Table 3.
Temperature (°C) | Classifier | Parameter 1 | Full Spectra (%) |
Parameter | Effective Wavelengths (%) | ||
---|---|---|---|---|---|---|---|
Calibration | Prediction | Calibration | Prediction | ||||
4 | PLS-DA | 10 | 100 | 100 | 10 | 98.75 | 100 |
SVM | (106, 103) | 100 | 97.50 | (106, 104) | 98.75 | 92.50 | |
ELM | 12 | 100 | 100 | 18 | 100 | 100 | |
20 | PLS-DA | 4 | 100 | 100 | 4 | 100 | 100 |
SVM | (103, 103) | 100 | 100 | (103, 105) | 100 | 100 | |
ELM | 7 | 100 | 100 | 8 | 100 | 100 |
1 Parameter means the parameters of partial least squares discriminant analysis (PLS-DA), support vector machine (SVM), and extreme learning machine (ELM) models with optimal performances. The parameter for PLS-DA is the optimal number of latent variables; the parameters for SVM models are the regularization parameter c and kernel function parameter g; the parameter of the ELM model is the number of hidden layer neurons.