
foods

Article

Long-Chain Polyunsaturated Fatty Acids Are
Associated with Blood Pressure and Hypertension
over 10-Years in Black South African Adults
Undergoing Nutritional Transition

Manja M. Zec 1,2,* , Aletta E. Schutte 3,4 , Cristian Ricci 1, Jeannine Baumgartner 1,
Iolanthe M. Kruger 5 and Cornelius M. Smuts 1

1 Centre of Excellence for Nutrition, North-West University, 2520 Potchefstroom, South Africa
2 Centre of Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade,

11000 Belgrade, Serbia
3 Hypertension in Africa Research Team (HART), North-West University, 2520 Potchefstroom, South Africa
4 Medical Research Council Unit: Hypertension and Cardiovascular Disease, North-West University,

2520 Potchefstroom, South Africa
5 Africa Unit for Transdisciplinary Health Research (AUTHeR), North-West University,

2520 Potchefstroom, South Africa
* Correspondence: manjazec@gmail.com; Tel.: +27-18-299-2086

Received: 16 August 2019; Accepted: 2 September 2019; Published: 6 September 2019
����������
�������

Abstract: Nutritional transition in Africa is linked with increased blood pressure (BP). We examined
10-year fatty acid status and longitudinal associations between individual long-chain polyunsaturated
fatty acids (PUFA), BP and status of hypertension (≥140/90 mmHg and/or medication use) in black
South Africans. We included 300 adults (>30 years) participating in the Prospective Urban Rural
Epidemiology study, and analysed data from three consecutive examinations (2005, 2010 and 2015
study years). Fatty acids in plasma phospholipids were analysed by gas chromatography-mass
spectrometry. We applied sequential linear mixed models for continuous outcomes and generalized
mixed models for the hypertension outcome, in the complete sample and separately in urban and
rural subjects. Mean baseline systolic/diastolic BP was 137/89 mmHg. Ten-year hypertension status
increased among rural (48.6% to 68.6%, p = 0.001) and tended to decrease among urban subjects
(67.5% to 61.9%, p = 0.253). Regardless of urbanisation, n-6 PUFA increased and eicosapentaenoic
acid (EPA, C20:5 n-3) decreased over the 10-years. Subjects in the highest tertile of arachidonic acid
(C20:4 n-6) had 3.81 mmHg lower systolic (95% confidence interval (CI): −7.07, −0.54) and 3.82 mmHg
lower diastolic BP (DBP) (95% CI: −5.70, −1.95) compared to the reference tertile, irrespective of
lifestyle and clinical confounders. Similarly, osbond acid (C22:5 n-6) was inversely associated with
DBP. Over the 10-years, subjects in the highest EPA tertile presented with +2.92 and +1.94 mmHg
higher SBP and DBP, respectively, and with 1.46 higher odds of being hypertensive. In black South
African adults, individual plasma n-6 PUFA were inversely associated with BP, whereas EPA was
adversely associated with hypertension, supporting implementation of dietary fat quality in national
cardiovascular primary prevention strategies.

Keywords: black Africans; blood pressure; hypertension; long-chain polyunsaturated fatty acids;
longitudinal study; nutritional transition; PUFA

1. Introduction

Urbanisation in sub-Saharan Africa followed by increased consumption of energy-dense food [1],
is linked with an increase in cardiovascular disease, obesity and diabetes [2], and the highest
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prevalence of mean blood pressure (BP) since 1980 [3]. Among black South African adults (>30 years)
participating in a large-scale Prospective Urban Rural Epidemiology (PURE) study, a five-year increase
in hypertension rate has been reported [4]. Nutritional interventions remain a cost-effective approach in
suppressing the hypertension burden in the population. Baseline data from the PURE study indicate low
total fat and omega-3 (n-3) intake in black South Africans [5]. In the same study, dietary n-3 long-chain
polyunsaturated fatty acids (PUFA) were associated with serum lipids. Dietary eicosapentaenoic
acid (EPA; C20:5 n-3) was associated with dyslipidemia and docosahexaenoic acid (DHA; C22:6
n-3) with favourable lipid status in the population [5]. These results indicate a unique metabolic
profile in black South Africans related to fat catabolism and a specific role of individual fatty acids in
cardiometabolic function.

Long-chain n-3 PUFA from marine foods demonstrate BP-lowering effects [6]. Clinical studies
show that long-chain n-3 PUFA consumption diminishes the risk of cardiac death, potentially through
regulation of triglycerides, heart rate and BP [7]. Measurement of the intake remains a challenge,
since questionnaires are imprecise in differentiating intake of individual long-chain fatty acids.
Self-reported information from dietary questionnaires is further limited by recall bias and participants’
non-compliance to fat-intake related questions [8]. Fatty acids in plasma phospholipids are however
reliable biomarkers reflecting fat intake of the preceding 6-8 weeks [9]. Dietary fatty acids are
endogenously catalysed by desaturase-5 and desaturase-6 enzymes encoded by FADS1 and FADS2
genes, respectively. The conversion results in the formation of long-chain PUFA with diverse
physiological functions. Plasma fatty acids are of raising importance as prognostic biomarkers of
cardiovascular disease [10]. Data from the Women’s Health Initiative study show inverse association
between n-3 group and coronary heart disease risk in post-menopausal women [11]. A recent review
underlined the importance of individual circulating fatty acids with regards to total and cause-specific
mortality, type 2 diabetes mellitus and cardiometabolic indices [10]. Plasma fatty acids have been
associated with BP [12–14], and observational data suggest protective associations of individual
circulating n-3 long-chain PUFA with BP [15,16]. In middle-aged and elderly Chinese community
dwellers, serum patterns presenting with high DHA levels were inversely associated with BP [12]
and hypertension status [17]. Recent data from the PURE study showed association between plasma
phospholipid fatty acid patterns and obesity and metabolic syndrome in black South African adults [18],
however the link with vascular function has not yet been examined in the population.

