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Abstract: Circular RNAs (circRNAs) have recently emerged as a novel class of transcripts,
characterized by covalently linked 3′–5′ ends that result in the so-called backsplice junction. During
the last few years, thousands of circRNAs have been identified in different organisms. Yet, despite their
role as disease biomarker started to emerge, depicting their function remains challenging. Different
studies have shown that certain circRNAs act as miRNA sponges, but any attempt to generalize from
the single case to the “circ-ome” has failed so far. In this review, we explore the potential to define
miRNA “sponging” as a more general function of circRNAs and describe the different approaches to
predict miRNA response elements (MREs) in known or novel circRNA sequences. Moreover, we
discuss how experiments based on Ago2-IP and experimentally validated miRNA:target duplexes
can be used to either prioritize or validate putative miRNA-circRNA associations.
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1. Introduction

During the past decades, the field of RNA biology experienced an incredible evolution dictated by
the discovery of long non-coding RNAs, the elucidation of the silencing pathways of short non-coding
RNAs and, more importantly, of their regulatory functions [1]. Recently, a new class of non-coding
RNAs has taken the scene: circular RNAs (circRNAs) [2]. Interestingly, the existence of RNAs with
a circular form has been known for many years, but they were associated only with viruses and
viroids (e.g., hepatitis δ virus [3]). Although few examples of circRNAs from transcribed genes were
reported (e.g., Sry, [4–6], DCC [7], CYP450 [8]), only recently their abundance and regulatory functions
have been described openly [9–12]. circRNAs consists in covalently closed RNA molecules with
the 3′- and the 5′-ends linked in a non-collinear way resulting in the so-called backsplice junction
(Figure 1) [13]. They result from an unusual splicing event that is believed to be mediated either
by the pairing of long flanking introns (containing repetitive elements in an inverted orientation) or
by an intra-lariat splicing [13–19]. As linear RNA, circRNAs can undergo alternative splicing that
generates different classes of circRNAs (intron-containing, single exon, multiple exon, intergenic,
intronic) and increases the “circ-ome” overall complexity [12,19–23]. This particular splicing event
causes circRNAs to lack the 3′ poly(A) tail and the 5′ capping, a feature that confers resistance to
exonuclease activity (e.g., RNase R [24,25]) and results, on average, in a longer half-life as compared to
linear RNAs [11]. Since the first reports of circRNAs expression in humans and mice, thousands of
potential circular RNAs have been predicted in different species (like Drosophila, Caenorhabditis elegans
and plants) [9,11,12,15,26–32]. Despite the great attention that this elusive class of ncRNA has gathered,
only a handful of transcripts have been fully functionally characterized. Nevertheless, the high stability
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combined with their identification in human body fluids (e.g., plasma [33] and saliva [34]) has greatly
increased the interest toward circRNAs as potential disease biomarkers [35] and, following this idea,
dozens of studies identified circRNAs in different pathological conditions [36] such as Alzheimer’s
disease, atherosclerosis, myocardial infarction and, most importantly, cancer [37–42].

In this review, we explore one of the hypothesized functions for circRNA, i.e., miRNA binding.
Particularly, we will first address the definition of “sponging”, which, so far, has been quite an
appealing but misleading term, and then discuss the different computational approaches to predict
miRNA-circRNA binding sites and the strategies to prioritize/validate such interactions.
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Figure 1. Linear vs Circular splicing. Circular RNAs (circRNAs) are formed from an unusual splicing
event that results in covalently linked 3′–5′ ends termed as a backsplice junction (top, indicated by a
red arrow). As for linear transcripts (bottom), circRNAs can undergo alternative splicing, resulting in
different classes of transcripts (mono or multi exonic, intronic, exon-intron structure).

