key transitions that occur during 

mouse retinal development, with no significant discontinuity in coverage across this process. 

Cell-type classification, number and proportions of annotated cell types are listed in Table 

S5 and Figure S2J–L. The timing and sequential progression of major cell type trajectories is 

consistent with previous studies (Young, 1985a, b), highlighting the initiation of 

neurogenesis at E12; the generation of the majority of retinal ganglion cells, presumptive 
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cones and horizontal cells between E14 and E16; the specification of amacrine cells in the 

late embryonic and early postnatal time-points; a burst of rod photoreceptor differentiation 

during the early postnatal periods; and specification and differentiation of bipolar cells and 

Müller glia from P5 onwards. Examination of the proportions of primary and neurogenic 

RPCs and gliogenic cells revealed a relatively stable proportion of neurogenic cells captured 

during retinal neurogenesis from E14-P8 (Figure S2M). However, in the absence of lineage 

tracing data, we are unable to measure the developmental changes in cellular division mode 

(i.e. symmetric proliferative, asymmetric neurogenic, symmetric terminal divisions).

To identify genes that show dynamic regulation during retinal development, we performed a 

pseudotemporal analysis using 3259 high variance genes in neuroretinal cells only, 

excluding both annotated extraretinal cells and doublets (Trapnell et al., 2014) (Table S6). 

Due to matrix size limitations of dependent algorithms, we performed the pseudotime 

analysis on ~32,000 cells randomly sampled across the entire dataset. The subset of cells 

used for pseudotemporal analysis accurately reflected cell proportions within the full dataset 

with respect to developmental age and celltype (Figure S6A–C). Using this approach, we 

were able to reconstruct a tree that reflects known temporal ordering of cell fate 

specification within the retina, and displays terminal branches that are both comprised of 

single cell types and reflect the known developmental trajectories of these cell (Figure 2A–

B; S6D–F). For example, rods and bipolar cells (pseudotime states 15 and 1, respectively) 

derive from a common pseudotime branch (Figure 2A;C), consistent with these cell types 

arising from Otx2-positive progenitors (Koike et al., 2007; Wang et al., 2014).

Differential gene expression analysis across pseudotime identified a total of 7487 genes with 

significant changes in gene expression during retinal development (Figure 2D; Table S7 q-

val < 1e-5). This list includes known markers of maturing cell types (Figure 2C). Recursive 

analysis of major branch points in the complex pseudotime tree identified genes that exhibit 

significant differential expression during specification and maturation of individual cell 

types. Using this strategy, we were able to identify genes expressed during early, 

intermediate and late stages of differentiation of postmitotic precursors of retinal ganglion 

cells, amacrine/horizontal cells, photoreceptor cells, bipolar cells and Müller glia (Figure 

S7–S12). Temporal- and trajectory-appropriate expression of all known transcription factors 

that regulate differentiation of individual retinal cell types was observed, with Isl1 and 

Pou4f2 detected as early markers of RGCs (Li et al., 2014), and Otx2 for immature 

photoreceptors and bipolar cells (Baas et al., 2000), for instance. Recursive analysis of the 

amacrine/horizontal cell trajectory further identified genes that mark developing amacrine, 

starburst amacrine, and horizontal cells (Figure S5E–F; Figure S13–14).

Temporally dynamic changes in gene expression within RPCs

To characterize the transcriptional changes within RPCs across developmental time, as well 

as the changes in gene expression within progenitors likely to commit to the neurogenic or 

gliogenic fractions of cells, we performed a pseudotemporal analysis on subsets of specific 

cell types. We first addressed the changes in gene expression across development in the RPC 

subset. UMAP representations and pseudotime analyses using a set of 1763 high variance 

genes across the subsetted RPCs revealed a temporal progression from early (E11) through 
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late (P8) time-points. We observed a clear segregation of RPCs occurring between E16 and 

E18. A clustering solution for the cells in UMAP space agrees with this classification, and 

allowed us to delineate stable classes of early and late RPCs (Figure 3A–C; Figure 1F). Cells 

from both E16 and E18 timepoints were stratified across this divide, indicating that this does 

not reflect a batch effect (Figure 3C). The stratification of early vs late RPCs matches the 

end of the interval in which early-born retinal cell types (RGCs, horizontal cells, cone 

photoreceptors and GABAergic amacrine cells) are generated (Voinescu et al., 2009; Young, 

1985a, b)(Figure 1A). We identified 3291 genes that show significant differential expression 

across the RPC pseudotime (qval <1e-20, Figure 3D). We identify previously established 

markers of both early (Fgf15 and Sfrp2) and late (Crym and Car2) RPCs (Blackshaw et al., 

2004) (Figure 1G) and a host of previously unidentified markers of early versus late RPCs, 

including the late RPC-enriched NFI transcription factors (Nfia, Nfib, and Nfix; Figure 3D).

To further examine the heterogeneity of RPCs across development, we applied Expression 

Variation Analysis in single cells (EVAsc) to quantify the relative dissimilarity in 

transcriptional profiles among RPCs from distinct developmental time points (Afsari et al., 

2014; Davis-Marcisak et al., 2018). Variation in expression of cell cycle genes (Figure 3E) 

and the FGF-signaling pathway (Figure S15C) increases over developmental time, while 

variation in the Wnt and Notch pathways decreases over time (Figure S15C). The increased 

variance in cell cycle gene expression in late-stage RPCs likely serves as a proxy signal for 

the increase in cell cycle length in RPCs seen over the course of development, as previously 

seen in rat retina (Alexiades and Cepko, 1996).

Strikingly, Notch pathway gene expression increased steadily over the course of retinal 

development in RPCs, forming a smooth temporal gradient. This is particularly clear when 

canonical Notch target genes such as Hes1 and Hes5 are examined (Figure 3D; Figure 

S15A), and is consistent with the known role of Notch signaling in driving specification of 

late-born Müller glia (de Melo et al., 2016a; de Melo et al., 2016b; Jadhav et al., 2006). The 

increase in expression levels of Notch pathway components across late RPCs observed 

within the dataset is consistent with the EVAsc analyses, which suggests a decreased 

heterogeneity of pathway components amongst RPCs as development progresses (Figure 

S15C).

Transcriptional co-activator proteins (Basp1) and known cell cycle regulators (Kpna2, 
Kif2a) display enriched expression in embryonic RPCs at times of increased neurogenesis 

(E14-E18) and a burst of expression at P5, during a period of substantial terminal divisions. 

A limited number of Müller glia-expressed genes are upregulated in late postnatal primary 

RPCs (P2-P5; Cd9, Sat1; Figure S15B), coincident with the onset of gliogenesis. IA number 

of genes implicated in inhibiting cell cycle progression also were upregulated in early 

postnatal (late-)RPCs (Oaz1, Pebp1; Figure S15B; P0-P2) (Al-Mulla et al., 2011; Wang and 

Jiang, 2014). The functional significance of altered Oaz1 and Pebp1 expression may reflect 

the increased cell cycle length seen in late-stage RPCs (Alexiades and Cepko, 1996).