Therefore, the objective of this longitudinal study was to evaluate the relationship between fat
intake and BP in black South Africans. We measured and reported fatty acids in plasma phospholipids
over 10 years, in a sample of black South Africans participating in the PURE and residing in rapidly
urbanizing areas. To address the study objective, we examined the associations between individual
long-chain n-3 and n-6 PUFA with BP and hypertension status over the 10-years. We also evaluated
the 10-year associations separately in subjects residing in urban and rural areas.

2. Materials and Methods

2.1. Study Design and Selection of Study Sample

This study formed part of the South African cohort of the PURE study, an international
study investigating health implications linked with urbanisation in low-, middle- and high-income
countries [19]. The cohort included 2010 (1260 women and 750 men at baseline) randomly selected
black adults (>30 years), from urban and rural areas of the North West Province, without use of chronic
medication and/or any self-reported acute illness. Permission for the study was obtained from the
provincial Department of Health. Trained fieldworkers fluent in both English and Setswana conveyed
all information. All subjects voluntarily gave written informed consent for the participation in 2005,
continuous consent throughout the study and again in 2010 and 2015. The study protocol adhered to the
1983 Declaration of Helsinki and was approved by the Health Research Ethics Committee of the Faculty
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of Health Sciences at the North-West University (Potchefstroom campus). Privacy and confidentiality
were ensured during the data-gathering process, data and sample storage and management.

For the purposes of this study and analysis we applied a repeated-measures design and included
data and assessments from 2005 (baseline), 2010 and 2015 (follow-up). A sub-cohort of 711 subjects were
randomly selected at 2010 (Supplementary Materials Figure S1) and fatty acid analysed accordingly.
Due to the loss to follow-up in the 2015 study year, we ended up with 300 complete sets of samples
across the 3 study years, inclusive of fatty acid profiles and vascular outcomes. The 300 corresponding
subjects were thus included in the longitudinal analysis.

2.2. Clinical and Biological Measurements

Fasting blood samples were collected from the antecubital vein with a sterile winged infusion set
and were with minimal stasis. The samples were collected by a registered nurse and stored at −80 ◦C.
In rural areas the samples were stored at −18 ◦C up to 5 days; afterwards transported to the laboratory
facility and stored at −80 ◦C until analysis. Plasma phospholipid fatty acid composition was analysed
as described previously [20]. Briefly, lipids were extracted with chloroform: methanol (2:1 v/v) from
thawed ethylenediaminetetraacetic acid-plasma samples according to the modified Folch method [21].
The phospholipid fatty acid fractions were subsequently isolated by thin layer chromatography, further
transmethylated to fatty acid methyl esters, and analysed by quadrupole gas chromatography electron
ionization mass spectrometry using an Agilent Technologies 7890 A GC system [20]. Levels of each
individual fatty acid were expressed as a percentage of the total phospholipid fatty acid pool in plasma.
To examine longitudinal associations with vascular function, we used data for the long-chain n-3 fatty
acids: EPA, DHA and docosapentaenoic acid (C22:5 n-3); and n-6 fatty acids: dihomo-γ-linolenic acid
(DGLA, C20:4 n-6), arachidonic acid (AA, C20:4 n-6), adrenic acid (C22:4 n-6), and docosapentaenoic
acid (osbond acid, C22:5 n-6).

Brachial BP was measured in duplicate in a sitting position by using a validated OMRON device
(Omron Healthcare, Kyoto, Japan) after subjects rested for 10 min, as reported elsewhere [4]. To be
categorized as hypertensive, the participants had to exceed either SBP (140) or DBP (90) or both
thresholds (or had to use antihypertensive medication) [22]. The PURE-standardized demographic,
socio-economic and lifestyle questionnaires were interviewer administered [19]. Education was
confirmed if any formal education was present. Quantitative FFQ and the physical activity index
questionnaire previously developed and validated for South Africans were used [23,24]. The FFQ
was conducted in the morning on the study visit day. Study participants were provided with a list of
food items (food or drinks) and were asked how often they had consumed specific foods or drinks on
average in the preceding year. Assessment of height, weight, waist circumference, serum lipids and
other biochemical measurements were described previously [4,5].

2.3. Statistical Analyses

Statistical analysis was performed using SAS 9.4 (SAS Institute Inc, Cary, NC, USA). Continuous
variables were checked for the distribution by visual inspection of histogram and skewness. Normal,
non-normal and categorical data are presented as mean ± SD, median [25th, 75th percentile] and
percentages, respectively. Baseline between-subject differences across urbanisation areas were tested
by independent t-test and Mann Whitney test, for normal and non-normal data, respectively.
Between-subject differences across the three study years were analysed by general linear model.
Pearson’s correlation coefficients were computed to evaluate the relationship between plasma long-chain
phospholipid PUFA, n-3 intake (cumulative intake of dietary α-linolenic acid (ALA, C18:3 n-3), EPA
and DHA) and marine fatty acid intake (cumulative intake of EPA and DHA).

