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Increasing evidence suggests that responsiveness is associated with critical or
near-critical cortical dynamics, which exhibit scale-free cascades of spatio-
temporal activity. These cascades, or ‘avalanches’, have been detected at mul-
tiple scales, from in vitro and in vivo microcircuits to voltage imaging and
brain-wide functional magnetic resonance imaging (fMRI) recordings.
Criticality endows the cortex with certain information-processing capacities
postulated as necessary for conscious wakefulness, yet it remains unknown
how unresponsiveness impacts on the avalanche-like behaviour of large-scale
human haemodynamic activity. We observed a scale-free hierarchy of co-
activated connected clusters by applying a point-process transformation to
fMRI data recorded during wakefulness and non-rapid eye movement
(NREM) sleep. Maximum-likelihood estimates revealed a significant effect of
sleep stage on the scaling parameters of the cluster size power-law distri-
butions. Post hoc statistical tests showed that differences were maximal
between wakefulness and N2 sleep. These results were robust against spatial
coarse graining, fitting alternative statisticalmodels anddifferent point-process
thresholds, anddisappeareduponphase shuffling the fMRI time series.Evoked
neuralbistabilitiespreventingarousals duringN2sleepdonot suffice toexplain
these differences, which point towards changes in the intrinsic dynamics of the
brain that could be necessary to consolidate a state of deep unresponsiveness.
1. Introduction
Human consciousness remains a poorly understood phenomenon, difficult to
define let alone to reduce to neurobiological explanation [1]. Independent theor-
etical efforts have converged on certain features characteristic of the conscious
state. The first-person approach based on phenomenology leads to the hypoth-
esis that complex brain dynamics are associated with conscious awareness as a
consequence of information integration (accounting for the unitary character of
consciousness) coexisting with an ample repertoire of possible states or con-
figurations (accounting for the richness of conscious experience) [2–4]. On the
other hand, the third-person approach of cognitive neuroscience (aligned
with the viewpoint of functionalism) [5] suggests that conscious access plays
a key role in the massive broadcasting of sensory information throughout the
cortex, thus allowing its accessibility by multiple independent and parallel pro-
cesses [6,7]. Long-range broadcasting occurs at the threshold for conscious
access; in other words, small sensory perturbations can be amplified in a
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nonlinear fashion [8,9]. Both theories have received support
from neuroimaging studies of conscious information access
and temporally extended states of reduced responsiveness,
as well as from experiments based on measuring the response
to externally induced magnetic perturbations, which rep-
resents a proxy for the repertoire of potential brain states
[10–12].

The hypothesis that conscious wakefulness depends on
critical or near-critical non-equilibrium dynamics offers a
parsimonious explanation for the properties described in
the above paragraph [13]. It is well established in statistical
mechanics that the correlation length diverges in a system
undergoing a second-order phase transition. Such divergence
would endow the brain with capacity for the long-range
broadcasting of information [14,15]. The amplification of sen-
sory stimuli during all-or-none conscious access is indicative
of the high susceptibility of neural activity to external pertur-
bations [16], suggesting that the dynamics are poised close to
criticality. A similar consideration applies to the number of
metastable states, peaking at criticality and thus potentially
accounting for the large repertoire of brain configurations
associated with conscious awareness [17]. In the absence of
fine-tuning of control parameters, self-organized criticality
provides a plausible framework consistent with these con-
straints, while also predicting the presence of scale-free
cascades of spatio-temporal activity (‘avalanches’) extending
up to the complete size of a finite system [18].

Empirical support for critical (or slightly subcritical and
externally driven) neuronal dynamics is ample, and much
of this support relates to the measurement and characteriz-
ation of neuronal avalanches. Power-law distributions for
avalanche size distributions were first measured using local
field potentials (LFPs) in organotypic slice cultures in vitro
[19]. Further in vitro experiments measuring LFPs supported
and extended these results, followed by in vivo confirmations
in awake and anaesthetized rats and cats [20–25], awake
monkeys [22,26–28] and humans [29]. Voltage [30] and two-
photon imaging [31] provided further evidence in awake
mice. Finally, human experiments based on non-invasive
neuroimaging methods such as electroencephalography
(EEG) [32–34], magnetoencephalography (MEG) [35] and
functional magnetic resonance imaging (fMRI) [36] yielded
results supporting the criticality hypothesis. In particular,
fMRI revealed avalanche-like1 events encompassing the whole
grey matter, a result consistent with scale-free dynamics in a
finite size system [35,36]. The functional benefits of critical
dynamics in terms of information processing and storage
received wide attention and experimental support [37–40].
However, a strong point has also been made for subcritical
and slowly driven dynamics as those better representing the
empirical data [41,42].

The conjecture that criticality conveys advantage through
the capacity for optimal or near-optimal information
processing, compounded with the correspondence between
signatures of conscious awareness and features of the critical
state, naturally leads to the hypothesis that the distribution of
neuronal avalanches should reflect the level of consciousness.
To date, experiments to evaluate this hypothesis have been
conducted on different organisms, using diverse neural
activity recording techniques and methods for the induction
of unconscious states. The first evidence of criticality in a
physiological system emerged from studies reporting scale-
free behaviour in the distribution of arousals, which was
explained using a model based on self-organized criticality
[43,44]. Further experiments yielded mixed results, with
empirical support for this hypothesis stemming mostly
from intracranial LFP recordings during non-rapid eye move-
ment (NREM) human sleep [29], as well as from EEG [45],
voltage [30,46] and two-photon [31] imaging in anaesthetized
animals. However, experiments suggesting invariant neural
avalanche statistics from wakefulness to deep sleep were
also reported [24].

While the effects of human sleep on the scale-free behav-
iour of signals related to autonomic nervous system
regulation have been intensively investigated [47–51], no
experiment to date evaluated how the progressive loss of con-
sciousness and vigilance occurring during human NREM
sleep impacts on the scale-free properties of whole-brain
activity as recorded using fMRI. Contrasting with the speci-
ficity of avalanching behaviour across precise cortical areas
and layers [31], fMRI provides global and indirect estimates
of brain activity with millimetric spatial resolution. This
could help circumvent possible sources of heterogeneity by
integrating local dynamics by means of the less specific
haemodynamic responses required to satisfy metabolic
demands. In otherwords, themacroscale description provided
by fMRI could reveal emergent mechanisms that are hidden at
microscale descriptions [52]. To address this possibility, we
investigated the scale-free behaviour of avalanche-like activity
in fMRI recordings measured during wakefulness and all
stages of NREM sleep (N1, N2 and N3, also known as light
sleep 1 and 2 and deep sleep, respectively) [53].
2. Methods
2.1. NREM sleep fMRI data
An fMRI sleep dataset from a previously published study was
used [54]. A total of 71 non-sleep-deprived subjects were selected
from a larger dataset on the basis of successful multimodal poly-
somnographic data recording and quality assessment (written
informed consent, approval by the local ethics committee). All
subjects were scanned during the evening (starting from
approx. 20.00) and instructed to close their eyes and lie still
and relaxed. Functional data acquisition comprised 52 min. A
group of 58 subjects was formed out of the original dataset by
excluding subjects who did not fall asleep. Sleep stages were
scored manually by an expert according to the American Acad-
emy of Sleep Medicine criteria [53]. The resulting hypnograms
were scanned for contiguous epochs of wakefulness, N1, N2
and N3 sleep. Subjects who did not reach all these stages were
excluded from the analysis, leading to a balanced dataset of 18
subjects allowing paired comparisons between stages. Data
from an MRI water phantom were collected to serve as a null
model, and preprocessing of the data followed the same pipeline
used for the participants.

