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The retained functionality of the sodium iodide symporter (NIS) expressed in differentiated thyroid cancer (DTC) cells allows the 
further utilization of post-surgical radioactive iodine (RAI) therapy, which is an effective treatment for reducing the risk of recur-
rence, and even the mortality, of DTC. Whereas, the dedifferentiation of DTC could influence the expression of functional NIS, 
thereby reducing the efficacy of RAI therapy in advanced DTC. Genetic alternations (such as BRAF and the rearranged during trans-
fection [RET]/papillary thyroid cancer [PTC] rearrangement) have been widely reported to be prominently responsible for the onset, 
progression, and dedifferentiation of PTC, mainly through activating the mitogen-activated protein kinase (MAPK) and phos-
phoinositide 3-kinase (PI3K) signaling cascades. These genetic alternations have been suggested to associate with the reduced ex-
pression of iodide-handling genes in thyroid cancer, especially the NIS gene, disabling iodine uptake and causing resistance to RAI 
therapy. Recently, novel and promising approaches aiming at various targets have been attempted to restore the expression of these 
iodine-metabolizing genes and enhance iodine uptake through in vitro studies and studies of RAI-refractory (RAIR)-DTC patients. 
In this review, we discuss the regulation of NIS, known mechanisms of dedifferentiation including the MAPK and PI3K pathways, 
and the current status of redifferentiation therapy for RAIR-DTC patients.
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INTRODUCTION

Thyroid cancer has emerged as a striking health issue over recent 
decades because of its gradually increasing incidence world-
wide. The global incidence of thyroid cancer is 6.7 per 100,000, 
and the number of newly diagnosed likely cases in China has ex-
ceeded 190,000 (194,232 cases) [1]. Papillary thyroid cancer 

(PTC), follicular thyroid cancer, and Hürthle cell cancer are de-
rived from follicular cells; thus, they are collectively character-
ized as differentiated thyroid cancer (DTC), and account for 
more than 90% of all thyroid malignancies [2,3]. Although most 
DTC cases have a quite favorable prognosis after standard thera-
peutic approaches, including surgery, selective radioactive iodine 
(RAI) therapy, and thyroid stimulating hormone (TSH) suppres-
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sive therapy, the risk of local recurrence and distant metastasis 
may be up to 20% and 10%, respectively. Among these patients, 
two-thirds show initial or gradual loss of the ability of iodine up-
take due to the dysfunction, and even loss, of sodium iodide 
symporter (NIS) expression in the basal membrane, indicating a 
status of dedifferentiation known as RAI-refractory DTC (RAIR-
DTC), which is of major clinical concern because its 10-year sur-
vival rate is less than 10% [4]. 

Genetic alterations are the fundamental drivers for the tumori-
genesis and pathogenesis of thyroid cancer, aberrantly activat-
ing the mitogen-activated protein kinase (MAPK) and phos-
phoinositide 3-kinase (PI3K) pathways [5,6]. These alternations 
are also known to be associated with the silencing of various 
thyroid iodine-metabolizing genes, especially solute carrier 
family 5 member 5 (SLC5A5), which encodes NIS, thus result-
ing in the failure of RAI therapy [7-9]. Multiple agents have 
been investigated in attempts to restore NIS expression and to 
enhance RAI uptake in RAIR-DTC patients. This review aimed 
to summarize the regulation of NIS, the possible mechanism of 
NIS downregulation, and the potential of redifferentiation thera-
py for RAIR-DTC.

PHYSIOLOGICAL REGULATION OF NIS 
EXPRESSION

Iodide, as an essential component, is utilized by follicular cells 
to synthesize thyroid hormone in the normal thyroid. As it is ex-
pressed on the basal membrane, NIS provides the physiological 
basis for the active transport of iodide into the follicular cells of 
the thyroid [10]. DTC cells can retain similar functions to those 
of follicular cells, such as iodine uptake and iodination [11,12], 
which allows RAI therapy to be the mainstay for the treatment 
of intermediate and high-risk DTC after surgery [13]. To de-
stroy residual or potential subclinical lesions, RAI therapy could 
improve disease-specific survival and progression-free survival 
[14]. Hence, the function or expression of NIS in DTC cells is 
crucial for the efficacy of RAI therapy in such patients. 