We next investigated if these changes in gene expression seen across pseudotime in RPCs 

might translate into functional differences in regulation of neurogenesis and gliogenesis. We 

subset the data to all RPCs (both neurogenic and primary RPCs) or gliogenic cells and again 
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performed pseudotemporal analysis on ~32,000 sampled cells. Analysis of the resulting 

complex pseudotemporal hierarchy confirmed separate early and late progenitor populations, 

as well as the gliogenic population. However, three additional populations of cells were 

identified based on differential expression of genes across pseudotime states. An early 

neuroepithelial progenitor cell population emerged, comprised of cells primarily from the 

earliest (E11-E14) time points and prior to the onset of RPC neurogenesis (Figure 3F–H; 

Figure S15D–F). Genes with enriched expression within this subset of cells include those 

enriched in ciliary margin and/or retinal pigmented epithelium (Mitf, Ccnd2,Msx1, H19), 

and reflect genes expressed after early eye-field specification (Blackshaw et al., 2004 ; Cho 

and Cepko, 2006; Liu et al., 2007) (Figure 3H).

The subdivision of the primary RPC population into early and late RPCs around E16-E18 

was paralleled by an early and late population of neurogenic RPCs. Several genes are 

selectively expressed in either early (Gadd45a, Sox11, Elavl3, Gal) or late-stage (Gadd45g, 
Rgs16) neurogenic cells (Figure 3I). Transcription factors that control specification of early-

born cell types such as RGCs (Sox11, Atoh7), horizontal cells (Onecut1/2) and GABAergic 

amacrine cells (Dlx1/2) were selectively expressed in early neurogenic RPCs (de Melo et al., 

2005; Emerson et al., 2013; Jiang et al., 2013)(Figure 3I). Likewise, genes that specify late-

born cell types (Prdm1, Otx2, Ascl1) were enriched in the late-neurogenic fraction 

(Brzezinski et al., 2010; Katoh et al., 2010; Nelson et al., 2009; Nishida et al., 2003) (Figure 

3I). These transcriptional differences suggest a sharp functional distinction between early 

and late neurogenic cells that derives in part from transcriptional differences established in 

early vs late primary RPCs, and refects changes in progenitor competence over the course of 

retinal development.

Gene co-expression and reuse modeled by scCoGAPS identifies distinct cellular states 
and developmental transitions

While our pseudotemporal analyses identified developmental trajectories associated with 

most major retinal cell types, it was unable to resolve more closely-related cell types or 

trajectories. These included differentiation of horizontal cells from amacrine cells and the 

differences between immature cone and rod photoreceptors. To identify gene signatures of 

discrete cell populations, including those not resolved by our embedding and 

pseudotemporal analyses, we applied scCoGAPS (Stein-O’Brien et al., 2018) to learn 

patterns of co-regulated gene expression. Unlike other methods which learn gene signatures 

on a subset of cells, and then project the entire dataset (Macosko et al., 2015), scCoGAPS 

uses an ensemble-based approach across multiple sets of cells to learn these signatures in 

parallel. Using scCoGAPS, we identified 80 independent patterns of gene usage across the 

full time course of retinal development, including patterns that distinguished differentiating 

horizontal cells from amacrine cells, and cones from rods (Figure 4A). Individual patterns 

reflect cell type specification and capture key developmental transitions, including 

populations such as neurogenic RPCs and photoreceptor precursors (Stein-O’Brien et al., 

2018)(Figure 4A). Corresponding gene weights for each of the 80 patterns are indicated in 

Table S8. While patterns can distinguish cell types and correlated well, for example with 

annotations of horizontal cells (Patterns 1,2, and 16; Figure 4A), many genes with high gene 

weights within individual patterns showed expression across multiple cell types (Figure 4B–
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D). Additional patterns are also associated with mature RGCs (Pattern 15; Figure 4E), or 

recover other phenotypic features of these data, such as sex (Pattern 36; Figure 4F). These 

data show that gene reuse across cell types can be modeled using scCoGAPS. In addition, 

combinations of gene expression can better distinguish cell types and states with closely 

related gene expression profiles, thereby providing an improvement over the use of a limited 

number of marker genes to classify, especially in contexts with a high-degree of gene reuse 

(Cleary et al., 2017).

Visualization of multiple, temporally-regulated patterns can characterize continuous 

biological processes, such as the progression of progenitors through the cell cycle (Figure 

4G). Plotting pattern weights on pseudotime representations (Figure S16) highlights the 

association of patterns with developmental transitions (Figure 4H; photoreceptor/bipolar cell 

precursors with high Otx2 expression). The application of scCoGAPS to these single cell 

RNA-Seq data also captured technical features as well. Combinations of biologically 

incompatible patterns (e.g. two patterns for distinct mature cell types within the same cell) 

were used as one criteria for identifying and excluding doublet cells from further analysis 

(Stein-O’Brien et al., 2018).

NFI transcription factors regulate specification of late-born retinal cell types and drive cell 
cycle exit

A consistent theme in our differential expression, pseudotime, and scCoGAPS analyses was 

the identification of the NFI factors Nfia/b/x, as having high expression and high gene 

weights in cells/patterns associated with late-stage RPCs, bipolar cells and Müller glia 

(Figure 5A–B; Figure S17). We also observed expression of Nfia/b/x within the amacrine 

cell trajectory, and high levels of Nfia transcript expression in presumptive amacrine cells 

via in situ hybridization; consistent with previous reports (Keeley and Reese, 2018; Figure 

S17A–D). Our previous studies indicate that overexpression of NFIA alone results in an 

increase in the fraction of cells that show radial morphology, but that these radial cells fail to 

express markers of mature Müller glia (de Melo et al., 2016a). As Nfia/b/x display enriched 

and overlapping expression within late RPCs in our single-cell RNA-seq dataset, and NFI 

factors are required for gliogenesis in cortex and spinal cord (Deneen et al., 2006; Kang et 

al., 2012; Matuzelski et al., 2017; Nagao et al., 2016), we hypothesized that NFI 

transcription factors may play a similar role in mediating the transition from neurogenesis to 

gliogenesis in the developing retina. Based on these observations, we chose to further 

investigate the function of the NFI transcription factors within late-stage RPCs.

We used in vivo electroporation to overexpress NFIA/B/X genes in P0 retina (de Melo and 

Blackshaw, 2018), and at P14 saw an increase in both bipolar cells and Müller glia -- the two 

last-born major retinal cell types -- along with a complementary reduction in the fraction of 

rod photoreceptors and amacrine cells (Figure 5C–D). This increase in specification of the 

latest-born retinal cell fates was accompanied by a decrease in incorporation of EdU in 

NFIA/B/X-overexpressing cells compared to control electroporated cells, when measured 

using a 24hr EdU pulse/chase from P2 to P3 (Figure 5E). Although we cannot rule out that 

the decrease in EdU incorporation results from cell cycle lengthening or arrest, we suggest 
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that these combined results favor an interpretation by which NFI factors promote both cell 

cycle exit and bipolar/glial cell specification in the postnatal retina.

To further address the function of the NFI factors in the developing retina, we generated 

conditional loss-of-function alleles of each Nfi gene (Campbell et al., 2008; Hsu et al., 2011) 

in RPCs by using the Chx10-Cre line (Rowan and Cepko, 2004). In addition to single 

mutants for each gene, we also generated Nfia/b double and Nfia/b/x triple mutants, and 

assessed the retinal phenotype of each mutant line. Loss of function of either Nfia, Nfib or 

Nfix in RPCs led to a disruption of Müller glial marker staining and breaks in the retinal 

outer limiting membrane (OLM) (Figure 5F; Figure S18B). These phenotypes were 

amplified in Nfia/b double mutant mice, exhibiting a more pronounced loss of Müller glial 

markers (glutamine synthetase; GS; Figure 5D; p27, Lhx2; Figure S18) and a severe 

disruption of the OLM, which led to major defects in retinal lamination (Figure S19B). 

