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Abstract: Genotype imputation, where missing genotypes can be computationally imputed, is an
essential tool in genomic analysis ranging from genome wide associations to phenotype prediction.
Traditional genotype imputation methods are typically based on haplotype-clustering algorithms,
hidden Markov models (HMMs), and statistical inference. Deep learning-based methods have been
recently reported to suitably address the missing data problems in various fields. To explore the
performance of deep learning for genotype imputation, in this study, we propose a deep model called
a sparse convolutional denoising autoencoder (SCDA) to impute missing genotypes. We constructed
the SCDA model using a convolutional layer that can extract various correlation or linkage patterns
in the genotype data and applying a sparse weight matrix resulted from the L1 regularization to
handle high dimensional data. We comprehensively evaluated the performance of the SCDA model in
different scenarios for genotype imputation on the yeast and human genotype data, respectively. Our
results showed that SCDA has strong robustness and significantly outperforms popular reference-free
imputation methods. This study thus points to another novel application of deep learning models for
missing data imputation in genomic studies.

Keywords: genotype imputation; convolutional neural network; autoencoder; sparse model;
deep learning

1. Introduction

Genotype imputation is a critical step in many types of genomic analysis, ranging from genome
wide association studies (GWAS) to phenotype prediction. Missing values in genotype data are
common and could result from many reasons such as low call rates, deviations from Hardy–Weinberg
equilibrium, and the abundance of rare or low frequent variants in samples [1,2]. Genotype imputation
works by computationally inferring missing values in a genotype profile, typically using the correlation
or linkage information from untyped variants and nearby markers that are genotyped [3,4]. Genetic
variants whose genotypes are imputed are mostly single nucleotide polymorphisms (SNPs), although
other types of genetic variants such as small insertions and deletions and large structural variants can
be imputed as long as they are in linkage disequilibrium (LD) with typed variants [5,6].

Existing imputation methods can be generally classified into two categories based on whether
a reference panel is required, as summarized in Table 1. Methods in the first category require
a reference panel, which contains haplotype information from many samples usually from the
same or similar population background. These reference-based imputation methods usually apply
a haplotype-clustering algorithm [7] and a hidden Markov model (HMM) [8] to impute missing
SNPs using known haplotypes as a reference [9], such as those from the HapMap Project [10] or
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the 1000 Genomes Project [5,6] for human genomes. Particularly, fastPHASE [7] uses a localized
haplotype-clustering model, in which reference haplotypes are grouped into clusters at each SNP
for imputing missing genotypes at that locus. IMPUTE [8] is based on an extension of the HMM
algorithm originally developed as part of the importance sampling scheme for simulating coalescent
trees, modelling LD, and estimating recombination rates. IMPUTE2 [11] is a flexible and scalable
extension of the original IMPUTE algorithm [8]. It uses an adaptive haplotype selection approach to
impute untyped SNPs in a linear time (O(N)) compared with the quadratic time (O(N2)) carried out
in IMPUTE [8]. MACH [12] uses an HMM model that works by successively updating the phase of
each individual’s genotypes conditional on the current haplotype estimates of all other individuals.
Minimac4 [13] is the latest version in a series of genotype imputation software-preceded by Minimac3
(2015) [14], Minimac2 (2014) [15], minimac (2012) [16], and MaCH (2010) [12]. Minimac4 [13] is a lower
memory demanding and a more computationally efficient implementation of the original MACH
algorithms with comparable imputation quality. BEAGLE [17,18] is another common imputation tool
based on a graphical model of a set of haplotypes. It works iteratively by fitting the model to the current
set of estimated haplotypes and then resampling new estimated haplotypes for each individual using
a fitted model. The probabilities of missing genotypes are calculated from the model that is fitted at
the final iteration. Additionally, SNP tagging-based approaches such as PLINK [19], SNPMSTAT [20],
and TUNA [21] carry out genotype imputation using LD information on tag SNPs [22,23]. Specifically,
for each SNP to be imputed, the reference haplotypes are used to search for a small set of tag SNPs
in the flanking region that forms a local haplotype background in high LD with the target SNP to be
imputed. All of the methods aforementioned rely on a well-defined haplotype-reference panel and
would not work for those species without a high-resolution reference panel.

Table 1. Summary of existing genotype imputation methods. HMM, hidden Markov model; SNP,
single nucleotide polymorphism; KNN, k-nearest neighbors; SVD, singular value decomposition.