Functional NIS expression can be regulated at both the tran-
scriptional and post-translational levels. As the predominant 
regulator of NIS expression, TSH is primarily involved at the 
translational level. After the binding of TSH with the TSH re-
ceptor, adenylyl cyclase is stimulated through the Gs-protein, 
which in turn increases the expression of cyclic adenosine mo-
nophosphate (cAMP). cAMP then induces NIS transcription by 
activating several signaling pathways that could stimulate the 
NIS upstream enhancer (NUE). It is now known that the human 

NUE consists of paired box gene-8 (PAX8; thyroid-specific 
transcription factor) binding site and cAMP-response element 
like site, both of which are important for the integrated activity 
of the NUE [15]. As illustrated in Fig. 1, cAMP can stimulate 
the NUE through both protein kinase A (PKA)-independent and 
-dependent pathways. Through redox effector factor-1 (Ref-1), 
the PKA-independent pathway, PAX8 is subsequently stimulat-
ed to bind to the NUE, leading to the activation of NUE [15-18], 
and this pathway plays a key role in the differentiation of the 
thyroid [19]. Through the PKA-dependent pathway, the activat-
ed PKA could phosphorylate the cAMP-responsive element 
modulator, enhancing NUE activity [20,21].

TSH-independent mechanisms also regulate NIS expression, 
which mainly include three pathways influencing the binding of 

Fig. 1. Regulation of the sodium iodide symporter (NIS) upstream 
enhancer (NUE) at the transcriptional level in thyroid cells. TSHR, 
thyroid stimulating hormone receptor; AC, adenylyl cyclase; 
cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; 
CRE, cAMP-response element; CREM, CRE-modulator; Ref1, apu-
rinic apyrimidinic endonuclease redox effector factor-1; Pax8, 
paired box gene-8; TGFβ, transforming growth factor β; TLR4, 
Toll-like receptor 4; NF-κB, p65, a member of the class II nuclear 
factor κ-light-chain-enhancer of activated B cells, p65; PTTG1, pi-
tuitary tumor-transforming gene-1; PBF, PTTG1-binding factor.
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PAX8 to NUE. First, in the transforming growth factor β 
(TGFβ)-SMAD signaling pathway, TGFβ activates the down-
stream Smad3 and subsequently inhibits the binding of PAX8 to 
NUE, significantly decreasing NIS mRNA expression in thyroid 
cells [9,16]. Second, in the Toll-like receptor (TLR)-nuclear fac-
tor κ-light-chain-enhancer of activated B cells (NF-κB) signal-
ing pathway, the TLR activates the downstream NF-κB, which 
further interacts with PAX8, activating NIS transcription via the 
NUE [22,23]. Third, in the pituitary tumor-transforming gene-1 
product (PTTG1)-binding factor (PBF) complex, the PTTG1 
and the PBF could interfere with the binding of PAX8 to the 
NUE, thus suppressing the expression of NIS (Fig. 1) [24-26]. 
Saez et al. [26] reported that increased PTTG1 expression could 
reduce the efficacy of RAI therapy in thyroid cancer. 

Concerning post-translational regulation, abundant NIS ex-
pression may mis-localize in the intracellular compartment rath-
er than the cell membrane [27]. This abnormal membrane tar-
geting of NIS could disable iodide transport and result in the re-
duced uptake and accumulation of RAI in thyroid cancer cells, 
inducing the probable failure of RAI therapy in a subset of DTC.

KNOWN PATHWAYS DOWNREGULATING 
THE EXPRESSION OF NIS

MAPK/ERK pathway
The MAPK pathway has been well recognized and established 
in the regulation of cell proliferation, dedifferentiation, and sur-
vival [28-30], particularly for PTC. Among the signal molecules 
of this pathway, BRAF mutations and the rearranged during 
transfection (RET)/PTC rearrangement are frequently detected 
in PTC, which often exhibit as exclusive mutations in such pa-
tients [5,31,32]. The BRAFV600E mutation, as a prominently 
prevalent oncogene, is critical for the initiation and/or progres-
sion of PTC through aberrantly activating the MAPK signaling 
pathway, which can downregulate the expression of thyroid io-
dide-handling genes, especially NIS, and thus induce the dedif-
ferentiation of PTC [28,33-36]. Increasing evidence has demon-
strated a strong association between the BRAFV600E mutation 
and the loss of RAI-avidity in PTC [37-40], which could pro-
vide a reasonable explanation for the failure of RAI therapy in 
BRAFV600E-mutant PTC. 