These animals also showed a reduction in bipolar cell markers including Pkca, Vsx2, and 

Isl1 (Figure 5G; Figure S18). Nfia/b/x triple mutants showed a nearly complete loss of both 

Müller glial and bipolar cell markers (Figure 5F–G), although other retinal cell-specific 

markers were present but with altered expression patterns due to disruption of retinal 

lamination, which likely results from the absence of Müller glia (Byrne et al., 2013; de Melo 

et al., 2016b) (Figure S18).

To determine if NFI factors are required for bipolar and Müller glial cell specification, or if 

they selectively regulate the survival of these cell types, we measured apoptotic cell death in 

conjunction with immunostaining for mature cell types in P7 retina. TUNEL-positive cells 

were increased in Nfia/b/x triple mutant compared to control retinas (Figure S19D). Co-

labeling of TUNEL-positive cells with markers of amacrine cells (Pax6), photoreceptors 

(recoverin), or rod bipolar cells (PKCa) indicated a small (1-3 cells/section) but significant 

increase in the number of apoptotic bipolar cells and photoreceptors in Nfia/b/x mutant 

retinas compared to control (0-1 cell/section) (Figure S19D). However, we could not directly 

measure glial cell death, due to a lack of availability of strictly Müller glia-specific markers 

at P7. While we cannot rule out a potential role of NFI factors in bipolar and Müller glial 

cell survival, we believe the small increases in bipolar cell death cannot account for the near 

total loss of bipolar cells seen a week later at P14. Therefore, we support a role of the NFI 

transcription factors in control of bipolar Müller glial cell specification. Taken together, 

these results demonstrate that Nfia/b/x are necessary and sufficient for specification and 

differentiation of late-born retinal cell types -- Müller glia and bipolar cells -- within the 

postnatal retina.

In addition to the significant loss of bipolar and Müller glial cells, persistent, weak Chx10-

GFP-Cre reporter expression was seen in both Nfia/b double and Nfia/b/x triple mutant 

retinas, similar to transgene expression levels in RPCs. Based on this, and previous reports 

implicating Nfix in proliferative quescience (Martynoga et al., 2013), we hypothesized that 

the NFI mutants may retain proliferating RPCs. To address this, we analyzed the RPC 

marker Mki67 in the mutant retinas. Proliferation persisted in P14 Nfia/b double mutants 

Nfia/b/x triple mutant retinas, well beyond when RPCs are normally present (Figure 6A–B). 

Proliferating cells were abundant even as late as P28 (Figure 6C, Figure S19H), and were 

accompanied by a thickening of the retina (Figure S19F). Although a small, yet significant, 
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number of proliferating microglia are seen in mutant retinas (Figure S19C+G), most 

proliferative cells co-label with Chx10-GFP-Cre transgene, indicating that they are of retinal 

origin (Figure 6C). However, they are practically devoid of other canonical RPC markers 

such as Pax6 and Vsx2, and also fail to express RPC-specific genes that are also required for 

Müller glial development such as Lhx2 (de Melo et al., 2016b; Figure S18). Consistent with 

the activation of retinal microglia, remaining Müller glial cells within the retinas of Nfia/b 
double or Nfia/b/x triple mutants have become reactive, exhibiting increased expression of 

glial fibrillary activating protein (GFAP; Figure S19A). Co-labeling of P7 Chx10-GFP-

positive cells with TUNEL indicated that many, but not all, of these ectopic RPCs may be 

undergoing cell death (Figure S19E). However, as Chx10-GFP also is expressed within 

bipolar cells, we cannot exclude a scenario where some of the TUNEL/Chx10-GFP-positive 

cells are in fact dying bipolar cells.

To examine the extent of differentiation of this ectopic population of proliferative cells 

within the retina, we pulsed control and Nfia/b/x triple mutants with EdU at P21 and chased 

labeled cells at P28. EdU labeling indicates that ~15% of proliferating cells in P21 retina 

give rise to recoverin-positive photoreceptor-like cells by P28 (Figure 6D; Figure S19I). Co-

labeling of EdU with rhodopsin (Figure 6E) is consistent with ongoing generation of rod 

photoreceptors. However, a proportion (~7%) of EdU labeled cells maintain expression of 

the proliferative marker Mki67 (Figure 6C; Figure S19I). Therefore, retinal thickening seen 

in Nfia/b/x triple mutants can, at least in part, be attributed to the continuous proliferation 

and differentiation of retinal cells. Although we cannot rule out a developmental delay 

resulting from NFI transcription factor loss of function, we favor an interpretation that 

suggests expression of Nfia/b/x in late-stage RPCs not only directs specification of Müller 

glial and bipolar cells on late-stage RPCs, but also promotes cell cycle exit.

To further analyze Nfia/b/x loss-of-function mutants, we performed single-cell RNA-

sequencing on P14 Chx10-GFP-Cre;Nfialox/+;Nfiblox/+;Nfixlox/+ control and Chx10-GFP-
Cre;Nfialox/lox;Nfiblox/lox;Nfixlox/lox mutant retinas, performing biological replicates for both 

genotypes (Figure S20). Using the same bioinformatic workflow as the developmental 

single-cell RNA-sequencing dataset, we obtained a reduced-dimensional space using UMAP 

and annotated cell types based on marker gene expression within clusters of cells, removing 

annotated doublets and extra-retinal cells within final visualizations (Figure 7, Figure S20), 

which demonstrated that few Müller glial and bipolar cells in remained in Nfia/b/x mutant 

retinas (Figure 7B–D). Many RPCs, neurogenic cells and photoreceptor precursors were also 

seen in mutant retinas (Figure 7B–E), consistent with previous observations of ongoing 

proliferation and photoreceptor generation (Figure 6).

Nfia/b/x mutant primary and neurogenic RPCs show key changes in gene expression relative 

to wild-type late-stage RPCs. First, neurogenic mutant RPCs show high levels of Otx2, 
Neurod1, and Prdml expression, consistent with ongoing selective generation of rod 

photoreceptors (Figure 7F). In mutant primary RPCs, we observe reduced expression of 

transcription factors necessary for maintenance of RPC identity and late cell type 

specification, such as Rax, Pax6, and Vsx2, and Notch pathway genes Notchl and Hes5 
(Figure 7E), while mutant neurogenic RPCs show lower expression of the Notch ligands 

Dll1 and Dll4. These data suggest that NFI factors may act in RPCs to activate genes that 
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promote Müller glial and bipolar cell specification, while repressing genes that promote the 

generation of rod photoreceptors.

Discussion:

This study represents the first large-scale scRNA-Seq-based analysis across the full course 

of neurogenesis in any mammalian CNS region. The large number of individual cells 

profiled alretinal neurogenesis and cell type specification. This represents a major advance 

beyond previous work and has broad implications for studies of neural development. 

Previous expression profiling studies of developing retina, even when supplemented with 

large-scale in situ hybridization, could not provide interpretable expression data at the 

cellular level (Blackshaw et al., 2001; Blackshaw et al., 2004; Hoshino et al., 2017). 

Likewise, previous single cell gene expression profiling of retinal progenitors has been 

performed, but profiled only on a few hundred cells using semi-quantitative microarray-

based analysis (Trimarchi et al., 2008). ScRNA-Seq studies of neurogenesis in other brain 

regions profiled only a few thousand cells, at many fewer developmental ages (La Manno et 

al., 2016; Mayer et al., 2018; Nowakowski et al., 2017; Zhong et al., 2018), and thus do not 

fully capture the transcriptional changes associated with the initiation of neurogenesis, 

changes in development competence, and loss of proliferative potential.

