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Abstract

Single-cell RNA-sequencing technologies suffer from many sources of technical noise, including 

under-sampling of mRNA molecules, often termed ‘dropout’, which can severely obscure 

important gene-gene relationships. To address this, we developed MAGIC (Markov Affinity-based 

Graph Imputation of Cells), a method that shares information across similar cells, via data 

diffusion, to denoise the cell count matrix and fill in missing transcripts. We validate MAGIC on 

several biological systems and find it effective at recovering gene-gene relationships and 

additional structures. MAGIC reveals a phenotypic continuum, with the majority of cells residing 

in intermediate states that display stem-like signatures and uncovers known and previously 
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uncharacterized regulatory interactions, demonstrating that our approach can successfully uncover 

regulatory relations without perturbations.

Abstract

One Sentence Summary: Graph diffusion-based imputation method recovers missing transcripts 

in scRNA-seq data, yielding insight into the epithelial-to-mesenchymal transition.

In brief - A new algorithm overcomes limitations of data loss in single cell 
sequencing experiments

Abstract highlights:

1. MAGIC restores noisy and sparse single-cell data using diffusion geometry.

2. Corrected data is amenable to myriad downstream analyses.

3. MAGIC enables archetypal analysis and inference of gene interactions.

4. Transcription factor targets can be predicted without perturbation after MAGIC. In brief - A 

new algorithm overcomes limitations of data loss in single cell sequencing experiments

INTRODUCTION

Single cell RNA-sequencing (scRNA-seq) is fast becoming one of the most widely used 

technologies in biomedical investigation. However, a vexing challenge in single cell 

genomics is that the observed expression counts capture a small random sample (typically 

5–15%) of the transcriptome of each cell (Grun et al., 2014; Stegle et al., 2015). In the case 

of lowly expressed genes, this can lead to lack of detection of an expressed gene, a 

phenomenon called “dropout”. This impacts the signal for every gene, leading to loss of 

gene-gene relationships in the data, obscuring all but the strongest relationships. To 

overcome this sparsity, most methods aggregate cells, collapsing thousands of cells into a 
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small number of clusters. Alternatively, other methods aggregate genes (e.g. PCA), creating 

“meta-genes”. While these approaches cope with sparsity to some extent, they lose single-

cell or single-gene resolution.

To address these issues, we develop MAGIC (Markov Affinity-based Graph Imputation of 

Cells), a computational approach for recovering missing gene expression in single cell data. 

MAGIC leverages the large sample sizes in scRNA-seq (many thousands of cells) to share 

information across similar cells via data diffusion. MAGIC imputes likely gene expression 

in each cell, revealing the underlying biological structure. MAGIC uses signal-processing 

principles similar to those used to clarify blurry and grainy images. We validate MAGIC on 

several biological systems and find it effective at recovering gene-gene relationships and 

additional structures.

RESULTS

The MAGIC algorithm

MAGIC relies on structure in the data; possible cell states are constrained by regulatory 

mechanisms creating interdependencies between genes (Amir el et al., 2013). While data is 

observed in a high dimensional measurement space, cell phenotypes can be approximately 

embedded in a substantially lower dimensional manifold. This manifold can be represented 

using a nearest neighbor graph, where each node represents a cell, and edges connect most 

similar cells, based upon gene expression. Nearest neighbor graphs have been used to 

faithfully recover subpopulations (Levine et al., 2015; Shekhar et al., 2016) and 

developmental trajectories (Bendall et al., 2014; Haghverdi et al., 2015; Haghverdi et al., 

2016; Setty et al., 2016). However, MAGIC uses a diffusion operator (Coifman and Lafon, 

2006a) to learn the underlying manifold and map cellular phenotypes to this manifold, 

restoring missing transcripts in the process.

MAGIC takes an observed count matrix and recovers an imputed count matrix representing 

the likely expression for each individual cell, based on data diffusion between similar cells. 

For a given cell, MAGIC first identifies the cells that are most similar and aggregates gene 

expression across these highly similar cells to impute gene expression that corrects for 

dropout and other sources of noise. However, due to data sparsity, nearest neighbors in the 

raw data do not necessarily represent the most biologically similar cells. Therefore, we use 

data diffusion to construct a weighted affinity matrix representing a more faithful 

neighborhood of similar cells, and then use this matrix to restore the data. With a sufficient 

number of cells, this process (illustrated in figure 1) increases weights on cells that share 

similarity across a majority of biological processes.

Constructing the affinity matrix proceeds as follows: first PCA is used as a preprocessing 

step, similar to other graph-based approaches (Haghverdi et al., 2016; Setty et al., 2016; 

Shekhar et al., 2016). MAGIC uses an adaptive (width) Gaussian kernel to convert distances 

into affinities, so that similarity between two cells decreases exponentially with their 

distance. The adaptive kernel serves to equalize the effective number of neighbors for each 

cell, which helps recover finer structure in the data, whereas the non-adaptive kernel 

collapses the data into the densest regions (Figure S1A, B). From the affinity matrix we 
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create a Markov transition matrix,M, representing the probability distribution of 

transitioning from one cell to another in a single step.