Categories Methods Algorithms References

Reference panel required fastPHASE Haplotype-cluster [7]
IMPUTE HMM [8]
IMPUTE2 HMM [11]

MACH HMM [12]
BEAGLE Graphical model [17,18]
PLINK Tag SNP [19]

SNPMSTAT Tag SNP [20]
Reference panel-free Row average Mean value [24]

Nearest Neighbors KNN [25]
Matrix decomposition SVD [26]
Regression prediction Logistic regression [27]

Classification prediction Random Forest [28]

Instead, a suite of methods for missing data imputation that do not require a reference panel
are developed based on statistical inference of unobserved data, which can be utilized for genotype
imputation. These methods use information such as the row average approach [24], distance or similarity
based methods like the k-nearest neighbors (KNN) algorithm [25], singular value decomposition
(SVD) [26], and prediction models based on classification or regression [26,29]. Specifically, as one
of the simplest methods, the row average approach [24] imputes missing values using an average
of all the non-missing values or the most frequent value in the same column with missing values.
Distance or similarity based methods usually exploit data that are similar or close to the missing
data to make inference of missing values. The commonly used similarity measurements include
Pearson correlation, Euclidean distance, variance minimization, and cosine distance. For example, the
KNN imputation algorithm [25] finds the k-nearest neighbors that have values in the missing value
positions, and uses a weighted average of the values from k-nearest neighbors to estimate missing
values. Evidence has shown that log-transformation can sufficiently reduce the effect of outliers on
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similarity measurements [30] and can thus be performed before imputing missing data using distance
or similarity based methods. An SVD-based imputation method [26] obtains the k most significant
eigenvectors to impute the missing values using a low-rank SVD approximation estimated by an
expectation maximization (EM) algorithm. Prediction-model-based imputation methods [26,29] create
a predictive model to estimate values that will substitute missing data in a machine learning fashion.
In this case, the input data are divided into two sets: one set with no missing values for training and
the other set with missing values for testing. The predictive models can be trained using popular
regression or classification models such as logistic regression [27,31] and random forest [28,32].

Recently, deep learning [33] has shown great potential in numerous applications including image
processing [34,35], voice recognition [36,37], natural language processing [38,39], and particularly
bioinformatics [40]. Applications of deep learning in Bioinformatics include variant calling [41],
functional annotation [42,43], protein structure recognition and prediction [44–50], gene expression
inference [51], molecular function recognition [52], prediction of methylation states [53], and
high-throughput chromosome conformation capture (HiC) data enhancement [54]. Deep learning-based
methods, especially autoencoders, have been reported to work well to address the missing data problems
in various fields [55,56]. For instance, autoencoders have been applied to impute missing data in
electronic health records [55] and human immunodeficiency virus (HIV) data [57]. Another example
is a multiple-layer perceptron-based denoising autoencoder method for imputing DNA methylation
data with comparable performance with the SVD approach [58]. However, the commonly used
autoencoder architectures are based on fully connected layers in which each neuron is connected to
every neuron in a previous layer, and each connection has its own weight. Learning on this fully
connected architecture is very expensive in terms of computational time and space. Furthermore,
fully connected autoencoders ignore the underlying structure or relationship in genomic data such
as the LD structure in genotype profiles. Therefore, the limitations of the current practice of deep
learning methodology in genomic analysis leave a vast room for model improvement, especially
for those models based on the autoencoder framework. One particular technique to encode data
relatedness or correlation is to use convolutional networks. A convolutional network can learn the
underlying structure and relationship in genotype data by leveraging a convolutional kernel that is
capable of learning various local patterns in a filter window. To handle high dimensional genomics
data where the feature size is significantly larger than the sample size, we can introduce model sparsity
by incorporating regularization on the weight matrix of a deep learning model.

Hence, in this study, we propose a novel deep learning model, called sparse convolutional
denoising autoencoder (SCDA), for genotype imputation that does not need to compare with a
reference panel. Specifically, the SCDA model utilizes convolutional layers to take account of local data
correlations in the general autoencoder framework, and incorporates model sparsity to handle high
dimensional genomic data using an L1 regularization on each convolutional kernel. To comprehensively
evaluate the performance of the SCDA model for genotype imputation, we simulated different missing
data scenarios on a yeast genotype dataset and a human leukocyte antigen (HLA) genotype dataset,
respectively. Our results showed that SCDA achieved higher imputation accuracy than three existing
reference panel-free imputation methods, and demonstrated the strong robustness of this SCDA model
on different missing data scenarios. SCDA’s nice performance for genotype imputation benefits from
using convolutional layers to extract linkage patterns in the genotype data and a sparse weight matrix
resulted from the L1 regularization to handle high dimensional data. This study thus demonstrates a
new application of deep learning models to impute missing data in genomic studies.