We evaluated 10-year associations between individual n-3 and n-6 long-chain PUFA (exposures)
and the outcomes, by inclusion of data for the three study points. We applied linear mixed models for
continuous outcomes (SBP and DBP) and generalized mixed models for the outcome of hypertension,
with individual exposure fatty acids included as tertiles of the plasma phospholipid content. Sequential
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regression-based models were applied: Model 1 with fatty acid predictors controlled for age, gender
and level of urbanisation (urban or rural); Model 2 further controlled for lifestyle confounders, including
level of education (no education or any kind of formal education), self-reported use of tobacco (current,
former or never used), use of hypertension medication (yes or no), body mass index, physical activity
index and dietary intake of alcohol (g per day). The urbanisation status was treated as random factor,
and repeated measures design was accounted for by use of adequate syntax within the procedures.
We performed a prespecified subgroup analysis, stratified by urbanisation status (rural and urban
areas). The level of significance was set at 0.05 (2-tailed).

2.4. Sensitivity Analyses

We further tested whether multivariable-adjusted associations were independent on dietary
and fat intake in three consecutive steps: adjusting for total energy intake, following total fat and
carbohydrate intake, and lastly ratio of monounsaturated to saturated fat intake, and soluble fiber
intake, latter known to be protective towards vascular health [25,26]. We also tested whether our
associations survived upon adjustment for potential effect mediators linked with BP, including total
cholesterol, triglycerides, fasting glucose, and γ-glutamyl transferase reported to be associated with
hypertension in this population [4].

3. Results

3.1. Baseline Characteristics of the 300 Rural and Urban Black South Africans

The study sample included 300 black South Africans (mean age = 53.12 ± 9.83), out of which
91 were men, 140 rural residents (46.7%), and 42.3% overweight subjects, mostly women (53.6% and
16.5% women and men who are overweight, respectively, p < 0.0001). In total, 19.7% and 23% subjects
had elevated total cholesterol and triglycerides, respectively. Only 2.3% of participants were either
diagnosed with type 2 diabetes or actively taking anti-diabetic medications.

Urban subjects presented with higher hypertension prevalence and had higher SBP and DBP,
then rural residents. The intake of total energy, total carbohydrates, total fat, and specific fat groups
were higher among urban subjects (Table 1).

Table 1. Baseline characteristics of the 300 rural and urban black South Africans.

Complete Sample
(n 300) Rural Areas (n 140) Urban Areas (n 160) p-Value 1

Gender, men, n (%) 91 (30.33) 39 (27.86) 52 (32.5) 0.385
Any education, n (%) 190 (64.63) 65 (47.10) 125 (80.13) <0.001

Current smokers, n (%) 155 (51.84) 74 (52.86) 81 (50.94)
0.201Former smokers, n (%) 135 (45.15) 59 (42.14) 76 (47.8)

Clinical parameters

Age, years 53.12 (9.83) 52.20 (9.16) 53.93 (10.34) 0.130
Body mass index, kg m−2 23.91 [19.93, 29.61] 23.39 [19.44, 29.43] 24.03 [20.43, 29.61] 0.172
Waist circumference. cm 80.68 (12.99) 79.84 (13.43) 81.42 (12.60) 0.295

Systolic blood pressure, mmHg 136.54 (3.29) 131.56 (22.81) 140.91 (22.89) 0.001
Diastolic blood pressure, mmHg 89.04 (12.69) 87.10 (13.33) 90.75 (11.87) 0.013

Fasting glucose, mmol L−1 5.11 (1.53) 4.87 (1.08) 5.32 (1.82) 0.010
Total cholesterol, mmol L−1 5.22 (1.30) 5.12 (1.32) 5.31 (1.27) 0.193

HDL-c, mmol L−1 1.58 (0.64) 1.55 (0.65) 1.62 (0.64) 0.338
LDL-c, mmol L−1 3.01 (1.18) 3.00 (1.16) 3.03 (1.19) 0.820

Tryglicerides, mmol L−1 1.15 [0.84, 1.68] 1.10 [0.84, 1.53] 1.23 [0.84, 1.75] 0.142
Weighted physical activity index 2.76 [2.49, 3.17] 3.07 [2.61, 3.43] 2.62 [2.38, 2.89] <0.0001

GGT, U L−1 43.00 [29.00, 85.06] 37.30 [26.90, 64.35] 50.29 [34.38, 95.50] 0.001
hsCRP, mg L−1 3.19 [1.04, 7.52] 3.32 [0.90, 7.36] 2.90 [1.07, 8.39] 0.722

Use of hypertension medication, n (%) 55 (18.3) 27 (19.3) 28 (17.5) 0.691
Hypertensive, n (%) 176 (58.7) 68 (48.6) 108 (67.5) <0.001
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Table 1. Cont.

