Skip to main content
. 2019 Aug 21;8(9):356. doi: 10.3390/foods8090356

Table 3.

Results of classification models using NIR spectra based on full spectra and effective wavelengths.

Temperature (°C) Classifier Parameter 1 Full Spectra
(%)
Parameter Effective Wavelengths (%)
Calibration Prediction Calibration Prediction
4 PLS-DA 10 100 100 10 98.75 100
SVM (106, 103) 100 97.50 (106, 104) 98.75 92.50
ELM 12 100 100 18 100 100
20 PLS-DA 4 100 100 4 100 100
SVM (103, 103) 100 100 (103, 105) 100 100
ELM 7 100 100 8 100 100

1 Parameter means the parameters of partial least squares discriminant analysis (PLS-DA), support vector machine (SVM), and extreme learning machine (ELM) models with optimal performances. The parameter for PLS-DA is the optimal number of latent variables; the parameters for SVM models are the regularization parameter c and kernel function parameter g; the parameter of the ELM model is the number of hidden layer neurons.