2. Materials and Methods

2.1. Dataset

To evaluate our proposed SCDA method, we used a comprehensively assayed yeast genotype
dataset [59] and a human genotype dataset from the most extensive catalog of human genetic variation



Genes 2019, 10, 652 4 of 16

from the 1000 Genomes Project [5,6]. The yeast data represents a scenario that the genetic background
is simple and the genotypes are highly correlated. The human data represent a more realistic and
complex scenario where the genotypes are sampled from diverse human populations. The yeast
genotype dataset contains the genotype profile of 28,820 unique genetic variants, which was obtained
by sequencing 4390 observations from a cross between two strains of yeast: a widely used laboratory
strain (BY) and an isolate from a vineyard (RM). The original data fields in the yeast genotype profile
were encoded as -1 for BY and 1 for RM. As the loss function in our SCDA model requires non-negative
data fields, we replaced all -1 values with 2 in data preprocessing. For the human genotype data, we
chose to impute genotypes of the human leukocyte antigen (HLA) [60]. As the HLA region contains
a gene complex encoding the major histocompatibility complex (MHC) proteins in humans, HLA
represents a region where genotypes are diverse, heterogeneous, and complicated. We extracted the
HLA genotype data consisting of 27,209 unique genetic variants in 2504 individuals across five super
populations worldwide sequenced from the 1000 Genome Project [5], including Americans (AMR),
Southern Asians (SAS), East Asians (EAS), Europeans (EUR), and Africans (AFR). The EAS super
population consists of 617 individuals from six populations, including Chinese Dai in Xishuangbanna
(CDX), Han Chinese in Beijing (CHB), Chinese in Denver (CHD), Southern Han Chinese (CHS),
Japanese in Tokyo (JPT), and Kinh in Ho Chi Minh City (KHV). The human genotypes are encoded
as 1 for the original genotype of ‘0|0’, 2 for ‘0|1’ or ‘1|0’, and 3 for ‘1|1’, respectively, converting from
the original variant call format (VCF) file of the 1000 Genomes Project. We can see that both the yeast
and human genotype datasets are highly dimensional with the feature dimension (p = 28,820 for yeast
genotypes, p = 27,209 for HLA genotypes) significantly larger than the sample size (n = 4390 for yeast,
n =2504 for HLA). With this type of highly dimensional dataset, sparse models that use regularization
to impose sparsity work well to address the problem of the curse of dimensionality [61].

In order to assess the performance of our SCDA method in different missing data scenarios, we
generated three sets of synthetic datasets by randomly masking 5%, 10%, and 20% of the original
genotypes to zeros in the original yeast and human HLA datasets, respectively. For each of these
synthetic datasets, we split the data into three separate datasets containing 65%, 15%, and 20% of the
synthetic data for training, validation, and testing, respectively. Figure 1 visualizes data vectors of two
samples with 5% missing values randomly selected from the yeast genotype dataset (Figure 1a) and
HLA genotype data (Figure 1b). Different colors represent different genotypes and missing values are
denoted in white color. Consecutive color blocks indicate that genotypes are highly correlated among
nearby genetic markers, resulting from LD and linkage patterns. As expected, the correlations among
yeast genotypes are much stronger than those among HLA genotypes. Hence, compared with the
yeast data, the HLA data are more heterogenous and complicated, thus imputation is more difficult.
Given the highly correlated and structured genotype data, methods like our SCDA method that take
account of these local patterns will work well to impute missing genotypes.
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Figure 1. The visualization of genotype profiles of two samples with 5% missing values in (a) yeast
(BY represents genotypes from a laboratory strain and RM stands for genotypes from a vineyard
strain) and (b) human leukocyte antigen (HLA) datasets shows the different correlated patterns in the
data. Synthetically generated missing values are denoted in white color, while typed genotypes are
color coded.