Complete Sample
(n 300) Rural Areas (n 140) Urban Areas (n 160) p-Value 1

Dietary intake

Energy, kJ 7251.15 [5259.26, 9689.23] 6103.36 [4681.22, 7928.72] 8453.99 [5824.48, 11439.46] <0.0001
Total fat, g 43.14 [27.73, 63.05] 30.53 [21.94, 42.22] 59.04 [40.89, 82.64] <0.0001

Saturated fat, g 9.97 [5.98, 16.29] 6.61 [3.88, 9.20] 15.18 [10.10, 21.39] <0.0001
Monounsaturated fat, g 10.92 [6.10, 18.05] 6.79 [4.20, 10.00] 16.20 [11.14, 24.69] <0.0001
Polyunsaturated fat, g 13.55 [7.85, 20.23] 9.59 [6.50, 14.26] 17.10 [11.49, 23.60] <0.0001

n-3 intake, mg 314.10 [188.98, 476.17] 209.19 [137.58, 314.34] 425.59 [298.12, 608.72] <0.0001
EPA+DHA intake, mg 109.91 [49.20, 199.49] 79.91 [34.66, 137.56] 130.48 [58.90, 230.20] <0.0001
Total carbohydrate, g 279.98 (129.89) 256.77 (113.15) 300.29 (140.15) 0.003

Total fibre, g 21.35 (10.48) 18.62 (8.11) 23.75 (11.68) <0.0001
Soluble fibre, g 1.40 [0.84, 2.32] 0.97 [0.66, 1.43] 2.12 [1.28, 3.32] <0.0001

Alcohol, g 0.00 [0.00, 11.50] 0.00 [0.00, 5.71] 0.10 [0.00, 15.33] 0.010

HDL-c, High-density lipoprotein cholesterol; LDL-c, Low-density lipoprotein cholesterol; GGT, γ-glutamyl
transferase; EPA, Eicosapentaenoic acid; DHA, Docosahexaenoic acid; n-3, Intake of EPA, DHA and plant-originated
α-linolenic acid. Data are presented as mean (SD), median [25th, 75th] or percentage for categorical variables.
1 Significance values calculated by use of independent t-test or Mann-Whitney test.

3.2. Ten-Year Changes in Blood Pressure and Status of Hypertension

Within all 300 subjects, we observed a non-significant increase in hypertension rate (58.7%, 61.3%
and 65% in 2005, 2010 and 2015, respectively; p = 0.210). There was a significant increase in the
hypertension rate in rural residents (48.6%, 51.4% and 68.6% in 2005, 2010 and 2015, respectively;
p = 0.001), and a non-significant decrease within urban dwellers (67.5%, 70% and 61.9% in 2005, 2010
and 2015, respectively; p = 0.253). At baseline and in 2010 there were significantly more hypertensive
subjects in urban areas, with no differences in 2015. SBP and DBP significantly decreased across the
10-years in urban areas (Supplementary Materials Table S1).

3.3. Ten-Year Changes in Long-Chain Plasma Phospholipid Fatty Acids

There was a significant decrease in γ-linolenic acid. Long-chain n-6 PUFA (DGLA, AA, adrenic
and osbond acid) increased and long-chain n-3 (EPA and DHA) decreased across the 10 years (Table 2).
Ten-year fatty acid status across urbanisation areas is presented in Supplementary Materials Table S2.
Regardless of urbanisation level, we observed increases in DGLA, AA and osbond acid. In urbans
only, adrenic acid increased and EPA and DHA decreased over the 10-years. In rural subjects,
docosapentaenoic acid and DHA content increased and EPA tended to decrease.

Table 2. Plasma phospholipid fatty acid status across 10 years in 300 black South Africans.

Study Year
p 1

2005 2010 2015

Myristic acid, 14:0 0.27 (0.01) 0.27 (0.01) 0.33 (0.03) <0.0001
Palmitic acid, 16:0 26.93 (0.31) 27.17 (0.45) 24.79 (0.64) <0.0001

Palmitoleic acid, 16:1 n-7 0.86 [0.76, 0.96] 0.83 [0.70, 0.91] 0.93 [0.79, 1.04] 0.086
Stearic acid, 18:0 15.26 (0.96) 14.92 (0.61) 14.19 (0.07) <0.0001

Oleic acid, 18:1 n-9 8.84 [8.35, 9.27] 8.48 [7.88, 8.95] 8.33 [7.73, 8.63] 0.025
Mead, 20:3 n-9 0.25 [0.25, 0.26] 0.24 [0.22, 0.25] 0.27 [0.19, 0.28] 0.216

Linoleic acid, 18:2 n-6 16.03 (0.41) 16.70 (1.01) 16.07 (0.28) 0.579
γ-Linolenic, 18:3 n-6 0.12 [0.11, 0.12] 0.12 [0.11, 0.13] 0.11 [0.10, 0.11] 0.018

Dihomo-γ-linolenic, 20:3 n-6 2.91 (0.09) 2.89 (0.08) 3.48 (0.19) <0.0001
Arachidonic acid, 20:4 n-6 13.57 (0.24) 14.65 (0.31) 18.13 (0.37) <0.0001

Adrenic, 22:4 n-6 0.60 (0.07) 0.70 (0.01) 0.66 (0.02) <0.0001
Osbond, 22:5 n-6 0.57 [0.56, 0.67] 0.72 [0.70, 0.73] 1.07 [0.93, 1.09] <0.0001

α-linolenic acid, 18:3 n-3 0.09 [0.09, 0.09] 0.09 [0.09, 0.11] 0.07 [0.07, 0.08] <0.0001
EPA, 20:5 n-3 0.78 [0.59, 0.80] 0.47 [0.45, 0.60] 0.55 [0.52, 0.59] <0.0001

Docosapentaenoic, 22:5 n-3 1.41 (0.02) 1.42 (0.19) 1.53 (0.08) 0.001
DHA, 22:6 n-3 4.56 (0.61) 3.88 (0.11) 4.33 (0.14) 0.009

EPA, Eicosapentaenoic acid; DHA, Docosahexaenoic acid. Age and urbanization factor-adjusted data presented as
mean (SD) or median [25th, 75th]. 1 Probability trends associated with changes over 10-years calculated by general
linear model adjusted for age and urbanization factor.
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3.4. Relationship Between Dietary Intake of N-3 Fatty Acids and Long-Chain Fatty Acids in
Plasma Phospholipids

A HeatMap of Pearson correlations among baseline intake of n-3 fatty acids and long-chain plasma
phospholipid fatty acids is presented in Figure 1.