All participants reached N3 sleep, but spent a variable
amount of time in intermediate stages. Statistics concerning the
sampling of each sleep stage are presented in section 5 of the
electronic supplementary material, together with analyses show-
ing that our results are not biased by variable sampling of the
different stages.
2.2. EEG and fMRI recording
EEG was recorded via a cap (modified BrainCap MR, Easycap,
Herrsching, Germany) during fMRI acquisition (1505 volumes
of T2*-weighted echo planar images, repetition time (TR)/echo
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Figure 1. Methodological outline. (a) Upper panel: example hypnogram showing the progression of sleep stages from wakefulness (blue) towards N1 (green), N2
(red) and N3 sleep (yellow). Bottom panel: BOLD signal from a randomly chosen voxel, with the corresponding sleep stages indicated using the same colour coding.
Black dots represent the super-threshold values that constitute the point process. (b) Examples of the distribution of whole-brain binary activations into small (t =
4), medium (t = 20) and large (t = 127) cluster sizes. (c) Scheme of the data spatial down-sampling procedure (coarse graining). BOLD signals from voxels com-
prising a super-voxel were first extracted and then averaged to yield the coarse-grained signal (upper panel). Axial slices showing cluster distributions after two
successive coarse-graining steps are shown in the lower panel. (d ) Two correlated BOLD signals (upper panel) and their corresponding surrogates obtained after
phase shuffling (lower panel). The preserved power spectra of the signals are shown in the insets. In all panels, time is represented in units of elapsed fMRI volumes
[#V]. (Online version in colour.)
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time (TE) = 2080/30 ms, matrix 64 × 64, voxel size 3 × 3 × 2 mm3,
distance factor 50%; filed of view (FOV) 192 mm2) at 3 T (Sie-
mens Trio, Erlangen, Germany) with an optimized
polysomnographic setting (chin and tibial electromyography
(EMG), electrocardiography, electro-oculography recorded bipo-
larly (sampling rate 5 kHz, low pass filter 1 kHz), 30 EEG
channels recorded with FCz as the reference (sampling rate
5 kHz, low pass filter 250 Hz), and pulse oximetry and respir-
ation recorded via sensors from the Trio (sampling rate 50 Hz))
and MR scanner-compatible devices (BrainAmp MR+, Brai-
nAmp ExG; BrainProducts, Gilching, Germany). MRI and
pulse artefact correction were performed based on the average
artefact subtraction (AAS) method [55] as implemented in
Vision Analyzer 2 (Brain Products, Germany) followed by objec-
tive (CBC parameters, Vision Analyzer) ICA-based rejection of
residual artefact-laden components after average artefact
subtraction resulting in EEG with a sampling rate of 250 Hz.
2.3. Image pre-processing
Using Statistical Parametric Mapping (SPM8), echo planar ima-
ging (EPI) data were realigned, normalized (Montreal
Neurological Institute space) and spatially smoothed (Gaussian
kernel, 8 mm3 full width at half maximum). Cardiac-, respirat-
ory-, and motion-induced noises were regressed out using the
RETROICOR method [56]. The data were band-pass filtered in
the range 0.01–0.10 Hz using a sixth-order Butterworth filter.
2.4. Point-process transformation
The criteria to determine the activation of each voxel at a specific
time were based on transforming the continuous blood oxygen
level-dependent (BOLD) time series into a point process
[36,57]. Note that thresholding and binarization of time series
for avalanche analysis are not exclusive to fMRI, but apply to
other data-recording techniques as well, such as LFP, EEG,
MEG, voltage and two-photon imaging. The BOLD time series
corresponding to each voxel were first normalized by subtracting
their mean and dividing by their standard deviation (s.d. of the
full time series). A voxel was considered active in volumes when
its normalized activity was larger than a threshold value (1 s.d.);
otherwise, it was considered inactive. This resulted in the trans-
formation of the fMRI data into a spatio-temporal point process
consisting only of binary values [58]. In figure 1a (upper panel),
the hypnogram of a randomly selected subject is shown, with
sleep stages indicated using different background colours. An
example BOLD time series from a randomly selected voxel
(using the same colour code as in the hypnogram) is shown in
figure 1a (bottom panel). Super-threshold events comprising
the point process are shown as black dots (the back dashed
line indicates the 1 s.d. threshold).

2.5. Connected clusters of co-activated voxels
Connected components composed of co-activated voxels are here
referred to as clusters. Clusters correspond to connected groups
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of simultaneously activated voxels, where connection is under-
stood as a first-neighbour relationship in a cubic lattice, and
activation is understood as super-threshold BOLD signal
values. Thus, each fMRI volume consisted of isolated clusters
spread throughout the cortical and subcortical grey matter. The
size of each cluster was obtained by counting the total number
of voxels belonging to it. Cluster sizes presented a large variabil-
ity; as shown in figure 1b, at different times the activity could be
distributed into small (t = 4), intermediate (t = 20) and large (t =
127) clusters (all times are given in terms of elapsed fMRI
volumes). In particular, in this last example it can be seen that
all activated voxels coalesce into a brain-wide cluster. To
obtain cluster size distributions per sleep stage, cluster sizes
were normalized by their total number, and then data from all
participants were averaged within bins of sizes determined by
a logarithmic scale. The distributions pool cluster sizes across
all times for each sleep stage.

2.6. Power-law distributions
Distributions of cluster sizeswere obtainedper sleep stage. Plotting
these distributions using logarithmic binning suggested behaviour
of the form P(s) = s−α. The scaling exponent αwas computed using
the method of maximum-likelihood estimators (MLEs) by Clauset
et al. [59].The scalingparameterwas estimated fromthecumulative
density function (CDF) instead of the probability density function
(PDF) since this reduces bias related to the tail of the distribution
and the binning of the data. The method of MLEs excluded
values below a lower bound (determined for each individual
distribution) to avoid bias in the estimation [59].

2.7. Statistical testing
The exponent α was computed for each subject and sleep stage,
and then compared across sleep stages using a non-parametric
version of ANOVA (Kruskal–Wallis test). Post hoc non-parametric
Wilcoxon signed-rank and permutation tests were conducted to
evaluate differences between pairs of sleep stages.

2.8. Coarse graining
To leverage the high spatial and whole-brain resolution of fMRI,
avalanche-like behaviour was studied at different levels of spatial
resolution by means of spatial down-sampling of the data (coarse
graining). Coarse-grained voxels were obtained by averaging the
BOLD signals from their corresponding sub-voxels [60]. An
example of this procedure is shown in figure 1c, representing
an axial slice (upper panel, left) with a super-voxel divided
into four sub-voxels whose signals (upper panel, right) are aver-
aged. Starting from an original voxel resolution of 4 × 4 × 4 mm,
only two coarse-graining steps could be performed before exces-
sively downgrading the spatial resolution of the data (bottom
panel). The resulting resolutions were then 8 × 8 × 8 mm and
16 × 16 × 16 mm. Observables following a scale-free distribution
are expected to remain approximately constant upon coarse
graining of the data.

2.9. BOLD time-series phase shuffling
BOLD signals were phase shuffled to construct null models using
signals that contain the same spectrum as the original versions,
but with scrambled phases (surrogates). This procedure was
implemented by applying a fast Fourier transform (FFT) to trans-
form BOLD signals into the frequency domain, and subsequently
reversing the FFT after adding a random phase to obtain the sur-
rogate time series. Figure 1d shows two examples of BOLD
signals (upper panel) and their corresponding surrogates
(bottom panel). After phase scrambling, the Pearson correlation
coefficient between the signals was reduced from ρ = 0.74 to
ρ = 0.03. The preserved spectra of the signals are shown as
insets (smoothed using a Savitzky–Golay filter for better
visualization).

2.10. Robustness against threshold change
While the threshold value of 1 s.d. was chosen by default based
on previous work [36], the analyses were repeated using binari-
zation thresholds ranging between 0 and 1.5 s.d. (in steps of
0.25).
3. Results
3.1. Power laws
We show in figure 2a the complementary cumulative distri-
bution functions (CCDFs) for cluster sizes per sleep stage
(wakefulness (W), N1, N2 and N3 sleep) obtained following
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the procedure explained in §2.5. In figure 2bwe show the nor-
malized cluster size distributions, where P(s) represents the
probability of obtaining a cluster of size s by randomly select-
ing from all clusters within a given sleep stage. Except for the
distribution corresponding to the water phantom, power-law
scaling was observed for all sleep stages up to sizes ≈103. In
particular, we observed non-zero probability of finding clus-
ters of approximately 104 co-activated voxels which, at this
particular resolution, represents most of the grey matter
voxels in the brain. Conversely, such extreme events were
not observed for the water phantom. Applying a non-
parametric Kruskal–Wallis test to each bin, we observed
that the effect of sleep stage on P(s) was significant ( p <
0.05, Bonferroni corrected for multiple comparisons) at the
tail of the distribution (i.e. sleep stage showed a significant
effect on the likelihood of measuring extreme events of co-
activated clusters), as well as at the rest of the distributions.
Post hoc Wilcoxon signed-rank tests ( p < 0.05, Bonferroni cor-
rected for multiple comparisons) revealed that differences
could be predominantly attributed to larger P(s) for N2
sleep versus wakefulness.