2.2. Autoencoders

Autoencoders [62] are unsupervised artificial neural networks that are designed to learn efficient
data encoding or representation to reconstruct the original input data. As shown in Figure 2a, an
autoencoder consists of two parts: an encoder and a decoder, which can be defined as f and g,
respectively. The encoder takes an input vector x ∈ Rn and maps it to a hidden representation h ∈ Rm

through a mapping function in Equation (1).

h = fθ(x) = Φ(Wx + b), (1)

where θ = {W, b}, W is a m× n weight matrix, b is a bias vector, and Φ is an activation function such as
a sigmoid [63] or rectified linear units (ReLU) [64]. The hidden representation, h, is also called a latent
representation. The decoder takes a hidden representation h to map it to a reconstructed vector z ∈ Rn

using Equation (2).
z = gθ′(h) = Φ′(W′h + b′), (2)

where θ′ = {W′, b′}; W′ is a n×m weight matrix; b′ is a bias vector; and Φ′ is an activation function,
the same as Φ. The parameters θ and θ′ of an autoencoder will be optimized to minimize the average
reconstruction error, as shown in Equation (3).

θ∗,θ′∗ = argmin
1
n

n∑
i=1

L
(
x(i), z(i)

)
= argmin

1
n

n∑
i=1

L
(
x(i), gθ′

(
fθ
(
x(i)

)))
, (3)

where θ∗,θ′∗ are parameters to be learned on data.
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Figure 2. An illustration of a (a) standard autoencoder and (b) denoising autoencoder. An autoencoder
is composed of two parts: encoder and decoder. The encoder takes an input vector x and maps it to
a hidden representation h. The decoder takes a hidden representation h to map it to a reconstructed
vector z. The aim of an autoencoder is to generate a reconstruction z of the input data such that z ≈ x
by minimizing the loss function L(x, z). A denoising autoencoder differs from a standard autoencoder
in that the input x is corrupted with noises or missing values.

The aim of an autoencoder is to reconstruct z(i) such that z(i) ≈ x(i) by minimizing the loss
function L

(
x(i), z(i)

)
. L

(
x(i), z(i)

)
can be defined as the widely used mean squared error for continuous

data or cross-entropy for discrete data. In genotype imputation, we minimized the cross-entropy loss
between the input x and reconstructed z as defined in Equation (3), as genotype values are discrete.

L
(
x(i), z(i)

)
= −(ylog(p) + (1− y)log(1− p)) (4)

2.3. Denoising Autoencoders

A denoising autoencoder [65] is an extension of a standard autoencoder, which takes corrupted
input data with missing values, and can thus be applied for data imputation. A denoising autoencoder
reconstructs the output from the corrupted input data by allowing the encoder to extract the most
important features and learn a robust representation of the input data, as shown in Figure 2b. When
the corrupted input includes missing data values, denoising autoencoders can solve the imputation
problem by predicting the values of missing data points by reconstructing the input data [65]. As
denoising autoencoders fit well with solving missing data problems, in this project, we utilized
denoising autoencoders for genotype imputation. For example, in a synthetic dataset where the yeast
data was first corrupted by randomly masking 5% of the original values to zeros, we can train a
denoising autoencoder to predict values of those data points masked as zeros.

2.4. Sparse Convolutional Networks

However, it is computationally expensive to use solely autoencoders for data imputation, especially
when the input data are of large scale, high dimension, and with local structures. Autoencoders are
primarily multiple-layer perceptron neural networks with dense layer-wise connections, which can
be very expensive to learn in terms of computational time and space. Furthermore, fully connected
autoencoders ignore data relationships such as LD and linkage structures in genotype data (Figure 1).
To further take advantage of the characteristics of genotype data, we leverage convolution networks to
learn the underlying structures and relationships of genotype data. As genotype values are discrete,
we use convolution operations in a discrete space defined below.

O(i) =
k∑

u=1

F(u)I(i− u), (5)

where O(i) is the output of the i marker in the input vector I. F is the convolutional filter and k is an
odd number representing the convolutional filter size. In this study, we experiment with odd filter
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sizes ranging from 3 to 19. The convolution operation in Equation (5) is performed for every location
of the input vector I, and thus for each genetic marker.

Every convolutional layer is composed of n convolutional filters, each with a depth of D, where D
is the input depth. A convolution among an input I = {I1, I2, · · · , ID} and a set of n convolutional filters
{F1, F2, · · · , FD} produces a set of n activation maps or, equivalently, a volume of activation maps with
a depth of n:

Om = σ(I ⊗ Fm + bm) m = 1, · · · , n, (6)

where σ is a non-linear activation function and ⊗ is a convolution symbol of Equation (5). Here, bm is
the bias and m represents the mth feature map.