Figure 1. Baseline correlations between intake of n-3 fats and long-chain plasma fatty acids in 300 black
South Africans: HeatMap of Pearson coefficients. DGLA, dihomo-γ-linoleic acid; AA, arachidonic
acid; EPA, Eicosapentaenoic acid; DPA_n3, docosapentaenoic acid; DHA, Docosahexaenoic acid;
Intake_EPADHA, Cumulative intake of preformed EPA and DHA; Intake_Omega3, Cumulative intake
of EPA, DHA and plant-originated essential α-linolenic acid; <.0001, denotes statistical threshold (p) of
< 0.0001 associated with correlation pair.

Cumulative n-3 intake was correlated with status of EPA and DHA, and negatively correlated
with n-6 long-chain PUFA: AA (r = −0.113, p = 0.052), adrenic acid (r = −0.280, p = < 0.0001) and osbond
acid (r = −0.198, p = 0.001) (Supplementary Materials Table S3). Cumulative intake of preformed EPA
and DHA did not correlate with status of any long-chain n-3 PUFA, yet negatively correlated with
long-chain n-6 PUFA: AA (r = −0.136, p = 0.018), adrenic acid (r = −0.126, p = 0.030) and osbond acid
(r = −0.180, p = 0.002).

Fatty acids in plasma phospholipids within either the n-3 or n-6 group were correlated among
each other. Adrenic acid inversely correlated with EPA and DHA. Osbond acid inversely correlated
with EPA, while the inverse relationship with DPA and DHA did not reach statistical significance
(Supplementary Materials Table S3).

3.5. Ten-Year Associations between Long-Chain Plasma Phospholipid Fatty Acids with Blood Pressure and
Hypertension in Black South African Adults

3.5.1. Associations between N-3 Long-Chain Fatty Acids and Blood Pressure

Subjects in the highest tertile of plasma EPA content over the 10-years had 1.94 mmHg higher
DBP in comparison with subjects in the lowest (multivariable β for T3 vs. T1: 1.94 (95% CI: 0.01, 3.87)),
regardless of age, gender, BMI, educational background, intake of alcohol, smoking status, level of
physical activity and use of hypertension medication (Table 3).

Urban subjects within the highest EPA content were with higher SBP (Supplementary Materials
Table S4). DHA was inversely associated with DBP in rural dwellers (multivariable β for T3 vs.
T1: −3.91 (95% CI: −7.04, −0.78).
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Table 3. Ten-year associations between plasma phospholipid long-chain fatty acids and blood pressure
in 300 black South Africans.

Systolic Blood Pressure Diastolic Blood Pressure

β (95% CI) p 3 β (95% CI) p 3

Long-chain n-3 fatty acids
EPA, 20:5 n-3

T1 ref. ref.
T21 1.89 (−1.40, 5.18)

0.322
1.44 (−0.44, 3.32)

0.143T3 2.41 (−0.89, 5.70) 1.80 (−0.09, 3.69)
T22 2.39 (−0.95, 5.72)

0.191
1.37 (−0.56, 3.30)

0.132T3 2.92 (−0.41, 6.26) 1.94 (0.01, 3.87)

Docosapentaenoic, 22:5 n-3

T1 ref. ref.
T2 1 0.91 (−2.39, 4.22)

0.284
0.58 (−1.31, 2.48)

0.056T3 −1.75 (−5.26, 1.75) −1.69 (−3.69, 0.30)
T2 2 0.22 (−3.10, 3.53)

0.349
0.33 (−1.59, 2.24)

0.068T3 −2.11 (−5.63, 1.41) −1.86 (−3.88, 0.17)

DHA, 22:6 n-3

T1 ref. ref.
T2 1 −0.92 (−4.31, 2.47)

0.386
−0.76 (−2.70, 1.18)

0.275T3 −2.48 (−6.08, 1.11) −1.68 (−3.73, 0.38)
T2 2 −0.37 (−3.79, 3.06)

0.427
−0.51 (−2.49, 1.46)

0.358T3 −2.21 (−5.86, 1.44) −1.50 (−3.60, 0.60)

Long-chain n-6 fatty acids
Dihomo-γ-linolenic acid, 20:3 n-6

T1 ref. ref.
T2 1 1.40 (−1.93, 4.73)

0.419
0.55 (−1.36, 2.46)

0.396T3 −0.77 (−4.17, 2.63) −0.75 (−2.70, 1.19)
T2 2 0.68 (−2.70, 4.06)

0.392
0.23 (−1.72, 2.19)

0.305T3 −1.59 (−5.07, 1.89) −1.19 (−3.20, 0.82)