The electronic supplementary material (section 1)
contains results obtained from fitting other distributions to
the data (lognormal, power law with exponential cut-off,
and truncated power law), and comparing them versus
power laws. This analysis supports the presence of power-
law behaviour in the cluster size distributions. The goodness
of fit values obtained using models with one additional free
parameter (lognormal and power law with exponential cut-
off ) were comparable to those from unmodified power
laws, and the estimated parameters indicated that the fitted
distributions presented asymptotic power law behaviour
(i.e. the optimal parameters yielded power laws as limiting
cases). Sections 2, 3 and 4 of the electronic supplementary
material contain the CCDFs of each individual participant
with the corresponding best-fitting power laws, truncated
power laws and power laws with exponential cut-off,
respectively.
3.2. Scaling parameters
While comparing P(s) in bins where the scaling relationship
no longer holds (i.e. the tail of the distribution) may be intui-
tive [29], a more adequate comparison of the distributions can
be performed by applying the method of MLEs to the CDFs
of the PDFs plotted in figure 2. Figure 3a (leftmost panel) pre-
sents violin plots for the estimated scaling parameters α for
all participants and separated per sleep stage (the α value
for the water phantom was estimated as ≈2.5). We applied
the non-parametric Kruskal–Wallis test to reject the null
hypothesis that wakefulness/sleep stage did not have an
effect on α ( p = 0.0012). We then applied non-parametric
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Wilcoxon signed-rank tests for the post hoc comparison of α
between wakefulness and all sleep stages. After correcting
for multiple comparisons, we found that the mean α value
was significantly lower in N2 sleep than in wakefulness
( p = 0.0018). We also compared the goodness of fit (Kolmo-
gorov–Smirnov statistic) between wakefulness and all sleep
stages (Wilcoxon signed-rank test, Bonferroni corrected). We
observed significantly better goodness of fit for the wakeful-
ness distribution versus the N2 sleep distribution (p = 0.01),
but not for N1 ( p = 0.06) or N3 sleep ( p = 0.91). The scaling
parameters α estimated from lognormal, power law with
exponential cut-off and truncated power-law distributions
were very close to those obtained using full power laws,
and the statistical analyses yielded identical results to those
presented in figure 3a (see section 1 of the electronic sup-
plementary material), thus indicating that the tails of the
distributions in figure 2 did not drive our results.

3.3. Coarse graining
Taking advantage of the high spatial resolution and
whole-brain coverage of fMRI, we applied successive
coarse-graining steps to assess the stability of our results. In
figure 3a we present violin plots for the three granularities
and observed a significant effect of stage on α for all of
them (Kruskal–Wallis test; 4 × 4 × 4: p = 0.0012; 8 × 8 × 8: p =
0.0002; 16 × 16 × 16: p < 0.0001; all units in mm). Also, for all
three granularities post hoc tests showed that α was signifi-
cantly reduced from wakefulness to N2 sleep (Bonferroni-
corrected Wilcoxon signed-rank test; 4 × 4 × 4: p = 0.0018;
8 × 8 × 8: p = 0.0018; 16 × 16 × 16: p = 0.0006; all units in mm).
We verified the assumptions of parametric ANOVA by apply-
ing Shapiro–Wilk and Levene’s tests for normality and
homoscedasticity, respectively. An ANOVA test rejected the
null hypothesis that the mean α was independent of stage
(ANOVA; 4 × 4 × 4: p = 0.0029; 8 × 8 × 8: p = 0.0007; 16 × 16 ×
16: p = 0.0002, all units in mm). Finally, we used a permu-
tation test between groups (10.000 permutations) to further
show that N2 sleep presented a significantly smaller scaling
parameter than wakefulness for all granularities (4 × 4 × 4:
p = 0.0015; 8 × 8 × 8: p = 0.0033; 16 × 16 × 16: p = 0.0006, all
units in mm).

We also constructed distributions of cluster sizes for all
subjects combined (per sleep stage) and used the method
of MLEs to estimate the corresponding α value. The estimated
values for all subjects pooled into the same distribution are
shown in figure 3c, which displays values consistent with
those of figure 3b (i.e. α estimated independently per subject
and then averaged).

3.4. Phase shuffling
We repeated the analyses presented in the previous sections
but after randomly shuffling the phases of the BOLD time
series corresponding to each voxel. These surrogate time
series are in principle uncorrelated and can be used to con-
struct null models to compare the findings obtained from the
preserved time series. Neither the CCDFs for cluster sizes
(figure 4a) nor the estimated α values (figure 4b) presented sig-
nificant differences between stages. It is also clear that phase
shuffling eliminated the scale invariance reported in figure 3
from the data. Not only did the cluster size distributions not
follow a power law (all P(s) collapsed into the same exponen-
tially decaying distribution), but furthermore coarse graining
altered the scaling parameter, which should have remained
approximately constant for a scale-free power-law distribution
(compare with figure 3b and figure 3c). Section 6 of the elec-
tronic supplementary material shows that the CCDFs for
cluster sizes using the shuffled data can be fitted with a
power law with exponential cut-off (the corresponding expo-
nents appear as the slopes of the dashed lines in figure 4a).
The optimal cut-off parameter was, on average, 109 larger
than those estimated for the unshuffled data, consistent with
the strong exponential decay seen in figure 4a.

3.5. Correlations between scaling exponents and
prevalence of sleep grapho-elements

To assess the possibility that the simultaneous co-activation
of voxels due to the onset of sleep spindles and K-complexes
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during N2 sleep could affect the scaling parameters (figure 2),
we correlated the α values obtained from the MLE estimation
with the total number of grapho-elements of each class across
all participants (non-parametric Spearman rank correlation).
Neither correlations with the total number of sleep spindles
(ρ =−0.31, p = 0.2) nor K-complexes (ρ = 0.05, p = 0.83) were
found to be significant.

3.6. Robustness against the point-process threshold
We repeated the analysis for different thresholds in the
process of transforming BOLD time series into a spatio-
temporal point process. Figure 5a shows the mean value of
the estimated α for each threshold. Applying the Kruskal–
Wallis test we found significant differences for the upper
range of thresholds, beginning with 0.75. For these thresholds,
post hoc non-parametric Wilcoxon signed-rank tests showed
differences between wakefulness and N2 sleep. Parametric
ANOVA and permutation tests agreed with these results.
The scaling parameters estimated from distributions pooling
all subjects per sleep stage are shown in figure 5b and agree
with those presented in figure 5a.

3.7. Two-point spatial correlation function
As an alternative marker of scale-free behaviour, we
followed Expert et al. [60] in computing the spatial corre-
lation function 〈C(r)〉. The procedure for computing 〈C(r)〉
and the obtained results are presented in section 7 of the
electronic supplementary material.
4. Discussion
We probed for the first time the scale-invariant properties of
whole-brain fMRI data from wakefulness to deep sleep.
Adopting the theoretical and methodological framework of
critical phenomena, we obtained evidence that the likelihood
of large-scale events encompassing most grey matter voxels is
modulated throughout the human sleep–wake cycle. We
begin with a general discussion on the validity of interpreting
our results as linked to critical phenomena, followed by their
relationship with the neurophysiology of human sleep, and
finally by considering the possible connection between the
states of reduced responsiveness and departures from
criticality.

Our use of ‘avalanche-like events’ to describe extreme
events in the tail of the distribution P(s) relates to the
difficulty of inferring certain features characteristic of
avalanching phenomena from fMRI recordings. fMRI data
are severely sub-sampled in the temporal domain relative to
other methods that have been used in experiments to evalu-
ate neuronal avalanches (e.g. LFP, EEG, MEG, voltage and
two-photon imaging) [19–35,46]. These methods rely on the
selection of an appropriate temporal bin size Δt, during
which binary events are detected and averaged. The limit-
ation of fMRI is analogous to a relatively large and fixed Δt
that is constrained by the low temporal sampling rate. In a
similar way that the avalanche size distributions deviate
from power-law behaviour when spatially sub-sampled
[27,29,61], the detection of ‘avalanche-like’ events in fMRI
data results in exponentially decaying distributions for
avalanche size as a function of time, as shown in fig. 4c
in [36]. The separation of time scales observed in models of
self-organized criticality [18] is less manifest in avalanches
from electrophysiological recordings [41] and even more so
in fMRI data. While Priesemann et al. [41] argued that exter-
nal forcing of a subcritical state could eliminate the separation
of time scales, it is difficult to disentangle this possibility from
temporal sub-sampling in the case of fMRI data. Tracking the
temporal evolution of avalanches in fMRI data presents
another difficulty: the possibility that multiple cascades of
activity originate in different cortical areas, leading to the pro-
blem of distinguishing them based on the comparatively low
temporal resolution of this imaging method. Our proposed
solution is to assume that co-activated clusters represent
‘time slices’ of ongoing events originating throughout differ-
ent parts of the cortex, and then assessing the power-law
behaviour of the resulting cluster size distribution [36].