Overfitting is a critical problem for analyzing highly dimensional data such as genotype data. To
prevent overfitting and improve model performance, we introduce the L1 normalization, defined in
Equation (7), to all convolutional filters. The L1 norm regularization works by applying penalties on
layer weights during the optimization process of a model. These penalties are incorporated in the loss
function on which the model will optimize. The L1 norm will penalize or shrink small weights to zeros
to improve the robustness of a model.

L1 = λ

n∑
m=1

||Fm||1,1 (7)

Here, ||·|| refers to the L1 norm of a weight matrix, Fm is the mth convolution filter weight matrix in
the layer, and λ ∈ [0, 1] is a hyperparameter for controlling the model shrinkage or sparsity. The larger
λ is, the sparser the trained model will become.

2.5. Sparse Convolutional Denoising Autoencoders

To leverage the advantages of denoising autoencoders and convolutional networks, we propose a
sparse convolutional denoising autoencoders (SCDA) model for genotype imputation. As the highly
correlated LD and linkage patterns are key characteristics in genotype data, we use convolutional
networks to incorporate these patterns from input data. Each convolutional kernel generates a feature
map from the input, and in this process, LD patterns in the filtering window of the convolutional layer
can be incorporated. Moreover, we introduce an L1 regularization to every convolutional kernel to
induce sparsity in the SCDA model.

The proposed network architecture of the SCDA model is shown in Figure 3. There are seven
layers in the model, including one input layer and six convolution layers. The input layer takes
corrupted data. Each convolution layer is regularized by an L1 penalty. The number of convolutional
kernels in SCDA model is 32, 64, 128, 128, 64, and 1. The hyperparameter of the L1 norm is set at
λ = 0.0001.
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Figure 3. The network architecture of SCDA. The sparse convolutional denoising autoencoders (SCDA)
model consists of multiple convolution layers in a hierarchical way, and each convolution layer is
regularized by an L1 penalty. SCDA takes corrupted data with missing values as input to learn a
hidden representation, and then reconstructs the input based on hidden representations to impute
missing values.

In the SCDA model, maxpooling and upsampling are used in the model architecture. Maxpooling
is down-sample processing to reduce dimensionality, which applies a max filter to non-overlapping
subregions of the previous layer. Maxpooling thus reduces the computational cost by reducing
the number of parameters and provides basic translation invariance to the internal representation.
Upsampling is an opposite processing to maxpooling. Upsampling is used to increase the dimensionality
by repeating data along the axis. The filter size of maxpooling and upsampling of SCDA is fixed as
2 [66].

To prevent overfitting, we implemented a commonly-used technique called dropout in the SCDA
model. Dropout works by removing neurons and their connected edges either at the hidden or visible
layers in a neural network. One simple dropout strategy is that each neuron is kept in the network
with a retention probability p independent of any other neurons. In this study, we use this dropout
strategy to empirically set the dropout probability at 25% [67].

The whole SCDA model was built using TensorFlow v1.13.1 [68] in python3.6, and trained and
tested on one NVIDIA GeForce GTX-1080Ti GPU. The batch size is set at 32 and the maximum number
of epochs is 1000.

3. Results

3.1. Optimization of the SCDA Architecture

One of the most critical steps in building a deep learning model is to optimize the model
architecture and tune its hyperparameters. These hyperparameters in most deep learning-based
approaches are tuned empirically [69], although automatic machine learning methods have been
recently proposed [70]. In this study, we empirically tune the hyperparameters of the SCDA model to
achieve an optimized SCDA architecture for genotype imputation. Specifically, we first investigated the
number of convolutional layers and the convolutional kernel size, as these two hyperparameters usually
have large effects on the final performance of a model. One important concern in genotype imputation
is to capture the local linkage or correlation patterns that can be incorporated in convolutional layers
in a model. The number of convolutional layers in a deep neural network determines the degree
of complexity of the relationship among different linkage patterns that a model can learn. The
convolutional kernel size determines the local patterns that convolutional layers can capture. We
tested two SCDA architectures with five layers and seven layers, and evaluated their performance for
genotype imputation respectively. All convolution kernels had the same filter sizes, ranging from 3 to
19. The other hyperparameters were set as canonical values. For an SCDA model with seven layers,
the number of kernels of the six convolution layers was 32, 64, 128, 128, 64, and 1. For an SCDA model
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with five layers, the number of kernels of the four convolution layers was 32, 64, 32, and 1. Dropout
filter size was fixed at 25%, and maxpooling and upsampling filter sizes were set at 2.