2. To Sponge or Not to Sponge, That is the Question

The high stability and the presence in different body fluids make circRNAs extremely promising
disease biomarkers. Given their diagnostic relevance, a lot of efforts have been put in the functional
characterization of circRNAs, as this is critical to understand their role in disease development or
progression and to provide crucial insights into their physiological role. It has been shown that
nuclear circRNAs can be involved in regulating mRNA expression at the level of transcription by
interacting with RNA polymerase or with members of the spliceosome machinery [43], for example.
Conversely, cytoplasmic circRNAs seem to be involved in post-transcriptional regulation, sequester
RNA-binding proteins [14,44] or even can be translated into small peptides [45,46]. Considering
post-transcriptional regulation, one of the first and most investigated functions of circRNAs is miRNA
sponging (Figure 2) [10,12,38,47,48]. In fact, in the past couple of years the number of papers involving
circRNA-miRNA interaction has grown almost exponentially and, in 2018, represented ~60% of
circRNA-related publications (Figure 3). Despite the increasing number of studies focusing on
circRNA-miRNA interactions, to generalize this specific function to the entire “circ-ome” still remains
challenging. The first, and most important, issue in this regard is the definition of “sponging” or, more
appropriately, of competing endogenous RNAs (ceRNAs). Whether the ceRNAs hypothesis [49] is
sufficient to explain the function of thousands of poorly characterized ncRNAs is still an argument
worthy of great debate (refer to Thomson and Dinger [50] for more details). Nevertheless, it is crucial
to consider the evidence that the expression alone of a ceRNA (in our case specifically, circRNAs)
might not be sufficient to have a measurable effect on highly expressed miRNA and, therefore, on its
downstream targets [51], while the impact on lowly expressed ones could be more significant [52]. This
has a major consequence in the definition of the minimum characteristics that a circRNA must hold (e.g.,
expression, number of possible miRNA response elements—MREs—and miRNA expression itself) to be
considered a miRNA sponge. Taking into account that, overall, circRNAs are expressed at lower levels
than other RNAs [11,12,20,53] and that the expression is tissue- and cell-type-specific [20,23,30,54–57],
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the presence of a relatively high number of MREs for the same miRNA within the sequence of a
single circular RNA would be expected. Different studies have shown that, beside CDR1as, only a
very limited number of circRNA exhibit this property [30,53], pointing strongly toward the idea that
sponging is an exception, rather than a general function.
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Figure 2. A miRNA-circRNA-mRNA network. It has been proposed that circRNA can act as a miRNA
sponge, therefore competing with a linear target for the binding of the RISC complex. In the absence
of circRNA, miRNAs are free to bind to their linear target, determining their repression. When the
circRNA is expressed, the miRNA will guide the RISC complex to bind the circRNA, ultimately causing
the de-repression of the mRNA. mRNA is depicted as an Open Reading Frame (ORF) with a 5′ cap
(m7G) and a 3′ poly(A) tail.
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3. Predicting circRNA-miRNA Binding Sites

Although circRNAs cannot be considered “sponges”, it is clear that these molecules fulfill their
regulatory function also through the interaction with miRNAs [58–65]. To this end, knowing the
sequence and the expression levels of circRNAs in a given tissue is essential. The most common
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approach to obtain this information is based on microarrays with probes specifically designed to
target the most updated collection of human/mouse/rat circRNAs [66,67]. This allows the detection
of even very lowly expressed circRNAs with high reproducibility (ideally, down to one copy), and
facilitates the identification of differentially expressed circRNAs. Additionally, the development of
more sophisticated RNA sequencing protocols (e.g., RPAD [68]) provides the possibility to identify
highly pure circRNAs, overcoming the limit of relying only on annotated transcripts. Obviously, in
the latter case, not only the sequencing protocol, but also which tool is used to identify the backsplice
junction are critical issues and possible sources of variability between experiments [69]. No matter
which approach is used for the identification of circRNAs, the bioinformatic prediction of MREs
can be done in many different ways, mainly depending whether the circRNA is already known or a
novel transcript.