In contrast to the temporal resolution, fMRI provides
whole-brain coverage with millimetric spatial resolution
and, as such, it is in principle a relatively good neuroimaging
method to investigate the spatial properties of mesoscopic



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190262

8
and macroscopic cascading events, which can be severely
affected by sub-sampling effects in other imaging modalities
[27,29,41]. The distributions for the size of co-activated clus-
ters, P(s), follow power laws with robust scaling exponents,
consistent with a previous report [36]. Importantly, the emer-
gence of power laws for the distribution of cluster sizes could
be traced to the collective behaviour of the BOLD time series,
since power-law scaling did not emerge from the phase-
shuffled data (figure 4a). While different sleep stages
showed variations in the scaling parameter α, the impact of
coarse graining was comparatively low relative to that
observed in the phase-shuffled data (figure 3c), as expected
for scale-invariant cluster distributions (figure 4b). Finally,
different alternative statistical models were investigated
(including truncated and exponentially truncated power
laws), yielding results consistent with standard power-law
distributions. It must be noted that the existence of scale-
free avalanches in neural tissue remains a debated issue
[62–64]. The most studied models of self-organized criticality
consist of homogeneous units arranged in a lattice [65]; how-
ever, the brain must be ultimately understood as a system
consisting of complex interacting units linked by a network
of long-distance connections [66].

Critical branching processes are expected to produce cas-
cade distributions with scaling exponent α = 3/2. However,
the scaling exponents observed in our data were higher
than this value (≈2). The scaling exponents for neuronal ava-
lanches reported in the literature are variable as well, ranging
from values close to 3/2 [19] to >2 [19,21–23,25,26]. These dis-
crepancies have been generally attributed to the limitations of
experimental set-ups and recording techniques, e.g. slow
waves of activity present in reduced preparations [24], spa-
cing between units in electrode arrays [67] and finite size
and/or volume conduction effects in EEG data [34]. Besides
finite size effects [68], we can expect departures from theoreti-
cal predictions since in fMRI data the characteristic times of
signal transmission are related to the unusual hydrodynamics
of the vascular system, and not directly related to the
sequences of neural spikes. We must note, however, that scal-
ing parameters α≈ 2 were reported in previous work
addressing the statistics of observables related to sleep physi-
ology (e.g. the duration of arousals [43,44,69]), and can
depend upon environmental variables such as temperature
[70]. Furthermore, the Gutenberg–Richter law for the ampli-
tudes of different earthquakes also shows power-law
exponents α≈ 2 [71].

We observed that the scaling parameter values remained
approximately constant for different levels of coarse graining
(figure 3b), especially when compared with the phase-
shuffled data (figure 4b). This is consistent with the scale-
free behaviour of critical systems [60]. The differences we
observed likely relate to the fact that not all distributions clo-
sely followed a power law, as also reported by previous
authors assessing neuronal avalanches in vivo in humans
[29]. Regardless, we did not observe a radical departure
from power-law distributions following unconsciousness, as
reported from voltage imaging experiments in mice [30].
However, the goodness of fit was significantly reduced in
N2 sleep relative to wakefulness. Our result is similar to
that reported for LFP recordings in humans [29]; in particular,
that differences comprise changes in the scaling parameter, as
well as the higher prevalence of events in the tail of the dis-
tributions during sleep relative to wakefulness. Insofar as
criticality is associated with rapid response to external pertur-
bations (i.e. high susceptibility), this result could be related to
the persistence of covert responsiveness and off-line infor-
mation processing during sleep [72] (likely due to the
influence of deep-brain neuromodulatory centres), which is
absent in pharmacologically induced loss of consciousness.

Our results were specific to the contrast between wakeful-
ness and N2 sleep, while N1 sleep presented an intermediate
value between wakefulness and N2 sleep. The differences do
not seem to be scale dependent (as they were manifest after
coarse graining of the data), cannot be dismissed as trivial
consequences of the correlation structure of the data (since
they were not observed after phase shuffling) and were
robust across a range of binarization thresholds. Decreased
α values indicate a less pronounced slope and increased prob-
ability of large clusters occurring during N2 sleep, consistent
with a previous study based on LFP recordings [29]. While
both N2 and N3 sleep are regarded as stages of unresponsive-
ness, ample evidence supports sporadic reports of conscious
mentation upon awakening [73–75], which could be related
to local aspects of sleep [76–79]. The specificity of the changes
to N2 sleep could in principle relate to neurophysiological
processes that parallel the descent into deep sleep. As
opposed to diffuse neuromodulatory mechanisms that help
maintain a near-critical state across all sleep stages, differ-
ences in local dynamics could account for changes in the
value of the scaling parameter. The opening of calcium-
dependent potassium channels (K+) during deep sleep
could cause hyperpolarization and bistability at the cell
level [80]. K-complexes, large deflections in the EEG signal
that serve a protective role against arousals, emerge during
N2 sleep as a consequence of this process. The especially
wide cortical distribution of K-complexes could bias the scal-
ing parameters, independently of the background activity,
and thus impact on the shape of the distributions [72].
However, we did not find a significant correlation between
the number of K-complexes/sleep spindles and the scaling
exponents obtained for N2 sleep. The fact that extreme
haemodynamic events are not observed with higher prob-
ability during N3 sleep could be linked to specific processes
associated with the stabilization of deep sleep, as well as
with a shift towards low electrophysiological frequencies
that might not be reflected in the haemodynamic signal
measured with fMRI [81,82]. It must be noted that, since
N3 sleep presents stronger sleep inertia than earlier stages
and less bursts in the theta and alpha ranges (e.g. as caused
by arousals) [80], smaller cluster sizes could be expected
during deep sleep; however, the same line of reasoning
leads us to expect a higher number of large clusters (and, cor-
respondingly, a smaller scaling parameter) for wakefulness,
which was not observed. Finally, it could be the case that
the standard sleep stages are too coarse, so that different con-
tributions to α arise from finer subdivisions of N2 and N3
sleep [83].

In recent years, different theories have proposed numeri-
cal metrics to determine the level of conscious awareness
present in a given physical system. Examples of these metrics
include neural complexity [2], information integration (Φ) [4],
causal density [84] and thermodynamic entropy [85]. A
common objection to these metrics is the conceivability of
abstract or physical systems realizing arbitrarily large
values, leading either to their dismissal or to the commitment
with a panpsychist worldview. A recent example is the online
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discussion between Scott Aaronson and Giulio Tononi2 con-
cerning the possibility (argued by Aaronson) of reaching
arbitrarily large values of Φ either by abstract mathematical
operations (iterative multiplication by a Vandermonde
matrix with coefficients in a finite field with p elements,
with p a sufficiently large prime number) or by a conceivable
physical implementation (logic gates connected by an expan-
der graph). These difficulties do not imply that, in principle,
it should not be possible to devise a numerical quantity with
the following two properties: (i) its value associated with a
given physical system increases with the level of conscious
awareness of said system and (ii) physical systems that are
(by common sense) considered unconscious (e.g. regularly
assembled logic gates) yield low values. In contrast to the
problem of providing a scientific explanation for the subjec-
tively felt qualities of conscious experience (the ‘hard
problem of consciousness’) [86], Aaronson dubbed the dis-
covery of a metric with the aforementioned properties the
‘pretty hard problem of consciousness’ since, as opposed to
the former, it seems more scientifically tractable. Drawing
connections between metrics related to critical phenomena
(e.g. scaling exponents) and states of consciousness could
represent an interesting contribution towards tackling the
pretty hard problem of consciousness. Clearly, criticality
does not per se offer a solution, since critical phenomena are
ubiquitous in nature and regarded as unconscious by over-
whelming consensus. However, such connection narrows
the space of counterexamples to the set of self-organized
many-body physical systems, thus excluding constructs
such as logic gates coupled by expander graphs. It could be
argued that such narrowing represents a step forward,
which might not come as a surprise since (as opposed to
the aforementioned theories) the criticality hypothesis is
both explicit about the numerical metrics to be computed
and the physical laws that assign them meaning. Convergent
evidence from studies directly addressing functional inte-
gration as a function of neural dynamics during sleep
add support to a relationship between our results and the
predictions of integrated information theory [87,88].