These optimizations were performed on the yeast genotype dataset that was randomly corrupted
at a 10% missing level. As shown in Figure 4, the seven-layered architecture with the filter size of five
achieved the best performance with an accuracy of 0.9986, followed by the five-layered architecture
with the filter size of five, with an accuracy of 0.9983. We observed that the filter size of five is the best
convolutional filter size in both five-layered and seven-layered SCDA architectures.Genes 2019, 10, x FOR PEER REVIEW 9 of 16 
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Another important hyperparameter in the SCDA model is the number of convolutional kernels.
The more kernels in a layer, the more patterns a convolutional network can capture. However, the
number of kernels chosen also depends on the complexity of data. The number of convolutional
kernels at a later layer is expected to be larger than that of the previous layer, as the number of possible
combinations grows. Here, we increased the number of convolutional kernels by doubling it in the
encoder, and reducing it to half in the decoder. We evaluated three combinations (16, 32, 64, 64, 32, 1),
(32, 64, 128, 128, 64, 1), and (48, 96, 192, 192, 96, 1). The results in Figure 5 show that the combination
with (32, 64, 128, 128, 64, 1) achieved the best performance.

Genes 2019, 10, x FOR PEER REVIEW 9 of 16 

 

Figure 4. Results of using the SCDA model on the yeast data. (a) The results of the five-layered SCDA 
with filter sizes ranging from 3 to 19. (b) The results of the five-layered SCDA with filter sizes ranging 
from 3 to 19. 

Another important hyperparameter in the SCDA model is the number of convolutional kernels. 
The more kernels in a layer, the more patterns a convolutional network can capture. However, the 
number of kernels chosen also depends on the complexity of data. The number of convolutional 
kernels at a later layer is expected to be larger than that of the previous layer, as the number of 
possible combinations grows. Here, we increased the number of convolutional kernels by doubling 
it in the encoder, and reducing it to half in the decoder. We evaluated three combinations (16, 32, 64, 
64, 32, 1), (32, 64, 128, 128, 64, 1), and (48, 96, 192, 192, 96, 1). The results in Figure 5 show that the 
combination with (32, 64, 128, 128, 64, 1) achieved the best performance. 

Figure 5. Results of SCDA with different number of kernels on yeast data. The kernel combination 
with (32, 64, 128, 128, 64, 1) achieves the best performance. 

Hence, we finalized our SCDA model for genotype imputation as a network infrastructure with 
seven layers with the number of kernels (32, 64, 128, 128, 64, 1) and a fixed filter size of five. The 
kernel visualization of first convolution layer of the SCDA model with seven layers is shown in Figure 
6. We observed that more than half of the weight values are zeros (denoted as grey squares), 
indicating the sparsity of our model. 

Figure 5. Results of SCDA with different number of kernels on yeast data. The kernel combination
with (32, 64, 128, 128, 64, 1) achieves the best performance.

Hence, we finalized our SCDA model for genotype imputation as a network infrastructure with
seven layers with the number of kernels (32, 64, 128, 128, 64, 1) and a fixed filter size of five. The kernel
visualization of first convolution layer of the SCDA model with seven layers is shown in Figure 6. We
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observed that more than half of the weight values are zeros (denoted as grey squares), indicating the
sparsity of our model.Genes 2019, 10, x FOR PEER REVIEW 10 of 16 
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3.2. The Performance and Robustness of the SCDA Model

To evaluate the performance and robustness of our SCDA model, applied the model to the
yeast data and the HLA data to impute genotypes in three different missing levels at 5%, 10%, and
20%, respectively. We trained the SCDA models for 10 times by randomly splitting the data into
training, validation, and testing datasets with 65%, 15%, and 20% of the data at each missing level.
The imputation performance of our SCDA model is shown in Table 2. For yeast genotype imputation,
SCDA has an average accuracy of 0.9978, 0.9977, and 0.9975, respectively, with a standard deviation
of 7.0 × 10−5, 3.9 × 10−5, and 7.0 × 10−5, respectively, at missing scenarios with 5%, 10%, and 20%
missing values, respectively. Hence, the SCDA achieved comparable performance for the three missing
scenarios, which indicates that SCDA works for imputing noisy data where a large proportion of
the data is missing (e.g., 20% of missing values). Nonetheless, as expected, its performance is higher
when the missing level is lower and the missing data is easier to impute. The low standard deviations
indicate that the SCDA model is robust in these scenarios.