Previous studies have suggested that RPCs which express neurogenic bHLH factors such as 

Neurog2, Atoh7 and Olig2 may be biased to generate specific neuronal subtypes (Brzezinski 

et al., 2011; Brzezinski et al., 2012; Hafler et al., 2012). This study identifies a clear 

transcriptional distinction between the uncommitted population of primary RPCs, and an 

RPC population expressing genes that include neurogenic bHLH factors. Significant 

transcriptional differences are also observed between early and late stages in both primary 

and neurogenic RPCs, coincident with changes in RPC competence. Since most of the RPC 

transcriptome is temporally dynamic, we suggest that the developmental age of an individual 

RPC can be inferred using these data. Nonetheless, beyond the categories described here, we 

see no clear evidence for molecularly distinct RPC subtypes at individual ages, supporting a 

stochastic model of cell fate specification during retina cell fate specification (Gomes et al., 

2010; He et al., 2012).

Since these data represent a snapshot in time for each individual cell, neither division mode 

or cell cycle duration can be assessed. However, the increase in variation of expression of 

cell cycle genes within RPCs at individual ages as development progresses implies an 

increase in cell cycle length. We also observe a progressive increase in Notch signaling. 

These transitions may reflect changes that occur gradually and continuously over the course 

of neurogenesis, such as the shift between symmetric and asymmetric modes of cell division 

(Livesey and Cepko, 2001), and the increase in retinal cell cycle length (Alexiades and 

Cepko, 1996). In contrast, competence transitions appear to be more discrete, with sharper 

distinctions between early versus late populations of primary and neurogenic RPCs cells. 

Likewise, transitions between early neuroepithelial cells and proliferating RPCs are sharp, as 

are transitions between the primary and neurogenic RPC population.
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Both supervised pseudotime and unsupervised scCoGAPS identified hundreds of candidates 

for genes that regulate developmental competence transitions and/or postmitotic 

differentiation of individual retinal cell types. Many of these genes show dynamic and 

complex expression patterns, and they are expressed in discrete temporal windows in 

multiple cell types. Such complex expression profiles are more the rule than the exception, 

and they are identifiable from scCoGAPS patterns. As a consequence, functional analysis of 

such genes needs to be conducted and interpreted carefully. Whereas scCoGAPS finds 

patterns shared across cells, additional techniques are neededl to quantify the relative 

heterogeneity of cells at specific developmental ages. Here, we apply the EVAsc statistic 

(Afsari et al., 2014; Davis-Marcisak et al., 2018) to quantify differences in transcriptional 

heterogeneity of discrete gene sets as a measure of relative pathway dysregulation amongst 

cells aggregated by a common feature -- in our case, by developmental age.

This analysis identified NFI transcription factors as candidate regulators of temporal 

patterning in the developing retina. NFI factors are essential for astrocyte specification in 

both mice and humans (Deneen et al., 2006; Glasgow et al., 2014; Kang et al., 2012; 

Subramanian et al., 2011; Tchieu et al., 2019), as well as subpopulations of radial glia (Shu 

et al., 2003). In the spinal cord, Nfia and Nfib drive astrocyte specification by cooperatively 

activating transcription of Nfix (Matuzelski et al., 2017). Loss of function of Nfia, Nfib or 

Nfix individually each leads to defects in Müller glial differentiation and disruption of 

retinal morphology. However, Nfia/b double or Nfia/b/x triple mutants show that NFI factors 

regulate the generation of not only Müller glia, but also late-born bipolar neurons. In 

addition, NFI factors are also necessary for cell cycle exit in late-stage RPCs.

Previous studies of the role of NFI factors in control of cell proliferation have demonstrated 

that their role is complex and cell type-dependent. While Nfix inhibits proliferation of both 

ES-derived neuroepithelial cells in culture (Martynoga et al., 2013) and postmitotic neural 

stem cells of the SVZ (Heng et al., 2015), Nfia promotes astrocyte proliferation (Glasgow et 

al., 2013). Chromatin immunoprecipitation followed by DNA-sequencing (ChIP-Seq) of 

NFIB in both prostate and lung cancer cells indicates that NFIB target sites are associated 

with genes that regulate cell cycle progression (Denny et al., 2016; Grabowska et al., 2016). 

The combined observations of intermediate cell expansion and an increased severity of 

prostate cancer following NFIB loss in humans (Grabowska et al., 2016) and ChIP-Seq data 

suggests that the NFI transcription factors may directly regulate expression of genes 

controlling proliferative potential. However, as NFIA overexpression promotes proliferation 

within human glioblastoma cells (Lee et al., 2014), further insight into the mechanisms by 

which the NFI transcription factors regulate RPC proliferation will require a detailed 

examination of the direct targets of NFI factors in the developing retina. This dual role in 

regulating both proliferative quiescence and cell fate specification has not been reported in 

the developing CNS, but may represent a widely used mechanism for generating appropriate 

numbers of late-born cells.

Analysis of Nfia/b/x mutants using scRNA-Seq has suggested mechanisms by which NFI 

transcription factors control both cell fate specification and proliferative quiescence. 

Expression of multiple cell-cycle genes confirmed the presence of ongoing proliferation 

within Nfia/b/x mutant retinas. The observation that the expression of RPC-specifying 
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transcription factors (Pax6,Lhx2, Vsx2, Rax) is reduced in the absence of Nfia/b/x 
expression further suggests the importance of these transcription factors in specifying retinal 

cell fate. Consistent with our observations of reduced Lhx2 and Rax expression in NFI 

mutant RPCs, selective loss of function of Vsx2, Lhx2 or Rax in RPCs resulted in loss of 

late-born cell types, including bipolar cells and Müller glia (de Melo et al., 2016b; Livne-

Bar et al., 2006; Rodgers et al., 2018). However, unlike previous studies in which selective 

deletion of Lhx2 or Rax in RPCs results in cell cycle exit and precocious differentiation (de 

Melo et al., 2016b; Rodgers et al., 2018), we observe maintenance of RPC proliferation.

The cell diversity of other CNS regions are considerably higher than retina, and their 

development far less well characterized. ScRNA-Seq, in conjunction with both unsupervised 

pattern identification and supervised pseudotime analysis like that described here, will 

provide the potential to understand the gene regulatory networks that give rise to the 

immense diversity of cell types within the CNS.

STAR METHODS:

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by Lead Contact Seth Blackshaw (sblack@jhmi.edu).

Experimental Model and Subject Details

Timed pregnant CD-1 mice used for droplet-based single cell RNA sequencing, in situ 
hybridization, and electroporation were purchased from Charles River Laboratories. For 

Smart-Seq2 analysis, Chx10-Cre-GFP mice were used (Rowan and Cepko, 2004). 

Nfialox/lox(see below); Nfiblox/lox (Hsu et al., 2011), and NfiXox/lox (Campbell et al., 2008) 

mice were crossed to Chx10-Cre-GFP to generate RPC-specific loss of function mutants of 

these genes. Nfialox/oxmice were generated in the Roswell Park Gene Targeting and 

Transgenic Shared Resource using heterozygous targeted ES cells from EUCOMM project 

38437 (KOMP). Mice containing the targeted allele were crossed with Flp-deleter mice 

(Jackson Labs Stock No. 009086) to excise the lacZ reporter and generate a floxed allele of 

Nfia. Mice were housed in a climate-controlled pathogen free facility, on a 14 hour-10 hour 

light/dark cycle (07:00 lights on-19:00 lights off). All experimental procedures were 

preapproved by the Institutional Animal Care and Use Committee of the Johns Hopkins 

University School of Medicine. For all single cell experiments, dissociated cells were 

obtained from pools of retinas from both male and female pups as determined visually 

(where applicable) or through Xist expression within the datasets. All single-cell 

experiments displayed relatively equal representation of each sex within the dataset. 