3.1. Investigating Known circRNAs

In the past years, several databases have been released with the main goal of collecting all possible
information regarding known circRNAs in different species (e.g., circBase [70], Table 1). These databases
have expanded to meet the increasing complexity of circRNA expression patterns and to collect all
possible information about functional predictions and associations with diseases (e.g., circNet [71],
CircInteractome [72], circ2Traits [73]). One of the features that has been included is the miRNAs
binding sites for all available circRNAs. These are obtained either using miRNA target prediction tools
(as TargetScan [74], RNA22 [75], PITA [76], miRanda/miRSVR [77,78], etc.), like in the case of circNet
and CircInteractome, or combining Ago binding sites with miRNA target predictions (as, for instance,
starBase v2.0 [79,80] and its most updated version, ENCORI), although these approaches might result
in multiple putative miRNAs hits per single circRNA. A possible strategy to reduce the number of
candidate circRNA-miRNA associations is to consider also the downstream mRNAs (usually from
databases including experimentally validated miRNA targets like TarBase v.8 [81] or miRTarBase [82])
and create a circRNA–miRNA–mRNA network. This procedure builds on the idea that an up-regulated
circRNA will cause a down-regulation of its interacting miRNA that will ultimately determine an
up-regulation of the target mRNA [83–90]. Networks that satisfy these expression criteria are selected
finally for functional validation: first, the MREs predicted within the circRNA are validated primarily
by luciferase assay and then the expression of the target miRNA and mRNA are evaluated upon
circRNA depletion (or overexpression, according to the initial transcription pattern). Although quite
successful, this approach presents some limitations, for instance, the databases providing miRNA
binding predictions are dealing only with human circRNAs, with the exception of starBase [79,80]
which includes also data for mouse and C. elegans. Additionally, this workflow is effective only when
the circRNA has been previously identified and annotated in other databases (like circBase) and,
finally, it also requires a differential expression analysis for all components of the network (circRNA,
miRNA and mRNA). Moreover, validating MREs with luciferase assay has two major drawbacks: i) it
does not always provide a clear proof of direct interaction [91]; and ii) it implies that the MREs on
the circRNA have to be sufficiently strong to cause a significant variation in either luminescence or
luciferase mRNA levels, which is not necessarily the case. These issues can be overcome by an RNA
Immunoprecipitation assay (RIP, [92]) that will provide information of what is directly binding to the
circRNA, with no regard to a functional output [93–100].
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Table 1. List of relevant circRNA-related databases including the available organisms and their
general features.

Database Website Organisms Features

circBase http://www.circbase.org

Human
Mouse

Fly
Worm
Fish

Planaria

Most updated catalogue of
predicted circRNAs. Beside
human and mouse, it also
collects data from several other
organisms

circInteractome https://circinteractome.nia.nih.gov Human

Enables the prediction and
mapping of binding sites for
RNA binding proteins and
miRNA on known circRNAs.
It includes also a module for
siRNA design for knock-down
experiments and primer design
for PCR

circNet http://syslab5.nchu.edu.tw/CircNet/ Human

Provides tissue-specific
expression patterns, integrated
miRNA-circRNA-mRNA
networks, circRNA isoform
expression and genomic
annotation

ENCORI
StarBase v2

http://starbase.sysu.edu.cn/index.php
http://starbase.sysu.edu.cn/starbase2/

index.php

Human
Mouse
Worm

Designed for investigating
interaction networks of
lncRNAs, miRNAs, ceRNA,
RNA binding proteins and
mRNAs from public CLIP-Seq
data. It also allows to browse for
circRNA-miRNA interactions.

circ2Traits http://gyanxet-beta.com/circdb/ Human
Link of circRNA with disease
inferred by miRNA-disease
associations

3.2. Characterizing Novel circRNAs

As mentioned previously, circRNAs have been shown to have a time- and tissue-specific
expression pattern [20,23,30]. This results in the need, due to the complexity of organisms, to perform
comprehensive assessments to investigate specific tissues and developmental stages. The best way to
address this issue is through RNA sequencing, since this method is not limited by an a priori knowledge
of circRNA sequences and expression. In turn, when it comes to MREs prediction, the bioinformatic
approach becomes less straightforward. Assuming that the full sequence of novel circRNAs has been
assessed, the first issue is represented by the choice of an appropriate tool to predict MREs. Although it
has been shown that more than 80% of circRNAs are overlapping coding genes, less than 10% include a
3′UTR, making it almost useless to take advantage of available databases (like TargetScan [74], Table 2)
that contain information on 3′UTRs only. On the other hand, databases that provide information on
MREs on the entire sequence (e.g., microRNA.org [101]) and also include experimental validation
information (like TarBase v8 [81] or STarMirDB [102]) do not allow to browse by target sequence in
addition to gene name, therefore becoming useless for the analysis of novel circRNAs. There are some
tools that have been designed to also search by custom sequences (e.g., STarMir [103]), but they show
limitation in the length of the queried sequence, allowing the analysis only of few transcripts and
making it difficult to perform a comprehensive assessment. One way to overcome these limitations
is to use the stand-alone versions of the algorithms behind the prediction database (when available).
Thus, the direct application of the algorithms allows the analysis of any given sequence for any given
list of miRNAs. Unfortunately, results obtained with this approach show an extremely high rate of

