Skip to main content
. 2019 Sep 1;9(9):430. doi: 10.3390/biom9090430

Table 3.

Representative flavones and their underlying anti-diabetic effects.

Flavonoid Subclass Name of Flavonoid Structure of Flavonoid Dietary Source Metabolites Produced from Flavonoids Function of Flavonoids Mechanism of Action Model Used References
In Vivo In Vitro
Flavones 10. Baicalein graphic file with name biomolecules-09-00430-i011.jpg Scutellaria lateriflora L, and Scutellaria baicalensis Georgi In Intestine: Baicalin will be converted into Baicalein and then absorbed rapidly.
In the circulation: Baicalein will be converted to Baicalin
(A) Antihyperglycmeic effect:
(B) Hypolipemic effect
Reduce the level of level of hemoglobin A1C (HbA1c)
Suppress the activation of NF-κB
Improve glucose tolerance and insulin secretion from pancreatic cells
Improve viability of clonal β-cells which improves the production of NADH and NADPH
Protect against β cells apoptosis
Increase hexokinase activity in liver
Activate MAPKs signaling pathway which reduce the effect of insulin resistance by phosphorylating Akt and IRS-1 and dephosphorylate NF-κB
Suppress fatty acid synthesis
Obese diabetic mice
Type 2 diabetic rats
CA1 hippocampal neurons [187,190]
11. Luteolin graphic file with name biomolecules-09-00430-i012.jpg Parsley, broccoli, onoins leaves, celery, cabbages, apple skins, carrots, and peppers Metabolization is medicated by UGTs and COMTs to produce:
(A) Luteolin-7-glucuronide (Glucuronidated)
(B) Luteolin-4-glucuronide
(C) Chrysoeriol/diosmetic (Methylated)
(D) Luteolin monoglucuronide (Major form in human serum
(A) Antihyperglycmeic effect:
(B) Hypolipemic effect
Reduce cAMP response element binding protein and histone acetyl transferase activity of CBP/p300 (NF-κB coactivator)
Reduce apoptosis
Up-regulate the espression of synaptic protein which target brain cells
Improve insulin secretion by supressing Maf A through NF-κB signiling pathway
Activate PPAR-γ which targets adiponectin, leptin and GLUT4 genes
Obese mice
Streptozotocin induced diabetic
rats
Diabetic rats
Endothelium cells
Human monocytes cells
[155,157]
12. Diosmin graphic file with name biomolecules-09-00430-i013.jpg Citrus fruites, and Scrophularia nodosa L. (A) Diosmin (Not excreted in urine)
(B) Diosmetin (Not excreted in urine)
(C) Minor metabolites in the form of glucuronic acid conjugate (Excreted in urine)
(A) Antihyperglycmeic effect:
(B) Hypolipemic effect:
Reduce the level of hemoglobin A1C (HbA1c) due to increase in glutathione peroxidase (GPx)
Decrease G6Pase, PEPCK, and fructose-1,6-bisphosphatase enzymes
Reduce plasma glucose and increase plasma insulin by activating anti-oxidant enzymes
Reduce hyperglycemia by inducing β-endorphin
Increase hexokinase and glucose-6-phosphate dehydrogenase activity
Reduce lipid peroxidation
Streptozotocin nicotinamide induced diabetic
rats
[179,180]
13. Apigenin graphic file with name biomolecules-09-00430-i014.jpg Onion, oranges, tea, parsley, chamomile, Hypericum perforatum L, wheat sprouts Metabolization occurs through two phases:
Phase (1): Apigenin produce three monohydroxylated:
a) Luteolin b) Scutellarien c) iso-scutellarein
Phase(2): Luteolin produce:
a) Four monoglucuroconjugates
b) Two Sulfoconjugate
c) One methyl conjugate
(A) Antihyperglycmeic effect:
(B) Hypolipemic effect:
Reduce cellular antioxidants
Attenuate cell damage in pancreatic β-cells
Improve the morphology of the cells
Improve GLUT4 translocation which lowers glucose level
Increase serum cholesterol
Increase lipid peroxidation
Streptozotocin
induced diabetic
rats (0.2%)
HepG2 cells
Differentiated3T3-L1 cells
[147,149]
14.Tangeretin graphic file with name biomolecules-09-00430-i015.jpg Poncirus trifoliate L, citrus fruit rinds, and mandarin orange Metabolization is medicated by CYP1A1 and CYP1A2 to produce:
(A) 4′ hydroxy - 5, 6, 7, 8 tetramethoxyflavone (4′-OH-TMF)
(A) Antihyperglycmeic effect:
(B) Hypolipemic effect:
Reduce blood glucose and HbA1c level
Reduce the secretion of insulin resistance factor
Increase the secretion level of insulin and insulin sensitizing factor
Enhances glycolytic enzyme in the liver
Reduce total cholesterol and adipocytokines level
Rats
Streptozotocin
(STZ)-induced
diabetic rats
High fat diet mice
Pancreatic β-cells [160,162]
15. Wogonin graphic file with name biomolecules-09-00430-i016.jpg Scutellaria baicalensis Georgi (A) Wogonin-7-beta-D-glucuronide (Major metabolites)
(B) Wogonin-5-beta-D-glucuronide
(A) Antihyperglycmeic effect:
(B) Hypolipemic effect:
Reduce hyperglycemia and lipid droplets accumulation in the liver
Increase vascular permeability and the expression of cell adhesion molecules
Activate NF-κB and AMPK pathways
Activate PPARα which has a beneficial effect on lipid metabolism
db/db mice 3T3-L1 cells [173,175]
16. Chrysin graphic file with name biomolecules-09-00430-i017.jpg passiflora caerulea (L,), honey, Tilia tomentosa Moench, and Pelargonium crispum (Berg.) (A) Chrysin glucuronides (M1)
(B) Chrysin sulfates (M2)
(A) Antihyperglycmeic effect:
(B) Hypolipemic effect:
Reduce the level of pro-inflammatory cytokines that helps in the prevention of diabetic neuropathy
Reduce blood glucose
Improve renal pathology with the suppression of TGF-β, collagen-IV, and fibronectin
Improve insulin level
Reduce lipid peroxidation
INS-1E cells [167,169]