It must be emphasized, however, that human sleep
represents by itself a limited model to evaluate these
claims, since neural processes related to loss of wakefulness
(and not to loss of consciousness per se) could affect our
results. While our analysis seems to rule out an effect of
sleep grapho-elements that are not directly linked to loss of
conscious awareness, the complex neuromodulatory and neu-
rophysiological processes underlying loss of vigilance and
unresponsiveness during sleep are difficult to disentangle
from those associated with impaired levels of consciousness
[80,86]. This is especially clear in the similar α values
measured during wakefulness and N3 sleep. Thus, other
experimental models (such as general anaesthesia or patients
with disorders of consciousness) should be evaluated using
this methodology in future studies.

In conclusion, we observed scale-free whole-brain fMRI
activity consistent with critical or near-critical dynamics.
The distributions of sizes of co-activated clusters were close
to power laws, and the scaling exponents of those power
laws reflected the transitions between sleep stages. A deep
sleep stage (N2) was robustly associated with an increased
probability of observing extreme events in the tail of the dis-
tribution. The information-processing capabilities that critical
dynamics bestow upon the human cortex are highly sugges-
tive of a potential role in the emergence and maintenance of
conscious awareness. While several quantitative metrics have
been proposed to estimate the level of conscious awareness
based on empirical observations, those associated with signa-
tures of criticality present the advantages of being motivated
in terms of fundamental physical laws, not requiring the pos-
tulation of ad hoc mechanisms for their emergence in living
neural tissue, and being harder to dismiss by arguments
based on trivial counter-examples that should produce high
levels of conscious awareness.
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Endnotes
1We use the term ‘avalanche like’ in reference to extreme events of
haemodynamic activity measured with fMRI, since the compara-
tively poor temporal resolution of this imaging modality precludes
the observation of certain defining properties of avalanches in self-
organized criticality.
2https://www.scottaaronson.com/blog/?p=1799.
References
1. Seth A. 2018 Consciousness: the last 50 years (and
the next). Brain Neurosci. Adv. 2, 2398212818816019.
(doi:10.1177/2398212818816019)

2. Tononi G, Edelman GM. 1998 Consciousness and
complexity. Science 282, 1846–1851. (doi:10.1126/
science.282.5395.1846)

3. Tononi G. 2012 Integrated information theory of
consciousness: an updated account. Arch. Ital. Biol.
150, 293–329.
4. Oizumi M, Albantakis L, Tononi G. 2014
From the phenomenology to the mechanisms of
consciousness: Integrated Information
Theory 3.0. PLoS Comput. Biol. 10,
e1003588. (doi:10.1371/journal.pcbi.
1003588)

5. Boone W, Piccinini G. 2016 The cognitive
neuroscience revolution. Synthese 193, 1509–1534.
(doi:10.1007/s11229-015-0783-4)
6. Dehaene S, Naccache L. 2001 Towards a cognitive
neuroscience of consciousness: basic evidence and a
workspace framework. Cognition 79, 1–37. (doi:10.
1016/S0010-0277(00)00123-2)

7. Dehaene S, Kerszberg M, Changeux JP. 1998
A neuronal model of a global workspace in
effortful cognitive tasks. Proc. Natl Acad. Sci.
USA 95, 14 529–14 534. (doi:10.1073/pnas.95.
24.14529)

https://doi.org/10.5061/dryad.78v68ss
https://doi.org/10.5061/dryad.78v68ss
https://doi.org/10.5061/dryad.78v68ss
https://github.com/HBocaccio/Avalanches_Sleep_fMRI_2019
https://github.com/HBocaccio/Avalanches_Sleep_fMRI_2019
https://www.scottaaronson.com/blog/?p=1799
https://www.scottaaronson.com/blog/?p=1799
http://dx.doi.org/10.1177/2398212818816019
http://dx.doi.org/10.1126/science.282.5395.1846
http://dx.doi.org/10.1126/science.282.5395.1846
http://dx.doi.org/10.1371/journal.pcbi.1003588
http://dx.doi.org/10.1371/journal.pcbi.1003588
http://dx.doi.org/10.1007/s11229-015-0783-4
http://dx.doi.org/10.1016/S0010-0277(00)00123-2
http://dx.doi.org/10.1016/S0010-0277(00)00123-2
http://dx.doi.org/10.1073/pnas.95.24.14529
http://dx.doi.org/10.1073/pnas.95.24.14529


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190262

10
8. Del Cul A, Baillet S, Dehaene S. 2007 Brain
dynamics underlying the nonlinear threshold for
access to consciousness. PLoS Biol. 5, e260. (doi:10.
1371/journal.pbio.0050260)

9. Sergent C, Dehaene S. 2004 Is consciousness a
gradual phenomenon? Evidence for an all-or-none
bifurcation during the attentional blink. Psychol. Sci.
15, 720–728. (doi:10.1111/j.0956-7976.2004.
00748.x)

10. Dehaene S, Changeux JP. 2011 Experimental and
theoretical approaches to conscious processing.
Neuron 70, 200–227. (doi:10.1016/j.neuron.2011.
03.018)

11. Casali AG et al. 2013 A theoretically based index of
consciousness independent of sensory processing
and behaviour. Sci. Transl. Med. 5, 198ra05. (doi:10.
1126/scitranslmed.3006294)

12. Laureys S, Gosseries O, Tononi G. 2016 The
neurology of consciousness: cognitive neuroscience
and neuropathology, 2nd edn. London, UK:
Academic Press.

13. Tagliazucchi E. 2017 The signatures of conscious
access and its phenomenology are consistent with
large-scale brain communication at criticality.
Conscious Cogn. 55, 136–147. (doi:10.1016/j.
concog.2017.08.008)

14. Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo
DR. 2013 Brain organization into resting state
networks emerges at criticality on a model of the
human connectome. Phys. Rev. Lett. 110, 178101.
(doi:10.1103/PhysRevLett.110.178101)

15. Fraiman D, Chialvo DR. 2012 What kind of noise is
brain noise: anomalous scaling behaviour of the
resting brain activity fluctuations. Front. Physiol. 3,
307. (doi:10.3389/fphys.2012.00307)

16. Tagliazucchi E, Chialvo DR, Siniatchkin M, Amico E,
Brichant JF, Bonhomme V, Noirhomme Q, Laufs H,
Laureys S. 2016 Large-scale signatures of
unconsciousness are consistent with a departure
from critical dynamics. J. R. Soc. Interface 13,
20151027. (doi:10.1098/rsif.2015.1027)

17. Cavanna F, Vilas MG, Palmucci M, Tagliazucchi E.
2017 Dynamic functional connectivity and brain
metastability during altered states of consciousness.
Neuroimage 180, 383–395. (doi:10.1016/j.
neuroimage.2017.09.065)

18. Bak P, Tang C, Wiesenfeld K. 1988 Self-organized
criticality. Phys. Rev. A Gen. Phys. 38, 364–374.
(doi:10.1103/PhysRevA.38.364)

19. Beggs JM, Plenz D. 2003 Neuronal avalanches in
neocortical circuits. J. Neurosci. 23, 11 167–11 177.
(doi:10.1523/JNEUROSCI.23-35-11167.2003)

20. Beggs JM, Plenz D. 2004 Neuronal avalanches are
diverse and precise activity patterns that are stable
for many hours in cortical slice cultures. J. Neurosci.
24, 5216–5229. (doi:10.1523/JNEUROSCI.
0540-04.2004)

21. Pasquale V, Massobrio P, Bologna LL,
Chiappalone M, Martinoia S. 2008 Self-organization
and neuronal avalanches in networks of
dissociated cortical neurons. Neuroscience
153, 1354–1369. (doi:10.1016/j.neuroscience.
2008.03.050)
22. Klaus A, Yu S, Plenz D. 2011 Statistical analyses
support power law distributions found in neuronal
avalanches. PLoS ONE 6, e19779. (doi:10.1371/
journal.pone.0019779)

23. Gireesh ED, Plenz D. 2008 Neuronal avalanches
organize as nested theta- and beta/gamma-
oscillations during development of cortical layer 2/3.
Proc. Natl Acad. Sci. USA 105, 7576–7581. (doi:10.
1073/pnas.0800537105)