Developmental ages of animals for single-cell experiments include E11, E12, E14, E16, 

E18, P0, P2, P5, P8, and P14. All immunohistochemistry was performed at P14 or P28, as 

noted within the text. Cell death assays were performed on P7 retinas.

Method Details

Tissue Dissociation—Eyes were enucleated from animals and retinas dissected in fresh 

and cold 1× PBS, using eyes from approximately one litter of animals for each sample in 
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order to ensure appropriate numbers of cells were captured for downstream analyses. 

Dissected retinas were then transferred to 200μl of cold HBSS per retina (P14) or an 

approximate equivalent amount of tissue for younger ages. An equivalent amount of Papain 

solution (for 1ml - 700μl reagent grade water, 100μl of freshly prepared 50mM L-Cysteine 

(Sigma), 100μM 10mM EDTA, 10μM 60mM 2-mercaptoethanol (Sigma), and Papain added 

to 1mg/ml (Worthington)) was added and incubated at 37°C for 10 minutes, with slight 

trituration performed every 2 minutes. 600μl of Neurobasal Media supplemented with 10% 

FBS was added for every 400μl of dissociation solution, and samples were further 

dissociated with gentle pipetting. Samples were subjected to DNAse treatment (5μl DNAseI 

(RNAse free Recombinant DNAseI; Roche) for every 1ml of dissociation solution; 5 

minutes at 37°C). Cells were then pelleted through centrifugation for 5 minutes at 300 RCF. 

Liquid was carefully aspirated off the cell pellet, followed by resuspension of the pellet in 

1-5ml Neurobasal media with 1% FBS, depending on required concentration of cells in 

suspension. Cellular aggregates were removed by straining cells through a 50μm filter.

Single cell library preparation—Smart-Seq2 analysis was performed on individual 

sorted Chx10-Cre-GFP (+) RPCs isolated by FACS into 96-well plates, and processed as 

previously described (Chevee et al., 2018). Single cell suspensions for 10× libraries were 

loaded onto the 10× Genomics Chromium Single Cell system using the v2 chemistry per 

manufacturer’s instructions (Zheng et al., 2017). Approximately 17,000 live cells were 

loaded per sample in order to capture transcripts from roughly 10,000 cells. Estimations of 

cellular concentration and live cells in suspension was made through Trypan Blue staining 

and use of the Countess II cell counter (ThermoFisher). Single cell RNA capture and library 

preparations were performed according to manufacturer’s instructions. Sample libraries 

were sequenced on the NextSeq 500 (Illumina).

Library preprocessing—Sequencing output was processed through the Cell Ranger 1.2.1 

or Cell Ranger 2.1.0 mkfastq and count pipelines using default parameters. Reads were 

quantified using the mouse reference index provided by 10× Genomics (refdata-cellranger-

mm10 v1.2.0). Raw count matrices for individual runs were manually aggregated and cells 

were given unique, sample-specific cell identifiers to prevent duplication of non-unique 

barcodes across samples. Raw data were processed through the Cell Ranger pipeline and raw 

counts were aggregated together for input into the Monocle2 R/Bioconductor platform 

(Trapnell et al., 2014).

Coarse assignment of cell type at individual time points—tSNE-dimension 

reduction was performed on the top principal components learned from high variance genes 

in cells captured at individual timepoints. Mclust version 5.4 (Scrucca et al., 2016) was used 

to cluster cells in tSNE-space at which point cell type identity of clusters was assigned based 

on expression of known marker genes for either retinal or non-retinal tissue.

Cell normalization, identification of high variance genes, and differential 
testing—After coarse annotation of cells from individual time points, the 10× data were 

manually aggregated to create a comprehensive dataset. Initial cell type designation was 

used to aid in supervising downstream analyses. To identify genes with higher variation than 
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expected, we first normalized for sequencing depth using the Waddington-OT transformation 

to transcript copies per 10,000 (CPT) (Schiebinger et al., 2017). To identify high-variance 

genes, a generalized additive model (MGCV R package (Wood, 2011)) was fit to the log2 

mean CPT versus a cubic spline fit to the log2 coefficient of variation (BCV) across all 

genes with detectable expression in at least 5 cells (Figure S3). Genes with residuals to this 

fit greater than or equal to 1.5 were chosen as ‘high-variance’ genes and the log2 CPT or 

CPC values for these selected genes were used as input for downstream analyses as 

appropriate. All differential expression tests were performed across all expressed genes 

using the Monocle2 VGAM likelihood ratio test (Trapnell et al., 2014). In all cases, the 

number of genes detected in each cell was included in both the full and reduced models as a 

nuisance parameter.

Visualization of global cellular state(s)—Dimensionality reduction and visualization 

for the aggregate 10× data was performed using Uniform Manifold Approximation and 

Projection (UMAP) (McInnes and Healy, 2018) for all cells passing QC. Briefly the first 20 

principle components of the log10(CPT+1) of the high-variance genes was used as input for 

the python implementation of the UMAP algorithm with the following additional 

parameters: min_dist = 0.3, n_neighbors=30, random_state=1, n_components=3, 

metric=“canberra”. The resulting 3 dimensional embedding was imported into R and 

visualized using the rgl package.

Clustering analysis and final cell type assignment—Clustering on the UMAP 

embedding was performed using k-means clustering on UMAP coordinates. Cell type 

assignment was informed by both marker gene expression and previous coarse cell type 

annotation from clustering performed on the individual ages. Clustering analysis of the 

amacrine trajectory to delineate amacrine and horizontal cells was performed using k-means 

clustering on the largeVis coordinates.

Pseudotime—Monocle pseudotemporal analysis was performed on the high variance gene 

set derived from the subsets of cells being analyzed, altering the dimension parameter to 

refine resulting trees to reflect both known biology and terminal states comprised largely of 

single cell types. For pseudotemporal analysis performed on the subset of RPCs, the 

following additional parameters were used during dimension reduction: tol = 1.0e-8, 

iambda=400*ncol (CellDataSet). The root state was identified as the state that contained the 

majority of cells with the earliest developmental age for each individual analysis. Genes 

with significant expression changes as a function of pseudotime were identified using the 

Monocle differential gene test, using a multiple-testing corrected q-value cutoff of 1.0e-5. 

Cell type identity of individual pseudotime states were assigned based on the cell type 

identity of the majority of cells within a given branch. BEAM tests were performed on most 

major branch points of the cellular hierarchy using all default parameters with the exception 

of the dimensionality of the embedding.

Pattern discovery - scCoGAPS—scCoGAPS and PatternMarker analysis was 

performed using the R/Bioconductor package CoGAPS version 3.0.0 as described (Stein-

O’Brien et al., 2018). Briefly, the expression matrix of high variance genes was subset into 
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200 sets of cells for parallelization. A sampling scheme, using expertly curated cell type 

annotations, was used in order to ensure representation of rare cell types in each set. A static 

ratio of cell types was established to reflect biological prevalence and diversity of each cell 

type while allowing for adequate representation. Cells were then sampled with replacement 

to ensure the necessary numbers to maintain this ratio in all sets. The resulting 200 sets of 

1500 cells each were then run in parallel over a range of dimensionalizations. Consensus 

amplitude signatures were derived by a matching algorithm designed to ensure robustness of 

signatures (Star Methods). Pattern weights for all the cells were then learned in parallel from 

these signatures to ensure reciprocity across all of the sets. The PatternMarker statistic was 

calculated as previously described (Stein-O’Brien et al., 2017). The entire pipeline has been 

compiled into the scCoGAPS function found within the CoGAPS package starting at version 

3.0.0.

