Table 6.
Partial least squares (PLS1) regression analysis of the wine sensory attributes opacity and astringency (Y) showing the total principal component (PC) number in the model, R-squared values for calibration (cal) and validation (val), root mean squared error of prediction (RMSE) and the explained variance (%) for all compositional X variables, and sub-sets of significant X variables.
Variables Included in PLS1 Model | Opacity PLS1 Model | Astringency PLS1 Model | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC No | R 2 cal | R 2 val | RSMEcal | RSMEval | X (%) | Y (%) | PC No | R 2 cal | R 2 val | RSMEcal | RSMEval | X (%) | Y (%) | |
All variables | 2 | 0.93 | 0.70 | 0.17 | 0.39 | 31 | 93 | 2 | 0.88 | 0.60 | 0.08 | 0.15 | 32 | 87 |
Significant variables * | 1 | 0.91 | 0.89 | 0.20 | 0.23 | 66 | 91 | 1 | 0.82 | 0.76 | 0.10 | 0.12 | 37 | 82 |
Significant variables * excluding pH and TA | 1 | 0.90 | 0.88 | 0.21 | 0.24 | 72 | 90 | 1 | 0.81 | 0.75 | 0.10 | 0.12 | 38 | 81 |
* identified using uncertainty test.