24. Ribeiro TL, Copelli M, Caixeta F, Belchior H, Chialvo
DR, Nicolelis MA, Ribeiro S. 2010 Spike avalanches
exhibit universal dynamics across the sleep-wake
cycle. PLoS ONE 5, e14129. (doi:10.1371/journal.
pone.0014129)

25. Hahn G, Petermann T, Havenith MN, Yu S, Singer W,
Plenz D, Nikolić D. 2010 Neuronal avalanches in
spontaneous activity in vivo. J. Neurophysiol. 104,
3312–3322. (doi:10.1152/jn.00953.2009)

26. Petermann T, Thiagarajan TC, Lebedev MA, Nicolelis
MA, Chialvo DR, Plenz D. 2009 Spontaneous cortical
activity in awake monkeys composed of neuronal
avalanches. Proc. Natl Acad. Sci. USA 106,
15 921–15 926. (doi:10.1073/pnas.0904089106)

27. Priesemann V, Munk MH, Wibral M. 2009
Subsampling effects in neuronal avalanche
distributions recorded in vivo. BMC Neurosci. 10, 40.
(doi:10.1186/1471-2202-10-40)

28. Yu S, Ribeiro TL, Meisel C, Chou S, Mitz A, Saunders
R, Plenz D. 2017 Maintained avalanche dynamics
during task-induced changes of neuronal activity in
nonhuman primates. Elife 6, e27119. (doi:10.7554/
elife.27119)

29. Priesemann V, Valderrama M, Wibral M, Le Van
Quyen M. 2013 Neuronal avalanches differ from
wakefulness to deep sleep—evidence from
intracranial depth recordings in humans. PLoS
Comput. Biol. 9, e1002985. (doi:10.1371/journal.
pcbi.1002985)

30. Scott G, Fagerholm ED, Mutoh H, Leech R, Sharp DJ,
Shew WL, Knöpfel T. 2014 Voltage imaging of
waking mouse cortex reveals emergence of critical
neuronal dynamics. J. Neurosci. 34, 16 611–16 620.
(doi:10.1523/JNEUROSCI.3474-14.2014)

31. Bellay T, Klaus A, Seshadri S, Plenz D. 2015 Irregular
spiking of pyramidal neurons organizes as scale-
invariant neuronal avalanches in the awake state.
Elife 4, e07224. (doi:10.7554/eLife.07224)

32. Meisel C, Olbrich E, Shriki O, Achermann P. 2013
Fading signatures of critical brain dynamics during
sustained wakefulness in humans. J. Neurosci.
33, 17 363–17 372. (doi:10.1523/JNEUROSCI.
1516-13.2013)

33. Palva JM, Zhigalov A, Hirvonen J, Korhonen O,
Linkenkaer-Hansen K, Palva S. 2013 Neuronal long-
range temporal correlations and avalanche dynamics
are correlated with behavioural scaling laws. Proc.
Natl Acad. Sci. USA 110, 3585–3590. (doi:10.1073/
pnas.1216855110)

34. Allegrini P, Paradisi P, Menicucci D, Gemignani A.
2010 Fractal complexity in spontaneous EEG
metastable-state transitions: new vistas on
integrated neural dynamics. Front. Physiol. 1, 128.
(doi:10.3389/fphys.2010.00128)
35. Shriki O, Alstott J, Carver F, Holroyd T, Henson RN,
Smith ML, Coppola R, Bullmore E, Plenz D. 2013
Neuronal avalanches in the resting MEG of the
human brain. J. Neurosci. 33, 7079–7090. (doi:10.
1523/JNEUROSCI.4286-12.2013)

36. Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR.
2012 Criticality in large-scale brain FMRI dynamics
unveiled by a novel point process analysis. Front.
Physiol. 3, 15. (doi:10.3389/fphys.2012.00015)

37. Shew WL, Yang H, Yu S, Roy R, Plenz D. 2011
Information capacity and transmission are
maximized in balanced cortical networks with
neuronal avalanches. J. Neurosci. 31, 55–63.
(doi:10.1523/JNEUROSCI.4637-10.2011)

38. Shew WL, Yang H, Petermann T, Roy R, Plenz D.
2009 Neuronal avalanches imply maximum dynamic
range in cortical networks at criticality. J. Neurosci.
29, 15 595–15 600. (doi:10.1523/JNEUROSCI.3864-
09.2009)

39. Shew WL, Plenz D. 2013 The functional benefits of
criticality in the cortex. Neuroscientist 19, 88–100.
(doi:10.1177/1073858412445487)

40. Del Papa B, Priesemann V, Triesch J. 2017 Criticality
meets learning: criticality signatures in a self-
organizing recurrent neural network. PLoS ONE 12,
e0178683. (doi:10.1371/journal.pone.0178683)

41. Priesemann V, Wibral M, Valderrama M, Pröpper R,
Le Van Quyen M, Geisel T, Triesch J, Nikolić D, Munk
MH. 2014 Spike avalanches in vivo suggest a driven,
slightly subcritical brain state. Front. Syst. Neurosci.
8, 108. (doi:10.3389/fnsys.2014.00108)

42. Priesemann V, Shriki O. 2018 Can a time varying
external drive give rise to apparent criticality in
neural systems? PLoS Comput. Biol. 14, e1006081.
(doi:10.1371/journal.pcbi.1006081)

43. Lo CC, Amaral LN, Havlin S, Ivanov PC, Penzel T,
Peter JH, Stanley HE. 2002 Dynamics of sleep-wake
transitions during sleep. Europhys. Lett. 57, 625.
(doi:10.1209/epl/i2002-00508-7)

44. Lo CC, Chou T, Penzel T, Scammell TE, Strecker RE,
Stanley HE, Ivanov PC. 2004 Common scale-
invariant patterns of sleep–wake transitions across
mammalian species. Proc. Natl Acad. Sci. USA 101,
17 545–17 548. (doi:10.1073/pnas.0408242101)

45. Allegrini P, Paradisi P, Menicucci D, Laurino M,
Piarulli A, Gemignani A. 2015 Self-organized
dynamical complexity in human wakefulness and
sleep: different critical brain-activity feedback for
conscious and unconscious states. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 92, 032808. (doi:10.1103/
PhysRevE.92.032808)

46. Fagerholm ED, Dinov M, Knöpfel T, Leech R. 2018
The characteristic patterns of neuronal avalanches in
mice under anesthesia and at rest: an investigation
using constrained artificial neural networks. PLoS
ONE 13, e0197893. (doi:10.1371/journal.pone.
0197893)

47. Ivanov PC, Bunde A, Amaral LN, Havlin S, Fritsch-
Yelle J, Baevsky RM, Stanley HE, Goldberger AL.
1999 Sleep-wake differences in scaling behavior of
the human heartbeat: analysis of terrestrial and
long-term space flight data. Europhys. Lett. 48, 594.
(doi:10.1209/epl/i1999-00525-0)