Pathway dysregulation analysis—We quantify pathway dysregulation using EVA from 

the R/Bioconductor package GSReg version 1.17.0 (Afsari et al., 2014). Briefly, EVA 

computes the Kendal-τ dissimilarity between transcriptional profiles of genes in a pathway 

for all cells in one group and compares their expected dissimilarity to that computed for all 

the cells in another group using U-theory statistics. This statistic quantifies relative pathway 

dysregulation between cells in these two conditions. Because the Kendal-τ dissimilarity is 

rank-based, it is robust to normalization and read depth, but ill-defined for missing values. 

To address this, we imputed scRNA-Seq data from RPCs with MAGIC version 0.1.0 

(Python) prior to analysis (Davis-Marcisak et al., 2018; Tang et al., 2016). EVA is applied to 

gene sets for the cell cycle from GeneGlobe pathways, FGF pathway from the reactome 

pathway database, NOTCH pathway from the hallmark gene sets, and WNT pathway from 

the hallmark gene sets.

in situ hybridization—Whole heads (E12-P5) or enucleated eyes of animals were placed 

directly into Tissue-Tek OCT media (VWR) and frozen and stored at −80°C prior to 

sectioning. Section RNA in situ hybridization was performed as previously described 

(Blackshaw et al., 2004). Briefly, sections were air dried on slides and then fixed in 4% 

paraformaldehyde in PBS for 10 minutes. Slides are then washed in PBS and incubated in 

acetylation solution (.1M triethanolamine hydrochloride + .27% v/v acetic anhydride) for 10 

minutes. Following additional washed in PBS, slides are placed in hybridization solution 

(50% formamide v/v, 5× saline-sodium citrate buffer (SSC), 5× Denhardt’s Solution, 

250μg/ml Yeast tRNA, 500μg/ml Sperm DNA) for 2 hours. Slides are then incubated in 

hybridization solution supplemented with DIG-labeled antisense probes overnight at 70°C in 

a humidified chamber using siliconized coverslips. Slides are then washed in 5× SSC at 

65°C until coverslips fall off, followed by two washes in .2× SSC at 65°C for 30 minutes 

each and one 5 mi nute wash in .2× SSC at room temperature. Slides are washed in .1M Tris 

pH 7.5; .15M NaCl and placed into antibody blocking buffer (.1M Tris pH7.5; .15M NaCl, 

5% heat inactivated sheep sherum) for 1 hour at room temperature. Slides are then incubated 

overnight in blocking buffer supplemented with anti-DIG-AP antibody (1:5000; Roche). 

Antibody solution is washed off using three 5 minute washes in 1M Tris pH 7.5; .15M NaCl. 

Slides are then washed in .1M Tris pH 9.5; .1M NaCl; .05M MgCl2 once for 5 minutes. 

Colorimetric reactions for antibody detection are performed in the dark using 1M Tris pH 
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9.5; .1M NaCl; .05M MgCl2 solution supplemented with .337 mg/ml NBT and .175mg/ml 

BCIP. Reactions are stopped by placing slides in 10 mM Tris pH7.5 and 50 mM EDTA.

Immunohistochemistry and EdU staining—Eyes were enucleated from animals and 

placed in cold 4% paraformaldehyde for 1 hour. Retinas were then dissected and placed into 

30% sucrose in PBS overnight at 4°C, after which they were mounted in Tissue-Tek OCT 

media (VWR) and frozen prior to sectioning. Immunohistochemistry was performed as 

previously described (de Melo et al., 2016a). Slides are air dried and then placed directly 

into blocking solution (1× PBS, 5% Horse serum, .2% Triton X-100, .02% sodium azide, .

1% BSA w/v) for two hours. Slides are placed in primary antibody diluted in blocking 

solution overnight at 4°C. Slides are then washed in 1× PBS plus .05% tri ton thrice for 5 

minutes each. Primary antibodies are detected through incubation using fluorescently-tagged 

secondary antibodies diluted 1:500 in blocking buffer for 2 hours in the dark. Slides are then 

washed in 1× PBS plus .05% triton and then nuclei are counterstained using DAPI (1:5000 

in 1× PBS plus .05% triton). Slides are then coverslipped using Vectashield (Vector Labs).

For adult EdU analyses, animals were injected with 50 mg/kg EdU (10 mM in saline) at P21 

and euthanized at P28. Developmental EdU injections were performed through injection of 

20ul of 10mM EdU in saline into P2 mouse pups and euthanized 24 hours later. EdU 

staining was performed using the Click-IT EdU AlexaFluor 647 imaging kit (Invitrogen) per 

manufacturer’s instructions, with slides placed into blocking steps for the 

immunohistochemistry protocol directly after EdU detection. Nuclei were counterstained 

with DAPI (1:5000) and coverslipped using Vectashield (Vector Labs). 

Immunohistochemical data shown was imaged and photographed on either the BZ-X700 

microscope (Keyence) or using a LSM 700 confocal (Zeiss).

Cell Death Assay—Retinal sections were stained using the in situ cell death Detection kit, 

TMR red (12156792910, Roche Applied Sciences) according to the manufacturer’s 

instructions. Briefly, retinal sections were washed three times for 5 minutes in PBS and 

permeabilized for 2 minutes in freshly prepared cold 0.1% Triton X-100 and 0.1% sodium 

citrate solution. The slides were then washed twice with PBS before being resuspended in 

the TUNEL reaction mixture for 1 hour in a humidified chamber at 37°C. Slides were 

washed with PBS before continuing with the immunohistochemistry staining protocol. 

Nuclei were counterstained with DAPI (1:5000) and cover slipped using Vectashield hardset 

antifade mounting media (Vector Labs). Slides were imaged using the BZ-X700 microscope 

(Keyence).

Cell Counts—All cell counts were performed by investigators blinded to the experimental 

condition/genotype. Subsets of images were counted multiple times to ensure reproducibility 

across experimental conditions and replicates. For P3 electroporation/EdU and P14 

electroporation experiments, images displaying less than 50 or 100 electroporated cells per 

field of view, respectively, were excluded from downstream analyses to avoid over-

representation of changes in cell type proportions from small numbers of cells.
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Quantification and Statistical Analysis

Differential gene tests on the single cell datasets were performed using all expressed genes 

within the Monocle2 VGAM likelihood ratio test (Trapnell et al., 2014).

All bar graph data is shown as mean ± SEM, with statistical analyses were done with Prism 

7 (GraphPad). Comparisons conducted were Student’s t tests or one-way ANOVAs with a 

Tukey’s multiple comparisons correction. p < 0.05 was considered as statistically significant. 

* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001

Data and Software Availability: Single cell RNA-Seq count data are available for direct 

download at https://github.com/gofflab/developing_mouse_retina_scRNASeq. Interactive 

queries of individual gene expression patterns can be performed at http://

mouse.retina.gofflab.org. Raw sequencing data is deposited with the NCBI Short Read 

Archive and Gene Expression Omnibus under accession number GSE118614.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Mouse retinal neurogenesis was profiled using single-cell RNA-Seq.