Table 2. Performance comparison in terms of accuracy on yeast and human leukocyte antigen (HLA)
genotypes at three missing scenarios. The average accuracy and standard deviation of each imputation
method was calculated by running the sparse convolutional denoising autoencoders (SCDA) model 10
times at every missing scenario (5%, 10%, 20%). The overall average and standard deviation values
were calculated by averaging the results of three missing scenarios.

5% 10% 20% Total

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Yeast 0.9978 7.0× 10−5 0.9977 3.9× 10−5 0.9975 7.0× 10−5 0.9977 6.0× 10−5

HLA_EAS 1 0.9975 6.0× 10−5 0.9952 1.4× 10−4 0.9900 4.2× 10−4 0.9942 2.1× 10−4

HLA_Entire 2 0.9973 1.9× 10−4 0.9949 7.5× 10−5 0.9896 1.5× 10−4 0.9939 1.4× 10−4

1 HLA genotypes of EAS super population from 1000 Genome Project. 2 HLA genotypes from the entire dataset in
five super populations in the 1000 Genome Project.

As previously reported, populations have a strong effect on human genotype imputation [71].
Therefore, we tested our proposed SCDA model on HLA genotypes of the EAS super population and
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the entire five super populations worldwide, respectively. For the HLA genotype imputation of the
EAS super population, SCDA has an average accuracy of 0.9975, 0.9952, and 0.9942, respectively, with
a standard deviation of 6.0 × 10−5, 1.4 × 10−4, and 4.2 × 10−4, respectively, at three missing scenarios
with 5%, 10% and 20% missing values, respectively. For the HLA genotype imputation on the entire
super populations, SCDA has an average accuracy of 0.9973, 0.9949, and 0.9896, respectively, with a
standard deviation of 1.9 × 10−4, 7.5 × 10−5 and 1.5 × 10−4, respectively, at three missing scenarios with
5%, 10%, and 20% missing values, respectively. As expected, the performance of genotype imputation
on a single EAS population is better than that on the entire human population including five super
populations. This is because of the fact that human genotypes worldwide are more heterogeneous
and complicated across diverse populations, and it is more difficult to capture local LD patterns in
genotype imputation.

Compared with the yeast data, the correlation patterns in HLA genotypes are more dispersed and
heterogeneous (Figure 1), and thus the imputation of human HLA genotypes is more difficult than that
of yeast genotypes. SCDA achieved an overall average accuracy of 0.9977 for yeast genotypes, which
is better than the overall average accuracy of 0.9942 for HLA genotypes of EAS and an overall average
accuracy of 0.9939 for entire HLA genotypes.

3.3. Comparison with Other Methods

We compared our reference-free genotype imputation methods, SCDA, to other reference-free
imputation methods on these datasets. Particularly, we chose three commonly used statistical inference
algorithms for data imputation including row average [24], KNN [25], and SVD [26] for comparison.
The average accuracy and standard deviation of each imputation method were calculated by performing
the method 10 times at every missing scenario (5%, 10%, and 20%). The total average and standard
deviation were calculated by averaging the results of three missing scenarios.

The imputation results on the yeast data summarized in Table 3 show that the SCDA model
achieves a total average accuracy of 0.9977, significantly outperforming the other imputation methods
in comparison. KNN and SVD have comparable performance, which performed much better than the
simplest strategy of row average imputation. SCDA also has the lowest standard deviation, which
means that it is the most robust method compared with the other three imputation methods. The results
on imputing HLA genotypes, described in Tables 4 and 5, show that the SCDA model outperforms the
other three imputation methods in comparison as well, achieving the total average accuracy of 0.9942
and 0.9939 for the EAS super population and the entire human population, respectively.

Table 3. Performance comparison on yeast genotypes at three missing scenarios.