http://dx.doi.org/10.1371/journal.pbio.0050260
http://dx.doi.org/10.1371/journal.pbio.0050260
http://dx.doi.org/10.1111/j.0956-7976.2004.00748.x
http://dx.doi.org/10.1111/j.0956-7976.2004.00748.x
http://dx.doi.org/10.1016/j.neuron.2011.03.018
http://dx.doi.org/10.1016/j.neuron.2011.03.018
http://dx.doi.org/10.1126/scitranslmed.3006294
http://dx.doi.org/10.1126/scitranslmed.3006294
http://dx.doi.org/10.1016/j.concog.2017.08.008
http://dx.doi.org/10.1016/j.concog.2017.08.008
http://dx.doi.org/10.1103/PhysRevLett.110.178101
http://dx.doi.org/10.3389/fphys.2012.00307
http://dx.doi.org/10.1098/rsif.2015.1027
http://dx.doi.org/10.1016/j.neuroimage.2017.09.065
http://dx.doi.org/10.1016/j.neuroimage.2017.09.065
http://dx.doi.org/10.1103/PhysRevA.38.364
http://dx.doi.org/10.1523/JNEUROSCI.23-35-11167.2003
http://dx.doi.org/10.1523/JNEUROSCI.0540-04.2004
http://dx.doi.org/10.1523/JNEUROSCI.0540-04.2004
http://dx.doi.org/10.1016/j.neuroscience.2008.03.050
http://dx.doi.org/10.1016/j.neuroscience.2008.03.050
http://dx.doi.org/10.1371/journal.pone.0019779
http://dx.doi.org/10.1371/journal.pone.0019779
http://dx.doi.org/10.1073/pnas.0800537105
http://dx.doi.org/10.1073/pnas.0800537105
http://dx.doi.org/10.1371/journal.pone.0014129
http://dx.doi.org/10.1371/journal.pone.0014129
http://dx.doi.org/10.1152/jn.00953.2009
http://dx.doi.org/10.1073/pnas.0904089106
http://dx.doi.org/10.1186/1471-2202-10-40
http://dx.doi.org/10.7554/elife.27119
http://dx.doi.org/10.7554/elife.27119
http://dx.doi.org/10.1371/journal.pcbi.1002985
http://dx.doi.org/10.1371/journal.pcbi.1002985
http://dx.doi.org/10.1523/JNEUROSCI.3474-14.2014
http://dx.doi.org/10.7554/eLife.07224
http://dx.doi.org/10.1523/JNEUROSCI.1516-13.2013
http://dx.doi.org/10.1523/JNEUROSCI.1516-13.2013
http://dx.doi.org/10.1073/pnas.1216855110
http://dx.doi.org/10.1073/pnas.1216855110
http://dx.doi.org/10.3389/fphys.2010.00128
http://dx.doi.org/10.1523/JNEUROSCI.4286-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.4286-12.2013
http://dx.doi.org/10.3389/fphys.2012.00015
http://dx.doi.org/10.1523/JNEUROSCI.4637-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.3864-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.3864-09.2009
http://dx.doi.org/10.1177/1073858412445487
http://dx.doi.org/10.1371/journal.pone.0178683
http://dx.doi.org/10.3389/fnsys.2014.00108
http://dx.doi.org/10.1371/journal.pcbi.1006081
http://dx.doi.org/10.1209/epl/i2002-00508-7
http://dx.doi.org/10.1073/pnas.0408242101
http://dx.doi.org/10.1103/PhysRevE.92.032808
http://dx.doi.org/10.1103/PhysRevE.92.032808
http://dx.doi.org/10.1371/journal.pone.0197893
http://dx.doi.org/10.1371/journal.pone.0197893
http://dx.doi.org/10.1209/epl/i1999-00525-0


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190262

11
48. Kantelhardt JW, Ashkenazy Y, Ivanov PC, Bunde A,
Havlin S, Penzel T, Peter JH, Stanley HE. 2002
Characterization of sleep stages by correlations in
the magnitude and sign of heartbeat increments.
Phys. Rev. E 65, 051908. (doi:10.1103/PhysRevE.65.
051908)

49. Ivanov P. 2007 Scale-invariant aspects of cardiac
dynamics across sleep stages and circadian phases.
IEEE Eng. Med. Biol. Mag. 26, 33–37. (doi:10.1109/
EMB.2007.907093)

50. Schmitt DT, Stein PK, Ivanov PC. 2009 Stratification
pattern of static and scale-invariant dynamic
measures of heartbeat fluctuations across sleep
stages in young and elderly. IEEE Trans. Biomed.
Eng. 56, 1564–1573. (doi:10.1109/TBME.2009.
2014819)

51. Schumann AY, Bartsch RP, Penzel T, Ivanov PC,
Kantelhardt JW. 2010 Aging effects on cardiac and
respiratory dynamics in healthy subjects across sleep
stages. Sleep 33, 943–955. (doi:10.1093/sleep/
33.7.943)

52. Hoel EP, Albantakis L, Marshall W, Tononi G. 2016
Can the macro beat the micro? Integrated
information across spatiotemporal scales. Neurosci.
Conscious. 2016, niw012. (doi:10.1093/nc/niw012)

53. Berry RB et al. 2012 Rules for scoring respiratory
events in sleep: update of the 2007 AASM Manual for
the Scoring of Sleep and Associated Events.
Deliberations of the Sleep Apnea Definitions Task Force
of the American Academy of Sleep Medicine. J. Clin.
Sleep Med. 8, 597–619. (doi:10.5664/jcsm.2172)

54. Tagliazucchi E, Laufs H. 2014 Decoding wakefulness
levels from typical fMRI resting-state data reveals
reliable drifts between wakefulness and sleep.
Neuron 82, 695–708. (doi:10.1016/j.neuron.2014.
03.020)

55. Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L.
1998 Identification of EEG events in the MR scanner:
the problem of pulse artifact and a method for its
subtraction. Neuroimage 8, 229–239. (doi:10.1006/
nimg.1998.0361)

56. Glover GH, Li TQ, Ress D. 2000 Image-based method
for retrospective correction of physiological motion
effects in fMRI: RETROICOR. Magn. Reson. Med. 44,
162–167. (doi:10.1002/1522-2594(200007)44:1<
162::AID-MRM23>3.0.CO;2-E)

57. Liu X, Duyn JH. 2013 Time-varying functional
network information extracted from brief instances of
spontaneous brain activity. Proc. Natl Acad. Sci. USA
110, 4392–4397. (doi:10.1073/pnas.1216856110)

58. Tagliazucchi E, Siniatchkin M, Laufs H, Chialvo DR.
2016 The voxel-wise functional connectome can be
efficiently derived from co-activations in a sparse
spatio-temporal point-process. Front. Neurosci. 10,
381. (doi:10.3389/fnins.2016.00381)

59. Clauset A, Cosma S, Newman M. 2009 Power-law
distributions in empirical data. SIAM Rev. 51,
661–703. (doi:10.1137/070710111)

60. Expert P, Lambiotte R, Chialvo DR, Christensen K,
Jensen HJ, Sharp DJ, Turkheimer F. 2011 Self-similar
correlation function in brain resting-state functional
magnetic resonance imaging. J. R. Soc. Interface 8,
472–479. (doi:10.1098/rsif.2010.0416)

61. Levina A, Priesemann V. 2017 Subsampling scaling.
Nat. Commun. 8, 15140. (doi:10.1038/
ncomms15140)

62. Bédard C, Kröger H, Destexhe A. 2006 Does the 1/f
frequency scaling of brain signals reflect self-
organized critical states? Phys. Rev. Lett. 97,
118102. (doi:10.1103/PhysRevLett.97.118102)

63. Touboul J, Destexhe A. 2010 Can power-law scaling
and neuronal avalanches arise from stochastic
dynamics? PLoS ONE 5, e8982. (doi:10.1371/journal.
pone.0008982)

64. Dehghani N, Hatsopoulos NG, Haga ZD, Parker RA,
Greger B, Halgren E, Cash SS, Destexhe A. 2012
Avalanche analysis from multielectrode ensemble
recordings in cat, monkey, and human cerebral
cortex during wakefulness and sleep. Front. Physiol.
3, 302. (doi:10.3389/fphys.2012.00302)

65. Fraiman D, Balenzuela P, Foss J, Chialvo DR. 2009
Ising-like dynamics in large-scale functional brain
networks. Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 79(6 Pt 1), 061922. (doi:10.1103/PhysRevE.79.
061922)

66. Beggs JM, Timme N. 2012 Being critical of criticality
in the brain. Front. Physiol. 3, 163. (doi:10.3389/
fphys.2012.00163)

67. Beggs JM. 2008 The criticality hypothesis: how local
cortical networks might optimize information
processing. Phil. Trans. R. Soc. A 366, 329–343.
(doi:10.1098/rsta.2007.2092)

68. Langlois D, Cousineau D, Thivierge JP. 2014
Maximum likelihood estimators for truncated and
censored power-law distributions show how
neuronal avalanches may be misevaluated. Phys.
Rev. E Stat. Nonlin. Soft Matter Phys. 89, 012709.
(doi:10.1103/PhysRevE.89.012709)

69. Lo CC, Bartsch RP, Ivanov PC. 2013 Asymmetry and
basic pathways in sleep-stage transitions. Europhys.
Lett. 102, 10008. (doi:10.1209/0295-5075/102/
10008)

70. Dvir H, Elbaz I, Havlin S, Appelbaum L, Ivanov PC,
Bartsch RP. 2018 Neuronal noise as an origin of
sleep arousals and its role in sudden infant death
syndrome. Sci. Adv. 4, eaar6277. (doi:10.1126/
sciadv.aar6277)

71. Bak P, Christensen K, Danon L, Scanlon T. 2002
Unified scaling law for earthquakes. Phys. Rev. Lett.
88, 178501. (doi:10.1103/PhysRevLett.88.
178501)