• Early and late-stage retinal progenitors are distinct.

• Primary and neurogenic retinal progenitors are distinct.

• NFI factors control cell cycle exit and generation of late-born retinal cell 

types.
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Figure 1. Single cell RNA-sequencing of the developing retina.
(A) Schematic of retinal cell birth order. (B-C) tSNE-dimension reduction of gene 

expression profiles from Chx10:GFP-positive RPCs via a modified Smart-Seq2 protocol, 

with cells labeled by (B) age or (C) cell type as determined by marker gene expression. (D) 

Heatmap of marker genes identified through differential expression analysis with respect to 

cell type in Smart-Seq2 samples. (E-F) UMAP-dimension reduction of droplet-based single 

cell RNA-sequencing of developing mouse retina, with doublets and extra-retinal cells 

removed. Samples are colored by (E) age or (F) annotated cell type as determined by marker 
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gene expression. (G) Heatmap of differentially expressed genes in annotated cell types in 

10× samples. Abbreviations: Int. RPCs – Intermediate RPCs; Photo. Precurs. – 

Photoreceptor Precursors; RGCs – Retinal Ganglion Cells.
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Figure 2. Pseudotime analysis reveals temporal regulation of transcript expression during 
differentiation of retinal cell types.
(A) Complex pseudotime tree of retinal cells colored by annotated celltype. Pseudotime state 

identity is numbered. (B) Heatmap of pseudotemporal states reveals the individual cell type 

proportions within each state. (C) Known marker gene expression across pseudotime colored 

by cell type designation of each trajectory. (D) Branched heatmap faceted by terminal 

pseudotime state corresponding to annotated cell type. Expression of all 7,487 differentially 

expressed transcripts across pseudotime starting from pseudotime value of 0 (left side of 

each column; top of the complex tree in panel A), and following a continuous path down the 

tree towards each terminal branch (right side of each column. Abbreviations: AC/HC – 
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Amacrine Cells/Horizontal Cells; BP - Bipolar Cells; E. RPC – Early Primary RPC; L. RPC 

– Late Primary RPC; MG - Müller Glia; Photo - Photoreceptors; Photo. Precurs. - 

Photoreceptor Precursors; RGCs – Retinal Ganglion Cells.
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Figure 3. Identification of candidate transcripts in the regulation of RPC competence, 
neurogenesis and gliogenesis.
(A-B) UMAP dimension reduction of subsetted primary RPCs colored by (A) age or (B) cell 

type. (C) Density plot of cells across RPC pseudotime analysis colored by age. (D) Heatmap 

of differentially expressed genes across RPC pseudotime, displaying normalized transcript 

enrichment in cells grouped by age. (E) EVAsc analysis of relative dissimilarity of canonical 

cell cycle genes within RPCs assessed at individual ages. (F) UMAP-dimension reduction 

displaying the classification of early neuroepithelial cells, early and late primary RPCs, early 

and late neurogenic, and gliogenic cells identified in pseudotemporal analyses. (G) Complex 
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pseudotime tree of RPCs, neurogenic and gliogenic cells, highlighting designation of early 

neuroepithelial cells, early and late RPCs, early and late neurogenic cells, and Müller glia. 

(H) Density plot of RPC, neurogenic, gliogenic, and early neuroepithelial cells across 

pseudotime. (I) Heatmap of differentially expressed genes across RPC/neurogenic/gliogenic 

pseudotime, displaying normalized enrichment across all cells within the designated cell-

type. *** indicates p<0.001 from EVAsc analysis. Abbreviations: E. Neuroepithelia - Early 

Neuroepithelial Cells; E. RPCs - Early Primary Retinal Progenitor Cells; L. RPCs - Late 

Primary Retinal Progenitor Cells; E. Neurogenic - Early Neurogenic Cells; L. Neurogenic - 

Late Neurogenic Cells.
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Figure 4. scCoGAPS analysis on single cell RNA-sequencing samples reveals patterns of gene 
expression within developmental processes.
(A) Correlation heatmap of pattern weight with cell types. (B-D) Heatmaps of the top 20 

genes by gene weight of patterns (B) 16, (C) 34, and (D) 70 that correspond to Horizontal 

Cells, Amacrine Cells, Rod Photoreceptors, respectively. (E-F) Examples of graphical 

representations of pattern weights of individual cells within the UMAP-dimension reduction. 

(E) Pattern 15 marks the terminal trajectory of RGCs. (F) Pattern 36, with pattern marker 

Xist, highlights sex of origin. Combinations of patterns can be used to assess developmental 

processes such as (G) the influence of cell cycle phase on RPC clustering. (H) scCoGAPs 

Clark et al. Page 33

Neuron. Author manuscript; available in PMC 2020 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pattern weights of retinal cells plotted within the complex pseudotime (Figure 2A) 

highlights photoreceptor/bipolar cell precursors in Pattern 30, using Otx2 as a pattern 

marker. Abbreviations: Photo Precurs - Photoreceptor Precursors.
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Figure 5. NFI factors regulate specification of late retinal cell fates.
(A) Expression of NFI factors within the UMAP dimension reduction of all RPCs. (B) 

Graph of the percentage of RPCs expressing NFI factors within the scRNA-seq dataset. (C) 

P14 retinas stained for the Müller glia marker P27Kip1 after in vivo electroporations at P0 of 

either control (pCAGIG) or pooled pCAGIG-NFIA, NFIB, and NFIX constructs. (D) 

Quantification of the proportion of electroporated cells that co-label with markers for 

amacrine, photoreceptor, bipolar and Müller glial cells after in vivo electroporation of 

pCAGIG control or pCAGIG-NFIA/B/X. (E) Quantification of the proportion of 
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electroporated cells that incorporated EdU after a 24-hour pulse from P2-P3. (F-G) Chx10-
Cre mediated loss of function of Nfia, Nfib, Nfix, Nfia and Nfib, or Nfia, Nfib, Nfix. (F) 

Disruption of retinal organization and loss of Müller glia is marked by glutamine synthetase 

staining (GS). (G) Loss of rod bipolar cells cells is seen with PKCα staining, a. Arrowheads 

indicate remaining Müller glia (F) and bipolar cells (G). p-values are the result of unpaired t-

tests on cell counts with data presented as mean ± SEM. Cell counts were performed on 2 or 

more sections from 5-8 animals per condition. Scale bars - 100μm
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Figure 6. Loss of NFI factors results in sustained RPC proliferation and neurogenesis.
(A) Proliferative cells were detected using anti-Ki67. (B) Quantification of Ki67+ cells 

normalized to area of the assessed retina; p < 0.0001 (C) P21 EdU injections chased to P28 

and co-stained with Ki67 in control and Nfia/b/x triple mutants. (D-E) Confocal images of 

P28 retinas injected with EdU at P21 and co-labeling with (D) recoverin or (E) rhodopsin, 

indicates differentiation of ectopic RPCs into photoreceptors (circled nuclei). Asterisk in 

panel E indicates marker colocalization. Cell counts were performed on 3 or more sections 

from 3-5 animals per condition. Statistics are results of a one-way ANOVA followed by 

Clark et al. Page 37

Neuron. Author manuscript; available in PMC 2020 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tukey’s multiple comparison test with data presented as mean ± SEM. * - p < 0.05; *** - p 

< 0.001; **** - p < 0.0001. Scale bars: A and C - 100μm; D-E - 20μm.
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Figure 7. ScRNA-seq analysis of Nfia/b/x mutants.
(A) UMAP dimension reduction of scRNA-seq on P14 Nfia/b/x triple conditional knockouts 

and heterozygous controls, colored by genotype. (B) Genotype comparisons of the 

proportions of cell types obtained from scRNA-seq experiments. (C) UMAP dimension 

reduction of NFI mutant and control scRNA-seq experiments colored by annotated cell type. 