Fig. 2. Known pathways involved in the regulation of sodium iodide symporter (NIS) in thyroid cancer. RTK, receptor tyrosine kinase; IGF-
1, insulin-like growth factor-1; TGFβ, transforming growth factor β; PTC, papillary thyroid cancer; PI3K, phosphoinositide 3-kinase; Ras-
GRP3, Ras guanyl releasing protein 3; PAX8, paired box gene-8; MEK, mitogen-activated extracellular signal-regulated kinase; ERK, ex-
tracellular regulated protein kinase; mTOR, mechanistic target of rapamycin; VEGFA, vascular endothelial growth factor A; MET, mesen-
chymal to epithelial transition factor; TSP1, thrombospondin 1; TIMP3, tissue inhibitor of metalloproteinases 3.
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As an important epigenetic event, histone acetylation plays a 
fundamental role in the regulation of gene transcription [41,42]. 
Through aberrant activation of the MAPK pathway, histone 
acetylation at the promoter of the gene encoding NIS could be 
downregulated, which is considered as one of the key molecular 
events involving the aberrant silencing of thyroid iodide-han-
dling genes [5,43-46]. Meanwhile, the BRAFV600E mutation can 
also upregulate the expression of tumor-promoting genes (e.g., 
vascular endothelial growth factor A [VEGFA], mesenchymal to 
epithelial transition factor [MET], TGFβ1, and thrombospondin 
1 [TSP1]) [9,34,47-49] and downregulate the expression of tu-
mor suppressor genes (e.g., tissue inhibitor of metalloproteinas-
es 3 [TIMP3], solute carrier family 5 member 8 [SLC5A8], and 
death-associated protein kinase 1 [DAPK1]) [50], which are im-
portant constituents of the tumor microenvironment. It is note-
worthy that the autocrine TGFβ loop could play a role in aber-
rant NIS expression. Riesco-Eizaguirre et al. [9] and Costamag-
na et al. [16] reported that the BRAFV600E mutation could induce 
the secretion of TGFβ, which subsequently stimulated SMAD3 
and impaired PAX8, causing a decrease of NIS expression. As 
this process was independent of the MAPK pathway, their result 
undoubtedly indicates that TGFβ could be considered as a can-
didate therapeutic target for the restoration of NIS expression in 
patients with advanced DTC (Fig. 2). 

It was recently recognized that telomerase reverse transcrip-
tase (TERT) promoter (TERTp) mutations are particularly prev-
alent in aggressive thyroid cancers, especially BRAFV600E-mu-
tant PTC, but are virtually undetectable in benign thyroid neo-
plasms [51,52]. TERTp mutations were demonstrated to be as-
sociated with aggressive tumor behavior and poor prognosis in 
thyroid cancer [53-55], and were also observed to be correlated 
with the reduction of RAI uptake in distant metastatic lesions of 
PTC [56], which suggested that TERTp mutations may play a 
role in the dedifferentiation of thyroid cancer. It was also report-
ed that the duet alternation of BRAFV600E and TERTp mutations 
have a robust synergistic effect on the progression and poor 
clinical outcomes of PTC. Recently, Liu et al. [57] revealed that 
the BRAFV600E/MAPK pathway could phosphorylate and acti-
vate fructooligosaccharide, which in turn acted as a transcrip-
tion factor to activate the GA binding protein transcription fac-
tor subunit beta (GABPB) promoter, increasing GABPB expres-
sion and leading to the formation of the GA binding protein 
transcription factor subunit alpha (GABPA)-GABPB complex, 
thus activating the mutant TERT promoter and upregulating 
TERT expression. The discovery of TERTp mutations and the 
genetic duet of coexisting mutations could afford promising 

molecular targets for the salvage therapy of RAIR-PTC. 
Concerning the RET/PTC rearrangement, evidence about its 

impact on the dedifferentiation of DTC remains limited. Trapas-
so et al. [58] and Wang et al. [59] reported that alternation of 
RET/PTC in the thyroid cell line could decrease the expression 
of thyroid differentiation markers, such as TSH receptor, TPO, 
NIS, and thyroglobulin. Furthermore, exogenous RET/PTC 
could significantly suppress the expression of PAX8 and the ac-
tivity of PKA, leading to reduced NIS expression [8,58]. 

