Skip to main content
. 2019 Sep 9;9(9):466. doi: 10.3390/biom9090466

Table 6.

Partial least squares (PLS1) regression analysis of the wine sensory attributes opacity and astringency (Y) showing the total principal component (PC) number in the model, R-squared values for calibration (cal) and validation (val), root mean squared error of prediction (RMSE) and the explained variance (%) for all compositional X variables, and sub-sets of significant X variables.

Variables Included in PLS1 Model Opacity PLS1 Model Astringency PLS1 Model
PC No R 2 cal R 2 val RSMEcal RSMEval X (%) Y (%) PC No R 2 cal R 2 val RSMEcal RSMEval X (%) Y (%)
All variables 2 0.93 0.70 0.17 0.39 31 93 2 0.88 0.60 0.08 0.15 32 87
Significant variables * 1 0.91 0.89 0.20 0.23 66 91 1 0.82 0.76 0.10 0.12 37 82
Significant variables * excluding pH and TA 1 0.90 0.88 0.21 0.24 72 90 1 0.81 0.75 0.10 0.12 38 81

* identified using uncertainty test.