Methods
5% 10% 20% Total

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average 0.4862 1.9 × 10−4 0.4885 9.5 × 10−5 0.4911 6.7 × 10−5 0.4886 1.2 × 10−4

KNN 0.7248 1.7 × 10−4 0.7240 1.2 × 10−4 0.7222 9.4 × 10−5 0.7237 1.3 × 10−4

SVD 0.6580 1.2 × 10−4 0.6580 1.1 × 10−4 0.6576 1.1 × 10−4 0.6579 1.3 × 10−4

SCDA 0.9978 7.0 × 10−5 0.9977 3.9 × 10−5 0.9975 7.0 × 10−5 0.9977 6.0 × 10−5

Table 4. Performance comparison on HLA genotypes of EAS super population at three missing scenarios.

Methods
5% 10% 20% Total

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average 0.9549 3.2 × 10−4 0.9549 1.7 × 10−4 0.9549 1.3 × 10−4 0.9549 2.1 × 10−4

KNN 0.9883 9.5 × 10−5 0.9881 8.8 × 10−5 0.9877 6.4 × 10−5 0.9880 8.2 × 10−5

SVD 0.9899 1.0 × 10−4 0.9899 9.0 × 10−5 0.9898 6.9 × 10−5 0.9899 8.6 × 10−5

SCDA 0.9975 6.0 × 10−5 0.9952 1.4 × 10−4 0.9900 4.2 × 10−4 0.9942 2.1 × 10−4
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Table 5. Performance comparison on HLA genotypes of the five super populations at three
missing scenarios.

Methods
5% 10% 20% Total

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average 0.9498 9.6 × 10−5 0.9497 5.8 × 10−5 0.9498 4.5 × 10−5 0.9498 6.6 × 10−5

KNN 0.9873 5.8 × 10−5 0.9871 4.3 × 10−4 0.9867 3.5 × 10−5 0.9870 4.5 × 10−5

SVD 0.9809 9.2 × 10−5 0.9809 4.4 × 10−5 0.9809 2.9 × 10−5 0.9809 5.5 × 10−5

SCDA 0.9973 1.9 × 10−4 0.9949 7.5 × 10−5 0.9896 1.5 × 10−4 0.9939 1.4 × 10−4

We noticed that the methods in comparison, namely the average, KNN, and SVD methods, all
achieved much better imputation performance on HLA genotypes than yeast genotypes, as they did
not take into account the LD or correlation structures most obvious in the yeast data. Our SCDA model
achieved comparable performance on the yeast and HLA genotypes, which indicates SCDA has strong
robustness in imputing genotypes from homologous or heterogeneous population backgrounds.

These imputation results on the yeast and HLA genotypes were also visualized in violin plots in
Figures 7 and 8. Higher median point indicates higher performance, and tighter distribution indicates
greater robustness. We observed that SCDA has the highest median points and tightest distributions
on both yeast and HLA data, which demonstrates that our SCDA model achieved the state-of-the-art
performance compared with other methods for data imputation.
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4. Discussion

In summary, we presented a novel deep learning model called SCDA for genotype imputation
based on sparse convolutional denoising autoencoders. This SCDA model achieves state-of-the-art
imputation accuracy compared with popular reference-free imputation methods. Additionally, the
SCDA model is robust in different levels of missing data and heterogeneity of genotype data, making
it a competing method for genotype imputation. The nice performance of our SCDA model benefits
from its multiple convolutional layers that can extract hidden data patterns and its sparse architecture
due to the added L1 regularization on the weight matrix.

In future, we will apply the SCDA model to more complex datasets with untyped genotypes in
real scenarios. As the SCDA is based on a deep learning architecture, it is a computationally demanding
process to train the model and many hyperparameters are set empirically. We will adopt more efficient
training mechanisms and explore more comprehensive and automatic hyperparameter learning. The
SCDA model also suffers from the common weakness of deep learning models in that it is hard to
explain the prediction mechanisms. We will add prior domain knowledge and provide network
visualization in the future to mitigate this limitation of SCDA towards explainable artificial intelligence.

All in all, this study demonstrates another new application of deep learning to the problem of
missing data imputation in genomic studies. Although we originally designed the SCDA model for
genotype imputation, our SCDA model can be applied to infer missing values in any data matrix
including high-dimensional matrices and tensors. The genotype values we use here are discrete values,
but the SCDA model can be extended to impute other kinds of missing values, including quantitative
values in gene expression or DNA methylation data. The current SCDA architecture can be extended
to multi-task imputation to infer missing values in multiple data sets. This deep learning architecture
will thus be of great use in data integration such as omics data integration and imaging genomics.
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