(D) Jitter plots of the cellular expression of marker genes of primary RPCs, neurogenic cells, 

bipolar cells, and Müller glia, faceted by genotype. (E) UMAP dimension reduction plots of 

cellular expression of primary RPC markers (Ccnd1, Ube2c, Fgf15, Ascl1) and markers of 
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neurogenic cells (Ascl1 and Neurog2). Cellular expression is colored on a scale of low 

(grey) to high (blue) expression. (F) Heatmap displaying the relative expression levels of 

transcripts within Nfia/b/x mutant primary and neurogenic RPCs compared to early and late 

primary and neurogenic wild-type RPCs from the developmental dataset. Abbreviations: 

Photo. Precurs. - Photoreceptor Precursors; tHet - triple Nfia/b/x Heterozygous Chx10-Cre 
(+); tCKO - triple Nfia/b/x conditional knock-out. P-values (B) are the result of a chi square 

test for proportions of cells by genotype.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies:

goat anti-Brn3 (1:200) Santa Cruz Biotechnology Cat. # SC-6026; RRID:AB_673441

mouse anti calbindin-D-28K; Calb1 (1:200) Sigma-Aldrich Cat. # C9848 (clone CB-955); 
RRID:AB_476894

sheep anti-Chx10 (1:500) Exalpha Biologicals Cat. # X1180P; RRID:AB_2314191

rabbit anti-GFP (1:1000) Thermo Fisher Scientific Cat. # A6455; RRID:AB_221570

mouse anti-Glutamine synthetase; Glul (1:200) BD Biosciences Cat. # 610518 (Clone6); RRID:AB_397880

mouse anti-Islet1 (1:200) Developmental Studies
Hybridoma Bank

Cat. # 40.2D6; RRID:AB_528315

mouse anti-Ki67 (1:200) BD Biosciences Cat. # 550609 (Clone B56); RRID:AB_393778

rabbit anti-Lhx2 (1:1000) generated in house with Covance; 
(de Melo et al., 2012)

RRID:AB_2783882

mouse anti-P27Kip1 (1:500) BD Transduction Labs Cat. # 610241 (clone57/Kip1/p27); 
RRID:AB_397636

mouse anti-Pax6 (1:200) Developmental Studies
Hybridoma Bank

Cat. # Pax6a.a 1-223; RRID:AB_528427

mouse anti-Nfia/b (1:200) CDI Labs Cat. # R1356.1.2C6; RRID:AB_2618885

mouse anti-Tfap2a (1:200) Abnova Cat. # Clone 2G5; RRID:AB_490092

rabbit anti-Recoverin (1:200) Millipore Cat. # AB5585; Lot LV1480447; 
RRID:AB_2253622

mouse anti-Pkca (1:200) Millipore Cat. # Clone M4; RRID:AB_2284233

rabbit anti-GFAP (1:500) DakoCytomation Cat. # Z0334; RRID:AB_10013382

mouse anti-Rho4D2 (Rhodopsin; 1:200) Dr. Robert Molday; (Laird and 
Molday, 1988)

RRID:AB_2315273

rabbit anti-b-catenin (Ctnnb1; 1:200) Sigma Cat. # C2206; RRID:AB_476831

rabbit anti-Iba1 (1:400) Wako Cat. # 019-19741; RRID:AB_839504

donkey anti rabbit 488 (1:500) Jackson ImmunoResearch Cat. # 711-485-152; RRID:AB_2492289

goat anti-rabbit 555 (1:500) Thermo Fisher Scientific Cat. # A-21428; RRID:AB_141784

donkey anti-rabbit 594 (1:500) Thermo Fisher Scientific Cat. # A-21207; RRID:AB_141637

goat anti-rabbit 633 (1:500) Thermo Fisher Scientific Cat. # A-21070; RRID:AB_2535731

donkey anti-rabbit 647 (1:500) Jackson ImmunoResearch Cat. # 711-605-152; RRID:AB_2492288

donkey anti-mouse 555 (1:500) Thermo Fisher Scientific Cat. # A-31570; RRID:AB_2536180

donkey anti-mouse 594 (1:500) Jackson ImmunoResearch Cat. # 715-585-150; RRID:AB_2340854

donkey anti-mouse 647 (1:500) Jackson ImmunoResearch Cat. # 715-605-150; RRID:AB_2340862

donkey anti-goat 594 (1:500) Thermo Fisher Scientific Cat. # A-11058; RRID:AB_2534105

donkey anti-goat 633 (1:500) Thermo Fisher Scientific Cat. # A-21082; RRID:AB_2535739

donkey anti-sheep 568 (1:500) Thermo Fisher Scientific Cat. # A-21099; RRID:AB_2535753

donkey anti-sheep 647 (1:500) Jackson ImmunoResearch Cat. # 713-605-003; RRID:AB_2340750

Critical Commercial Assays:

Chromium Single Cell 3’ Library & Gel Bead Kit 
v2

10× Genomics Cat. # 120237
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chromium i7 Multiplex Kit 10× Genomics Cat. # 120262

Chromium Single Cell A Chip Kit 10× Genomics Cat. # 1000009

Chromium Controller & Accessory Kit 10× Genomics Cat. # 120223

Click-iT EdU Alexa Fluor 647 Imaging Kit Thermo FIsher Scientific Cat. # C10340

In Situ Cell Death Detection Kit, TMR red Sigma Cat. # 12156792910

Experimental Models: Organisms/Strains

Mouse:CD1.Tg(Chx10-EGFP/cre/-ALPP)2Clc Dr. Connie Cepko; (Rowan and 
Cepko, 2004)

RRID:MGI:3838985

Mouse:Nfiafl/fl Dr. Richard Gronostajski;
This study

N/A

Mouse:Nfibfl/fl Dr. Richard Gronostajski; (Hsu et 
al., 2011)

N/A

Mouse:Nfixfl/fl Dr. Richard Gronostajski;
(Campbell et al., 2008)

N/A

Deposited Data:

Retinal Development Smart-Seq2 Data This Paper GEO: GSE118614

Retinal Development 10× Data This Paper GEO: GSE118614

P14 Nfia/b/x Mutant and control retina 10× Data This Paper GEO: GSE118614

Software:

Cell Ranger - 2.1.0 10× Genomics https://support.10xgenomics.com/single-cell-
gene-expression/software/downloads/latest

GraphPad Prism 7 GraphPad www.graphpad.com

Monocle2 Cole Trapnell http://cole-trapnell-lab.github.io/monocle-
release/docs/

R version 3.4.1 The R project https://www.r-project.org/

scCoGAPS Bioconductor; This Paper https://bioconductor.org/packages/release/bioc/
hyml/CoGAPS.html

EVAsc (Davis-Marcisak et al., 2018) https://bioconductor.org/packages/release/bioc/
html/GSReg.html

MAGIC (van Dijk et al., 2018) https://github.com/DpeerLab/magic,
https://github.com/KrishnaswamyLab/magic

umap (McInnes and Healy, 2018) https://github.com/lmcinnes/umap

largeVis (Tang et al., 2016) https://github.com/lferry007/LargeVis

Mclust (Scrucca et al., 2016) https://cran.r-project.org/web/packages/mclust/
index.html
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