PI3K/AKT pathway
In addition to the MAPK pathway, the PI3K/AKT pathway also 
plays a fundamental role in controlling both cell proliferation 
and differentiation in DTC. In recent years, several genetic alter-
ations activating the PI3K pathway have been identified in thy-
roid cancer, which was also shown to downregulate iodide-han-
dling genes in thyroid cells [5,60]. Song et al. [61] recently re-
ported that, also by this pathway, mutation of Ras guanyl releas-
ing protein 3 (RasGRP3) decreased the expression of NIS and 
the TSH receptor in metastases of RAIR-DTC. Furthermore, the 
PI3K pathway could be activated by multiple growth factors 
such as insulin/insulin-like growth factor-1 (IGF-1) and epider-
mal growth factor [62]. Garcia and Santisteban [63] reported 
that IGF-1 could inhibit TSH-dependent NIS expression and re-
duce the iodide uptake in fisher rat thyroid cell line-5 (FRTL-5) 
rat thyroid cells through activating the PI3K/AKT pathway (Fig. 
2). It has been shown that inhibition of the PI3K pathway by 
LY294002 could significantly increase the expression of NIS 
mRNA in rat thyroid cells and PTC cells, which, from another 
aspect, indicated the important role of the PI3K pathway in reg-
ulating NIS-mediated iodide accumulation in thyroid cancer 
[64]. The serine-threonine protein kinase mechanistic target of 
rapamycin (mTOR), which is located downstream of the PI3K/
AKT pathway, has been identified as a regulator of cellular me-
tabolism and proliferation. Souza et al. [65] reported that mTOR 
inhibition not only regulated cell survival, but also increased 
RAI uptake in both in vitro and in vivo studies. 

REDIFFERENTIATION THERAPY FOR 
RAIR-DTC

During the past decade, although great progress has been 
achieved in the treatment of RAIR-DTC with the application of 
multi-kinase inhibitors (MKIs), therapeutic options for these 
patients are still limited. As RAI resistance is predominantly 
due to the dedifferentiation of DTC, redifferentiation therapy 
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followed by RAI therapy undoubtedly is a promising alternative 
option for RAIR-DTC patients. Several agents, including reti-
noic acid (RA) [66], peroxisome proliferator-activated receptor 
gamma (PPARγ) agonists [67], and histone deacetylase 
(HDAC) inhibitors [68], have been tried to modulate the NIS 
gene at the transcription level, but displayed limited clinical val-
ue in redifferentiation therapy for patients with RAIR-DTC. Re-
cent studies using drugs that selectively inhibit the MAPK and 
PI3K pathways showed promising results for restoring the ex-
pression of the gene encoding NIS and improving the response 
to RAI therapy in RAIR-DTC, such as mitogen-activated extra-
cellular signal-regulated kinase (MEK)/RAF inhibitors [69,70], 
PI3K/mTOR inhibitors [64] and receptor tyrosine kinase (RTK) 
inhibitors [71], which were used to restore NIS expression by 
suppressing the signaling pathways in such patients. 

 
Agents modulating NIS at the gene transcriptional level
RA is a biologically active metabolite of vitamin A that play key 
roles in cell differentiation and proliferation. RA has been used 
for redifferentiation treatment of thyroid cancer, exerting its ef-
fects via retinoid receptors, RA receptors (RAR), or retinoid X 
receptors (RXR). Studies have shown that NIS mRNA expres-
sion was upregulated by RA stimulation in human follicular 
thyroid carcinoma cell lines [72]. Several early small cohort 
studies showed that 40% to 50% of patients with RAIR-DTC 
experienced renewed RAI uptake after RA treatment [73-75]. 
However, such promising results could not be repeated by sub-
sequent studies, which disappointingly indicated that only 6% 
to 20% of patients showed increased RAI uptake after RA ad-
ministration [66,76,77]. A recent open-label, non-randomized 
phase II trial reported even more disappointing results, with 
only one patient (1/16) showing increased RAI uptake after RA 
administration [66]. 