72. Jahnke K, von Wegner F, Morzelewski A, Borisov S,
Maischein M, Steinmetz H, Laufs H. 2012 To wake
or not to wake? The two-sided nature of the human
K-complex. Neuroimage 59, 1631–1638. (doi:10.
1016/j.neuroimage.2011.09.013)

73. Siclari F, Baird B, Perogamvros L, Bernardi G,
LaRocque JJ, Riedner B, Boly M, Postle BR, Tononi
G. 2017 The neural correlates of dreaming. Nat.
Neurosci. 20, 872–878. (doi:10.1038/nn.4545)
74. Siclari F, Bernardi G, Cataldi J, Tononi G. 2018
Dreaming in NREM sleep: a high-density EEG study
of slow waves and spindles. J. Neurosci. 38,
9175–9185. (doi:10.1523/JNEUROSCI.0855-18.2018)

75. Nieminen JO, Gosseries O, Massimini M, Saad E,
Sheldon AD, Boly M, Siclari F, Postle BR, Tononi G.
2016 Consciousness and cortical responsiveness: a
within-state study during non-rapid eye movement
sleep. Sci. Rep. 6, 30932. (doi:10.1038/srep30932)

76. Siclari F, Tononi G. 2017 Local aspects of sleep and
wakefulness. Curr. Opin. Neurobiol. 44, 222–227.
(doi:10.1016/j.conb.2017.05.008)

77. Bernardi G, Siclari F, Handjaras G, Riedner BA,
Tononi G. 2018 Local and widespread slow waves in
stable NREM sleep: evidence for distinct regulation
mechanisms. Front. Hum. Neurosci. 12, 248. (doi:10.
3389/fnhum.2018.00248)

78. Bernardi G, Betta M, Ricciardi E, Pietrini P, Tononi G,
Siclari F. 2019 Regional delta waves in human
rapid-eye movement sleep. J. Neurosci. 39,
2686–2697. (doi:10.1523/jneurosci.2298-18.2019)

79. Siclari F, Larocque JJ, Postle BR, Tononi G. 2013
Assessing sleep consciousness within subjects using
a serial awakening paradigm. Front. Psychol. 4, 542.
(doi:10.3389/fpsyg.2013.00542)

80. Schwartz JR, Roth T. 2008 Neurophysiology of sleep
and wakefulness: basic science and clinical
implications. Curr. Neuropharmacol. 6, 367–378.
(doi:10.2174/157015908787386050)

81. Tagliazucchi E, Behrens M, Laufs H. 2013 Sleep
neuroimaging and models of consciousness. Front.
Psychol. 4, 256. (doi:10.3389/fpsyg.2013.00256)

82. Tagliazucchi E, van Someren EJW. 2017 The large-
scale functional connectivity correlates of
consciousness and arousal during the healthy and
pathological human sleep cycle. Neuroimage 160,
55–72. (doi:10.1016/j.neuroimage.2017.06.026)

83. Stevner A et al. 2019 Discovery of key whole-brain
transitions and dynamics during human
wakefulness and non-REM sleep. Nat. Commun. 10,
1035. (doi:10.1038/s41467-019-08934-3)

84. Seth AK, Barrett AB, Barnett L. 2011 Causal density
and integrated information as measures of
conscious level. Phil. Trans. R. Soc. A 369,
3748–3767. (doi:10.1098/rsta.2011.0079)

85. Carhart-Harris RL et al. 2014 The entropic brain: a
theory of conscious states informed by
neuroimaging research with psychedelic drugs.
Front. Hum. Neurosci. 8, 20. (doi:10.3389/fnhum.
2014.00020)

86. Chalmers D. 1995 Facing up to the problem of
consciousness. J. Conscious. Stud. 2, 19.

87. Liu KK, Bartsch RP, Lin A, Mantegna RN, Ivanov PC.
2015 Plasticity of brain wave network interactions
and evolution across physiologic states. Front.
Neural Circuits 9, 62. (doi:10.3389/fncir.2015.00062)

88. Bartsch RP, Liu KK, Bashan A, Ivanov PC. 2015
Network physiology: how organ systems
dynamically interact. PLoS ONE 10, e0142143.
(doi:10.1371/journal.pone.0142143)

http://dx.doi.org/10.1103/PhysRevE.65.051908
http://dx.doi.org/10.1103/PhysRevE.65.051908
http://dx.doi.org/10.1109/EMB.2007.907093
http://dx.doi.org/10.1109/EMB.2007.907093
http://dx.doi.org/10.1109/TBME.2009.2014819
http://dx.doi.org/10.1109/TBME.2009.2014819
http://dx.doi.org/10.1093/sleep/33.7.943
http://dx.doi.org/10.1093/sleep/33.7.943
http://dx.doi.org/10.1093/nc/niw012
http://dx.doi.org/10.5664/jcsm.2172
http://dx.doi.org/10.1016/j.neuron.2014.03.020
http://dx.doi.org/10.1016/j.neuron.2014.03.020
http://dx.doi.org/10.1006/nimg.1998.0361
http://dx.doi.org/10.1006/nimg.1998.0361
http://dx.doi.org/10.1002/1522-2594(200007)44:1%3C162::AID-MRM23%3E3.0.CO;2-E
http://dx.doi.org/10.1002/1522-2594(200007)44:1%3C162::AID-MRM23%3E3.0.CO;2-E
http://dx.doi.org/10.1073/pnas.1216856110
http://dx.doi.org/10.3389/fnins.2016.00381
http://dx.doi.org/10.1137/070710111
http://dx.doi.org/10.1098/rsif.2010.0416
http://dx.doi.org/10.1038/ncomms15140
http://dx.doi.org/10.1038/ncomms15140
http://dx.doi.org/10.1103/PhysRevLett.97.118102
http://dx.doi.org/10.1371/journal.pone.0008982
http://dx.doi.org/10.1371/journal.pone.0008982
http://dx.doi.org/10.3389/fphys.2012.00302
http://dx.doi.org/10.1103/PhysRevE.79.061922
http://dx.doi.org/10.1103/PhysRevE.79.061922
http://dx.doi.org/10.3389/fphys.2012.00163
http://dx.doi.org/10.3389/fphys.2012.00163
http://dx.doi.org/10.1098/rsta.2007.2092
http://dx.doi.org/10.1103/PhysRevE.89.012709
http://dx.doi.org/10.1209/0295-5075/102/10008
http://dx.doi.org/10.1209/0295-5075/102/10008
http://dx.doi.org/10.1126/sciadv.aar6277
http://dx.doi.org/10.1126/sciadv.aar6277
http://dx.doi.org/10.1103/PhysRevLett.88.178501
http://dx.doi.org/10.1103/PhysRevLett.88.178501
http://dx.doi.org/10.1016/j.neuroimage.2011.09.013
http://dx.doi.org/10.1016/j.neuroimage.2011.09.013
http://dx.doi.org/10.1038/nn.4545
http://dx.doi.org/10.1523/JNEUROSCI.0855-18.2018
http://dx.doi.org/10.1038/srep30932
http://dx.doi.org/10.1016/j.conb.2017.05.008
http://dx.doi.org/10.3389/fnhum.2018.00248
http://dx.doi.org/10.3389/fnhum.2018.00248
http://dx.doi.org/10.1523/jneurosci.2298-18.2019
http://dx.doi.org/10.3389/fpsyg.2013.00542
http://dx.doi.org/10.2174/157015908787386050
http://dx.doi.org/10.3389/fpsyg.2013.00256
http://dx.doi.org/10.1016/j.neuroimage.2017.06.026
http://dx.doi.org/10.1038/s41467-019-08934-3
http://dx.doi.org/10.1098/rsta.2011.0079
http://dx.doi.org/10.3389/fnhum.2014.00020
http://dx.doi.org/10.3389/fnhum.2014.00020
http://dx.doi.org/10.3389/fncir.2015.00062
http://dx.doi.org/10.1371/journal.pone.0142143

	The avalanche-like behaviour of large-scale haemodynamic activity from wakefulness to deep sleep
	Introduction
	Methods
	NREM sleep fMRI data
	EEG and fMRI recording
	Image pre-processing
	Point-process transformation
	Connected clusters of co-activated voxels
	Power-law distributions
	Statistical testing
	Coarse graining
	BOLD time-series phase shuffling
	Robustness against threshold change

	Results
	Power laws
	Scaling parameters
	Coarse graining
	Phase shuffling
	Correlations between scaling exponents and prevalence of sleep grapho-elements
	Robustness against the point-process threshold
	Two-point spatial correlation function

	Discussion
	Ethics
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	References