http://www.circbase.org
https://circinteractome.nia.nih.gov
http://syslab5.nchu.edu.tw/CircNet/
http://starbase.sysu.edu.cn/index.php
http://starbase.sysu.edu.cn/starbase2/index.php
http://starbase.sysu.edu.cn/starbase2/index.php
http://gyanxet-beta.com/circdb/


Genes 2019, 10, 642 6 of 14

false positives, requiring either a systematic validation of the targets (e.g., with RIP assays) or the
integration with known interactions.

Table 2. List of the most common databases and algorithms for predicting miRNA binding sites
together with the organisms for which the prediction can be browsed (by sequence and/or by gene ID)
and if they share the standalone version.

Tool Website Organisms Browse by
Sequenc/Gene ID

Standalone
Version

STarMir http://sfold.wadsworth.org/
cgi-bin/starmirtest2.pl

Human
Mouse
Worm
Other

Sequence/
Gene ID no

STarMirDB http://sfold.wadsworth.org/
starmirDB.php

Human
Mouse
Worm

Gene ID no

PITA https://genie.weizmann.ac.il/
pubs/mir07/index.html

Human
Mouse

Fly
Worm

Gene ID yes

miRanda/
mirSVR

http://www.microrna.org/
microrna/home.do

Human
Mouse

Rat
Fly

Worm

Gene ID yes

TargetScan http:
//www.targetscan.org/vert_72/

Human
Mouse

Fly
Worm

Zebrafish

Gene ID yes

RNAhybrid https://bibiserv.cebitec.uni-
bielefeld.de/rnahybrid/

Any Sequence yes

TarBase v8
http://carolina.imis.athena-
innovation.gr/diana_tools/

web/index.php

Human
Mouse

Rat
Chicken

Zebrafish
Fly

Worm
Chimpanzees

Macaque
Soy

Maize
Barrelclover
Grape wine
Earthmoss

Epstein–Barr
virus

KSHV

Gene ID no

4. Integrating Seed Prediction on Custom Sequences with Experimental Data

No matter which method is used to design the prediction algorithm, the major reason behind the
high rate of observed false positives and false negatives is the fact that miRNA-target recognition already
is effective with a seed length of six nucleotides [104,105]. Reducing and prioritizing the predicted
interaction is not trivial, as each possible approach has several pros and cons. For example, to consider
conservation of seed and MREs across species dramatically reduces the number of predictions, although

