Skip to main content
. 2019 Sep 6;20(18):4387. doi: 10.3390/ijms20184387

Figure 5.

Figure 5

Proposed model of the molecular mechanism leading to the high anthocyanin content in the the purple turnip (PT). Naringenin chalcone is isomerized by chalcone isomerase (CHI) to naringenin. Flavanone 3-hydroxylase (F3H) converts naringenin into dihydroflavonols (dihydrokaempferol, dihydroquercetin or dihydrotricetin). Then, the three dihydroflavonols are converted into colorless leucoanthocyanidins by dihydroflavonol 4-reductase (DFR) and subsequently to colored anthocyanidins by anthocyanidin synthase (ANS). Anthocyanidins are glycolsylated to facilitate their accumulation in cells by the enzyme flavonoid 3-O-glucosyltransferase (UFGT). Proanthocyanidins are generated by the action of leucoanthocyanidin reductase (LAR) from leucoanthocyanidins. DFR, ANS and UFGT were found significantly up-regulated in PT leading to a high content of 17 anthocyanins compounds (more than 20 times compared to the green turnip). In contrast, FLS was found significantly down-regulated and may lead to a weak accumulation of flavonols. PT tends to prioritize anthocyanins accumulation by diverting dihydroflavonols to the anthocyanins biosynthesis pathway.