The PPARγ is a nuclear receptor which can regulate the pro-
liferation and redifferentiation of the cell through forming a het-
erodimer with RXR [78,79]. Pieces of evidence have shown that 
the rosiglitazone, a PPARγ agonist agent for the redifferentiation 
treatment of thyroid cancer, increased NIS mRNA expression 
and RAI uptake in thyroid cells [80,81]. However, the results of 
a phase II clinical trial were disappointing, as 25% (5/20) of the 
patients displayed positive RAI uptake after rosiglitazone treat-
ment, but no clinical response in long-term follow-up [67]. 

HDAC is an enzyme that deacetylates histones, which could 
silence the expression of NIS in thyroid cancer [5]. HDAC in-
hibitors were found to increase the expression of NIS mRNA at 
the epigenetic level in an in vitro study [82]. Preclinical studies 

have shown renewed RAI uptake after treatment with various 
HDAC inhibitors, such as suberoylanilide hydroxamic acid 
(SAHA), depsipeptide (romidepsin), and valproic acid. Never-
theless, their independent significance in clinical trials was lim-
ited. Kelly et al. [83] reported that only one (1/3) advanced thy-
roid cancer patient showed increased RAI uptake after SAHA 
administration. In a phase I clinical trial of romidepsin, no posi-
tive RAI uptake was detected by RAI scintigraphy among 11 
enrolled RAIR-DTC patients [84]. Furthermore, the results of a 
phase II clinical trial using romidepsin showed that only two 
patients experienced increased RAI uptake and no major re-
sponse was observed in 20 patients with RAIR-DTC [68]. Ni-
lubol et al. [85] performed a phase II clinical trial to evaluate the 
effect of valproic acid, without renewed RAI uptake. 

MAPK inhibitors
The independent administration of retinoids, romidepsin, and 
rosiglitazone was shown to have limited clinical application in 
redifferentiation therapy for RAIR-DTC. With the development 
of molecular and cellular biology, multiple novel targets have 
been revealed, which could afford new options for the rediffer-
entiation therapy of RAIR-DTC. Evidence has shown that 
agents selectively inhibiting the MAPK pathway, such as BRAF 
or MEK inhibitors, could induce thyroid gene expression and 
restore RAI uptake in thyroid cancer cells [43,86]. The results 
of a clinical trial performed by Ho et al. [69] revealed that, after 
treatment with selumetinib, a selective MEK inhibitor, 124I up-
take was increased in RAIR-PTC patients, which indicated the 
restoration of NIS expression in these patients. Meanwhile, it 
was interesting that the efficacy of selumetinib was better in pa-
tients with an NRAS mutation than those with the BRAFV600E 
mutation [69]. Furthermore, the prior phase II clinical trial of 
selumetinib seemed to suggest that BRAFV600E mutant patients 
exhibited longer median progression-free survival than patients 
with BRAF wild-type tumors [87]. This suggested a potential 
relationship between the therapeutic efficacy of selumetinib and 
genetic alterations. However, it was disappointing that the sub-
sequent phase III trial of selumetinib failed to reconfirm its ef-
fect in the restoration of RAI uptake, which suggested that fur-
ther studies are needed to explore the efficacy of MEK inhibi-
tors in the redifferentiation of RAIR-DTC. 