http://sfold.wadsworth.org/cgi-bin/starmirtest2.pl
http://sfold.wadsworth.org/cgi-bin/starmirtest2.pl
http://sfold.wadsworth.org/starmirDB.php
http://sfold.wadsworth.org/starmirDB.php
https://genie.weizmann.ac.il/pubs/mir07/index.html
https://genie.weizmann.ac.il/pubs/mir07/index.html
http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php
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this approach does not consider non-canonical, as well as non-conserved, binding sites [106]. Moreover,
using the free energy of miRNA:target duplexes is effective at the cost of an incredibly high number of
putative very stable false positive interactions. Given that no gold standard has been identified nor
do any algorithms outperform the others, there are some steps that can be undertaken to “manually”
predict circRNA-miRNA sites while limiting the possibly overwhelming list of predicted binding
interactions. This workflow (depicted in Figure 4, left) can be divided into three main steps. To show
how each step influences the final outcome, we analyzed 100 randomly chosen mouse circRNA from
previous work [30]. As done in some databases for gene-miRNA target mining (e.g., miRWalk [107]),
the first step consists in performing the analysis with the same input (circRNAs) and miRNA sequences
using different algorithms (for this example, TargetScan [74], miRanda [77] and RNAhybrid [108] were
used, Figure 4, right). Using default options, we obtained for our cohort of circRNAs an average
of 115,747 putative MREs where RNAhybrid predicted the highest number of sites (183,954) while
miRanda the lowest (68,790). The second step consists in retrieving only the predictions that have been
identified by at least half of the programs (in our case we selected MREs predicted by at least two
programs). This first filtering step reduced the initial list to approximately 23,000 MREs, with only
1935 sites predicted by all programs. In particularly, for TargetScan only ~19% of predicted sites were
common to at least another algorithm, while for miRanda the sites were reduced to approximately
30%. Regarding RNAhybrid, we observed the most severe reduction, as only 5% of all the predicted
MREs were kept for the last step. To further reduce the amount of possible false positives, a valid
approach is to make use of complementary experimental data. Specifically, since the binding of
the RISC complex is mediated by the interaction of the miRNA with members of the Argonaute
protein family [109,110], it is fundamental, for a predicted miRNA-circRNA site to be real, that Ago
proteins also are binding in the same positions. The development of various CLIP-Seq protocols
(Cross-linking and Immunoprecipitation followed by sequencing) provides an extremely valuable
source of high-throughput data of Ago binding sites [111–117]. These data can be directly used to
eliminate all the predicted sites for which there is no binding of Ago protein [118], considering this
a sine qua non condition for a true binding of miRNA on the target circRNA. Considering this, the
last step consists in the retrieval of all the MREs that are overlapped also by Ago and to this end we
used a collection of publicly available Ago-binding sites from mouse brains [115,119]. We obtained a
final set of 2257 sites partially overlapping an Ago peak and among these, 1091 MREs were included
entirely in a peak. Using this final filtering, we could reduce the number of putative circRNA:miRNA
sites down to 0.9% and 1.5% for TargetScan and miRanda predictions, respectively. Again, the most
dramatic decrease was observed for RNAhybrid predictions as only 0.2% of MREs were included
in the final list. Since Ago CLIP-Seq experiments are not available for all cell types, tissues and
organisms, for this last step accessible data also can be used indirectly, for instance, by creating a pool
of Ago-binding motifs and exploiting sequence similarity to quantify existence probability of custom
miRNA:circRNA duplexes.

Ranking MREs

The approach presented in this example uses a basic step-wise filtering system that takes the
output of different prediction programs and sequentially reduces the pool of MREs according to
the presence/absence of specific criteria (prediction by at least 2 out of 3 algorithms; overlap with
an Ago peak). As shown, this system already is effective in reducing the amount of data that can
be considered for further validation and functional characterization, but we still might be missing
valuable information given by the pool of MREs that are specific to each algorithm but that still overlap
an Ago peak (~12,000 additional MREs in total). To overcome this limitation, a possible alternative
is the construction of a scoring function that evaluates the probability of a predicted MRE to be real
by considering the validated data (presence of an Ago peak/binding motif) and the initial prediction
information (observation that the same site is identified by one or more algorithms) [120]. Weighting
these two aspects differently, the resulting score would allow the ranking of all predicted MREs and to
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prioritize those that include both the experimental data and the predictions by multiple algorithms
while not excluding all the sites identified by single programs that still retain a correspondence among
validated data.
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Figure 4. A possible pipeline for the comprehensive assessment of circRNA:miRNA binding sites
starting from a custom set of expressed circRNA sequences (left) and a practical example on the outcome
of each step on a set of randomly chosen sequences from previous work [30] (right).

5. Concluding Remarks

Circular RNAs have recently emerged as a novel class of transcripts characterized by covalently
linked 3′–5′ ends called backsplice junctions. Studies have shown their relevance in physiological and
pathological conditions, in particular as disease biomarkers and potential therapeutic targets. However,
the functional characterization of these sequences is still in its infancy and the role of relatively few
circRNAs has been described to date. Recently, great effort has been put toward understanding one
specific mechanism, i.e., miRNA sponging. Due to the combined overall low expression of circRNAs
and the low number of MREs predicted within their sequence, only a handful of transcripts really can
be considered true “sponges”. Nevertheless, it is undeniable that circRNAs are capable of binding
miRNAs but, more than a “sponge” for a single small RNA, they might function as a scaffold for
several different ones. Regarding this, it is crucial to develop appropriate pipelines that allow a more
accurate prediction of the miRNA targets, thus facilitating an overall assessment of miRNA binding
and, possibly, leading to the identification of a more general function.
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