Arachidonic acid, 20:4 n-6

T1 ref. ref.
T2 1 −0.06 (−3.29, 3.16)

0.048
−0.83 (−2.66, 1.00)

<0.0001T3 −3.50 (−6.73, −0.27) −3.76 (−5.59, −1.93)
T2 2 0.17 (−3.06, 3.39)

0.024
−0.62 (−2.47, 1.22)

<0.0001T3 −3.81 (−7.07, −0.54) −3.82 (−5.70, −1.95)

Adrenic acid, 22:4 n-6

T1 ref. ref.
T2 1 −1.87 (−5.11, 1.37)

0.327
0.03 (−1.83, 1.88)

0.999T3 0.45 (−3.02, 3.92) −0.02 (−2.00, 1.97)
T2 2 −2.56 (−5.79, 0.68)

0.195
−0.23 (−2.10, 1.65)

0.943T3 0.00 (−3.52, 3.53) 0.09 (−1.94, 2.13)

Osbond acid, 22:5 n-6

T1 ref. ref.
T2 1 −1.74 (−4.97, 1.48)

0.449
−1.22 (−3.05, 0.61)

0.002T3 −2.03 (−5.51, 1.45) −3.47 (−5.44, −1.49)
T2 2 −1.96 (−5.18, 1.26)

0.197
−1.22 (−3.07, 0.63)

0.001T3 −3.20 (−6.73, 0.33) −3.71 (−5.73, −1.70)

EPA, Eicosapentaenoic acid; DHA, Docosahexaenoic acid; T1, T2, T3, Increasing tertiles of plasma phospholipid
fatty acid content. 1 Model 1 adjusted for age, gender and urbanization factor. 2 Model 2 further adjusted for level
of education, use of tobacco, use of hypertension medication, body mass index, physical activity index and dietary
intake of alcohol (g). 3 Probability values associated with β estimating absolute change in blood pressure (in mmHg)
with regards to 10-year change in a fatty acid level.
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3.5.2. Associations between N-6 Long-Chain Fatty Acids and Blood Pressure

Across the 10 years AA was inversely associated with SBP and DBP (Table 3). Subjects in the
highest tertile were with 3.81 and 3.82 mmHg lower SBP and DBP, respectively, in comparison with
subjects within the reference tertile (multivariable β for T3 vs. T1: −3.81 (95% CI: −7.07, −0.54) for
SBP and −3.82 (95% CI: −5.70, −1.95) for DBP). Osbond acid was inversely associated with DBP
(Table 3). Subjects in the highest tertile had 3.71 mmHg lower DBP in comparison with reference tertile
(multivariable β for T3 vs. T1: −3.71 (95% CI: −5.73, −1.70)).

The inverse associations remained significant in urban residents for both AA and osbond acid,
and osbond acid was also inversely associated with SBP (Supplementary Materials Table S4). In urban
dwellers DGLA was inversely associated with DBP.

3.5.3. Associations between Long-Chain Plasma Fatty Acids and Status of Hypertension

Plasma phospholipid fatty acids were not associated with 10-years status of hypertension in the
300 black South African adults, except for EPA (Figure 2). Subjects in the highest tertile of EPA content
were with 1.46 higher odds of being hypertensive across the 10-years, in comparison with those in the
reference tertile (multivariable OR for T3 vs. T1: 1.46 (95% CI: 1.03, 2.08)) (Supplementary Materials
Table S5). Adverse relationship of DGLA was lost upon controlling for potential confounders.

EPA remained adversely associated with 10-year hypertension status only in rural subjects within
the highest tertile of the content. Furthermore, DGLA and osbond acid were adversely associated
upon controlling for confounders known to influence the status. No associations were seen among
urban dwellers.

Figure 2. Multivariable odds ratio of being hypertensive across 10-years depending on the individual
fatty acid content in plasma phospholipids in 300 black South Africans. AA, Arachidonic acid;
DGLA, Dihomo-γ-linolenic acid, EPA, Eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA,
Docosahexaenoic acid; T1, T2, T3, Increasing tertiles of each plasma phospholipid fatty acid content.

3.5.4. Sensitivity Analyses

Observed 10-year associations with BP and hypertension status remained consistent upon
sensitivity analyses evaluating contribution of dietary intake affecting fat metabolism, and
serum biomarkers.

4. Discussion

Our study showed that in black middle-aged and elderly South Africans living in rapidly
urbanizing areas, individual long-chain plasma phospholipid PUFA were associated with BP across
10 years. The n-6 fatty acids were protectively associated with office SBP and DBP, while subjects
with the highest EPA content presented with higher DBP. The relationships were independent of age,
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gender, BMI, educational background, intake of alcohol, smoking status, level of physical activity,
use of hypertension medication, total energy and intake of fat, and glucolipid biomarkers. Observed
relationships between individual PUFA and vascular health confer the role of dietary fat quality in
tailoring population-specific nutritional policies in black South Africans.