Another phase II clinical trial showed that dabrafenib, a 
BRAF inhibitor, increased RAI uptake in 60% (6/10) of BRAF-
mutant RAIR-DTC patients, with two of the six achieving par-
tial response after subsequent RAI therapy [88], which sur-
passed selumetinib in the treatment of BRAF-mutated RAIR-
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DTC. Vemurafenib, another BRAF inhibitor, could also restore 
RAI uptake in a subset of BRAF-mutant RAIR-DTC patients, 
which was likely due to the upregulation of thyroid-specific 
gene expression via inhibition of the MAPK pathway [70]. Ear-
lier studies showed that HDAC inhibitors (such as SAHA) 
alone could induce the expression of NIS and faint RAI uptake 
in thyroid cancer cells [89,90]; gratifyingly, a recent study re-
ported that combined treatment with an HDAC inhibitor and a 
MAPK inhibitor (dabrafenib and selumetinib) showed a robust 
redifferentiation effect in BRAFV600E-mutated thyroid cancer 
cells [91]. This result suggests that the combined administration 
of HDAC and/or MAPK inhibitors might be a promising choice 
to improve the efficacy of redifferentiation therapy in RAIR-
DTC patients. Furthermore, Nagarajah et al. [92] reported that 
extracellular regulated protein kinase (ERK) inhibitors could 
significantly increase the accumulation of 124I in BRAFV600E-mu-
tant PTC cells, indicating that ERK inhibitors may be a poten-
tial candidate for redifferentiation therapy in BRAFV600E-mutant 
PTC.

PI3K inhibitors
As mentioned above, the aberrant activation of the PI3K/AKT/
mTOR pathway could downregulate NIS expression [5], indi-
cating that this pathway may be a potential therapeutic target for 
the redifferentiation therapy of RAIR-DTC. LY294002, a PI3K 
inhibitor, significantly upregulated the expression of NIS 
mRNA and improved iodide uptake through induction of PAX8 
in DTC cell lines [64,93]. Moreover, the inhibition of AKT also 
exhibited an increase of iodide uptake by mediating the expres-
sion of NIS in thyroid cells [93]. Plantinga et al. [94] reported 
that an mTOR inhibitor could induce iodine uptake through in-
creasing thyroid transcription factor 1 (TTF1) expression in an 
in vitro study. Nevertheless, findings have not been reported 
from several in vivo studies that were initiated to evaluate the 
changes of iodine uptake by suppressing the PI3K pathway in 
RAIR-DTC patients. Hence, further studies might be necessary 
to elucidate the impact of PI3K/AKT/mTOR pathway inhibitors 
on the redifferentiation of RAIR-DTC. 

RTK inhibitors
RTKs, such as vascular endothelial growth factor receptor 
(VEGFR), RET, platelet-derived growth factor receptors (PDG-
FRs), and human epidermal growth factor receptor (HER), are 
also crucial molecules inducing the dedifferentiation of DTC. 
By aberrantly causing the MAPK pathway to rebound, RTKs, 
such as HER3, could also lead to resistance to MKIs in RAIR-

DTC patients [95]. Agents targeting RTKs have been recently 
investigated for the redifferentiation and salvage therapy of 
MKI-resistant RAIR-DTC. Cheng et al. [71] reported that com-
bination therapy of BRAF/MEK inhibitors (dabrafenib/selu-
metinib) with an HER inhibitor (lapatinib) could upregulate NIS 
expression and suppress the MAPK pathway without a rebound 
phenomenon, and the corresponding phase I trial is now under-
way. The above-mentioned results may afford us a new pro-
spective for the redifferentiation therapy of RAIR-DTC, as well 
as alternative salvage therapy for MKI-resistant advanced thy-
roid cancer.

CONCLUSIONS

The expression of NIS allows RAI therapy to be a highly effec-
tive management strategy for DTC, especially in metastatic 
DTC patients. Genetic alternations could reduce the expression 
of NIS and lead to the dedifferentiation of DTC, mainly through 
activation of the MAPK and PI3K pathways in thyroid cancer, 
causing a RAIR state that represents a life-threatening clinical 
situation. Efforts have been made to restore NIS expression and 
enhance RAI avidity in RAIR-DTC. Agents for dedifferentia-
tion therapy at the transcriptional level have yielded limited 
clinical impact in clinical trials. Kinase inhibitors targeting the 
MAPK or PI3K pathways have shown promising effects in re-
differentiation therapy and shed light on future combination 
therapy between either kinase inhibitors with different targets or 
kinase inhibitors and RAI in the management of RAIR-DTC.
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