In our study EPA was adversely associated with 10-years status of hypertension. Previous studies
suggest favourable associations of EPA intake with vascular function [7,27,28] and cardiovascular
events [29]. In a prospective study among 1477 adult community dwellers, subjects in the highest
quartile of erythrocyte EPA content had significantly lower SBP and DBP across 3 years [30]. However,
the latter study included fatty acid biomarkers measured at single time-point, while our study
considered time-dependent variations in the PUFA content by inclusion of the data from 3 consecutive
examinations across the 10-years. Herein observed adverse EPA associations might be attributed to the
aging of participants, an epidemiological context associated with increase in BP. EPA is a precursor of
prostaglandins with limited vasodilatory properties and its physiological function might be outweighed
by the natural course of aging. Further on, associations reflecting absolute changes with incremental
EPA increase were relatively small. Subjects in the highest EPA tertile presented with only +2.92 and
+1.94 mmHg higher SBP and DBP over the 10-years, respectively, in a multivariable-adjusted model.
Of importance, baseline mean SBP/DBP was already higher (137/89 mmHg) and is with expected
increasing trend over time due to aging, altogether potentially contributing to the observed 1.46 higher
odds of being hypertensive with incremental EPA increase.

Our results should be interpreted in context of a population free of acute or chronic illnesses and
residing in rapidly urbanizing areas. We showed raising hypertension prevalence across the 10-years,
significant in rural areas. In urban dwellers we observed a non-significant decrease in hypertension
rate, partly due to 10-years decline in both SBP and DBP of approximately 7 mmHg. Notably, 19.3%
rural and 17.5% urban dwellers used hypertension medication at baseline. The number dramatically
increased across the 10-years resulting in 35.7% and 33.1% of the respective subjects on medication in
2015, partly because study participants diagnosed with baseline high BP were instructed to their local
clinics. Compliance with therapeutic protocols might be more prominent among urbans with readily
available healthcare, resulting in a stabilization of hypertension prevalence across the 10-years. In our
study, long-chain PUFA were not associated with status of hypertension across the 10-years, except for
EPA being adversely related. Increased medication use might have masked the associations, due to the
interaction with lipid metabolism [31]. The large-scale Atherosclerosis Risk in Communities study
previously showed protective associations between total PUFA cholesterol ester content and 6-years
prevalent and incident hypertension, with individual EPA and AA exhibiting adverse associations [32].
Overall, our results remain inconclusive on the association between fatty acids and hypertension status
in the black South Africans, and larger cohorts should confirm the relationship.

The metabolic context of our results is of consideration. Within the sample of black South
Africans, we found unusually high levels of long-chain PUFA in plasma phospholipids. Previously
reported levels of serum AA were higher in African Americans with diabetes or metabolic syndrome,
in comparison with their counterparts of European ancestry [33]. Still the levels were substantially
lower (9.8 ± 1.9%) [33], in comparison with our study (mean range across the 10 years: 13.57–18.13%).
In a larger population of Chinese subjects of similar age group as our participants, percentage of AA in
total serum content was 6.02 ± 1.61 [12]. Also, in our study 10-years mean plasma phospholipid content
of DHA exceeded 3.5%, which is above 2.5–3.4% previously reported in healthy populations [12,34–36].
Higher levels of long-chain AA and DHA observed herein might result from marked desaturase-6
activity. Observed DHA content is of special importance as only up to 1% of dietary ALA is
endogenously converted to DHA [37] and our population had substantially low n-3 intake at baseline
(year of 2005) [5] (median of 33 to 61 mg EPA +52 to 109 mg DHA below recommendations by
FAO [38]). According to 2004 International Society for the Study of Fatty Acids and Lipids expert
opinion, recommended combined EPA + DHA intake in general population should be at least 500 mg
daily, conferring substantially low intake of the fatty acids in our subjects. A low fat, high carbohydrate
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diet is reported in other urbanizing populations [39] and is associated with augmented fatty acid
synthesis [40]. We thus speculate that restricted intake of n-3 rich food in the black South Africans
might be a conditional metabolic factor enhancing desaturase activity towards physiologically active
long-chain plasma products, including AA and DHA. Notably, in our study baseline intake of marine
PUFA was not correlated with its plasma phospholipid status. Previous results in 1834 Chinese
community dwellers demonstrated strong correlation among erythrocyte long-chain n-3 content
and their dietary counterparts [30]. However, when we evaluated n-3 intake as sum of preformed
EPA, DHA and plant-originated ALA we observed a direct correlation with status of EPA (r = 0.138,
p = 0.017) and DHA (r = 0.218, p = 0.000). The latter suggests that in our subjects, dietary ALA is
pronouncedly converted towards plasma long-chain products by activity of desaturase enzymes.
Previous reports indicate specific FADS genetic make-up in populations of African descent. Results
from the Diabetes Heart Study showed that 81% of African Americans are carriers of FADS rs174537
variant [33], associated with AA, eicosadienoic acid and EPA levels [41]. We suggest that historically
low intake of n-3 PUFA in the population of black South Africans is coupled with genetically-regulated
higher metabolic conversion towards AA and DHA.

We showed inverse associations of AA with BP across the 10-years. Observational studies found
plasma AA to be protectively associated with coronary heart disease [42,43] and type 2 diabetes risk [44].
AA is a precursor of eicosanoids with pro-inflammatory properties and vasomodulatory function [45].
AA is also a precursor of epoxydes with anti-vasodilatory function, mediated by soluble epoxyde
hydrolase [46]. A favourable balance between n-3 and n-6 intake potentiates production of vasodilatory
eiocosanoids from AA and decreases BP [45,46]. Herein observed protective relationship of AA
might be due to metabolic adaptation conditional to a historically low n-3 long-chain PUFA intake.
The associations of AA were prominent within urban dwellers, potentially due to the interaction with
micronutrient intake, such as magnesium known to influence desaturase-6 function [47]. In a previous
cross-sectional study of 2447 middle-aged and older Chinese community dwellers, AA exhibited
neutral associations with BP, but study subjects in the highest tertile of serum DHA had significantly
lower SBP and DBP in comparison with those in the lowest [12]. Although there was an inverse trend,
DHA was not significantly associated with BP, potentially due to limited size of our study sample.
It is possible that in our population with inherently low n-3 PUFA intake, extensive conversion to
DHA underpins its incorporation in phospholipid cellular bilayers for non-vascular beneficial effects.
Prospective analysis among 381 healthy, middle-aged and elderly subjects participating in the Kuopio
Ischemic Heart Disease Risk Factor study also failed to demonstrate associations between individual
long-chain n-3 serum PUFA and BP over 10 years [48].

We observed protective associations of osbond acid with BP. Dietary contribution to osbond
acid status is negligible and its physiological role is due to metabolic conversion. To our knowledge,
no previous study reported associations of osbond acid with clinical outcomes. In our study, the 10-year
increase in n-6 AA and osbond acid were related to clinically relevant 3–4 mmHg lower BP for subjects
within the highest tertile of the PUFA content. The protective associations might reflect pronounced
utilization of the n-6 long-chain products for physiological function in this population with restricted
n-3 intake. The suggestion to increase n-6 intake however remains a controversial approach [49–51]
and previous studies suggest neutral effects from increased n-6 intake to BP lowering [52,53]. As intake
of essential n-6 linoleic acid (C18:3 n-6) and n-3 ALA are highly correlated since both are abundant in
plant oils, observed inverse associations might reflect beneficial implications of higher intake of dietary
ALA itself and its metabolic products [46,54].

Finally, our results should be placed in the context of a population under urbanisation coupled
with transitions in nutritional habits. The protective 10-year associations of AA and osbond acid
remained significant in urban dwellers only. In urban subjects only we observed decrease in EPA
and DHA in plasma phospholipids, possibly be due to westernised dietary patterns characterized
by cooking oils rich in linoleic acid and n-6 PUFA [55] and poor intake of n-3 sources (such as whole
grains, vegetables and marine food). The finding on EPA and DHA decrease thus supports existing
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policies on increasing n-3 intake in this population undergoing urbanisation [56]. In rural subjects only
we observed an increase in DHA, which was also associated with lower DBP. It is less plausible that the
increase was due to pronounced intake of DHA from marine food, rather a consequence of enhanced
conversion towards long-chain n-3 products within rural subjects with significantly lower n-3 intake.

Lack of consistent association between plasma n-3 PUFA and BP in our study is partly in
line with recent findings from ASCEND trial conducted in 16,000 diabetic middle-aged and older
subjects [57]. The authors demonstrated no beneficial effects of daily consumption of n-3 fish oil
capsules (460 mg EPA + 380 mg DHA) in comparison with placebo olive oil, and regarding incidence
of serious vascular events upon 7.4 years follow-up [57]. On the other hand, REDUCE-IT showed
that among 8000 patients with elevated triglycerides and stable LDL-cholesterol, receiving 2 g of
highly purified EPA ethyl ester twice daily was associated with significantly lower risk of composite
cardiovascular event, in comparison with placebo and despite the use of statins [58]. Based upon our
results and considering the low n-3 PUFA intake [5] we may not discard the role of dietary n-3 PUFA
and particularly EPA in strategies towards BP optimisation in Africa, and future intervention studies
with increasing n-3 intake should elucidate the relationship.

The strength of our study lays in a repeated-measures design, evaluating time-dependent changes
in BP and hypertension related to fat intake and metabolism. Furthermore, urbanisation-specific
analyses and inclusion of a panel of demographic and clinical confounders provide robustness to the
obtained relationships. We reported dietary and fat intake profiles across urbanisation categories in
line with previously reported baseline dietary intake for the complete cohort (n 1950) [5] implying
generalizability of our results to the population of black South Africans. Herein reported plasma fatty
acid profiles are comparable to recent report within larger sample (n 711) [18] of the same cohort of
black South Africans participating PURE, outweighing potential concern on the limited sample size of
300 subjects. Of note, 10-year attrition rate might have blurred some of the associations. However,
we applied longitudinal analysis accounting for time-dependent variation of outcomes and exposures,
providing additional reliability to the observed associations. We followed no changes in usage of
medication or any other lifestyle confounder, potentially limiting our results. Although we accounted
for an array of structured lifestyle, demographic and clinical confounders, the residual confounding
cannot be ruled out.

In conclusion, our data advocate for a link between fat intake, blood pressure and urbanisation in
a population of black South Africans with historically low omega-3 intake. Ten-year hypertension
prevalence increased in the 300 subjects and only in urban residents did we observe a tendency
towards 10-year optimization of hypertension status. Regardless of urbanisation areas there was
an increase in individual plasma n-6 PUFA over 10 years, but only in urbans there was a decrease in
EPA and DHA status, supporting policies on n-3 dietary reinforcement. The individual n-6 PUFA
were inversely associated with blood pressure, prominently within urban dwellers. Taken together
the results imply a protective mechanism linked with fat metabolism and vascular health in black
South African population undergoing rapid nutritional transition. Indicated population-specific
metabotype in black South Africans is possibly linked with genetic background and further research
on FADS1 and FADS2 variants, desaturase activity and association with vascular function is warranted
in the population.
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