Technical noise prevents distinguish between similarity due to biological correspondence 

versus spurious chance. Mimicking scRNA-seq, if we randomly subsample a fraction of the 

transcripts, the expression observed across identical cells can appear dissimilar. However, 

these cells likely share many neighbors, whereas spurious edges connect cells that share few 

neighbors. Raising M, to the power t results in a matrix where each entry represents the 

probability that a random walk of length t starting at cell i will reach cell j (Figure 1v), a 

process akin to diffusion. While the exponentiated Markov affinity matrix increases the 

number of cell neighbors, unlike the effect of increasing k in knn-imputation, MAGIC does 

not bluntly smooth and average over increasingly distant cells. Instead, exponentiation 

refines cell affinities, increasing the weight of similarity along axes that follow data density, 

thus phenotypically similar cells have strongly weighted affinities, whereas spurious 

neighbors are down-weighted.

In the imputation step, MAGIC learns from cells in each neighborhood through multiplying 

the transition matrix by the original data matrix. (Figure 1vi), effectively restoring cells to 

the underlying manifold. In this data diffusion process, cells share information through local 

neighbors in a process that is mathematically akin to diffusing heat through the data, where 

raising the diffusion operator to the t-th power is akin to a t-step random walk through the 

data. Exponentiation is essentially a low-pass filter on the eigenvalues, which serves to 

eliminate noise dimensions with small eigenvalues, while simultaneously learning the 

manifold structure. While we use PCA to gain more robustness for computing the affinity 

matrix, the imputation is performed using the count matrix before PCA. Thus, while we 

average data across cells, each individual cell retains a unique neighborhood, resulting in a 

unique expression vector.

To select an optimal t, we consider the impact of t on the final imputed data. We evaluate the 

degree of change between the imputed data at time t and time t-1 and stop after this value 

stabilizes. As t increases, we observe two regimes (Figure S1C,D), a rapidly changing 

imputation regime and, after convergence, a smoothing regime. In the imputation regime, the 

first few steps of diffusion learn the manifold structure and remove the noise dimensions. As 

t increases we rapidly capture relations between cells that are biologically very similar, and 

only appeared different due to collection artifacts. At larger values of t, the structure of the 

data has already been recovered and diffusing further would smooth out trends that likely 

represent real biology. The knee-point (Figure S1C), determines an optimal t. A synthetic 

dataset demonstrates that best correspondence between the ground truth and imputed data is 

achieved at the defined optimal t (Figure S1D). See STAR for more details.

MAGIC Enhances Structures in Bone Marrow

We first evaluated MAGIC on a mouse bone marrow dataset (Paul et al., 2015), collected 

with MARS-seq2 (Jaitin et al., 2014). The data matrix is sparse and cells are missing many 

canonical genes in their respective cell types (Figure 2A,B). At the transcript level, canonical 

surface markers typically used to identify immune subsets are lowly expressed and hence 

detected at low levels. For example, in the monocyte clusters C14, C15 only 1.6% cells 
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express CD14 and 5.8% cells express CD11b and only 10% of the dendritic cells (cluster 

C11) express CD32. After MAGIC (npca=100, ka=4, t=7), 94% of monocytes express 

CD14, 98% express CD11b and 97% of dendritic cells express CD32 at significant levels 

(Figure S2A).

The sparsity of the data is more evident when viewing the data with biaxial plots (Fig 2B, 

t=0). It is rare for both genes to be observed simultaneously in any given cell, obscuring 

relationships between genes. MAGIC restores missing values and relationships, recreating 

the biaxial plots typically seen in flow cytometry. Figure 2B shows established relationships 

during hematopoiesis that are undetectable in the raw data. By superimposing the reported 

clusters onto the biaxial plots we see that cells are grouped by cluster and gene-gene 

relations gradually change between clusters as the cells mature and differentiate. Also 

demonstrated are the effects of the diffusion process: a clear and well-formed structure 

emerges as t (number of time the matrix is exponentiated) grows. Figure 2C demonstrates 

gene-gene relationships in 3 dimensions. Little structure is visible in the raw data, yet after 

MAGIC we observe the emergence of a continuous developmental trajectory.

To provide further validation, we utilize the index sorting available with MARS-seq2 (Paul 

et al.,2015), providing FACS based measurement for CD34 and FCGR3. While the data has 

poor correlation between protein and original mRNA, after MAGIC, this correlation 

substantially increases for both proteins: FCGR3 from 0.55 to 0.88 and CD34 from 0.39 to 

0.73 (Figure 2D). We note that a comparison between protein and transcriptomic data found 

a correlation of up to 0.6 between in mRNA and protein in bulk data (Greenbaum et al., 

2003).

MAGIC Retains and Enhances Cluster Structure in Neuronal Data

We next evaluated MAGIC on two datasets measuring neuronal cells (Shekhar et al., 2016; 

Zeisel et al., 2015) known to have a high degree of functional specificity. Therefore, end-

state differentiated neural cells are expected to have well-separated cluster structure.

We analyzed a mouse retina dataset collected with drop-seq (Shekhar et al., 2016). 

Following (Shekhar et al., 2016), we clustered the cells (using the original data) with 

Phenograph (Levine et al., 2015) (k=30). To verify that MAGIC preserves cluster structure, 

we ran MAGIC (npca=100, ka=10, t=6), re-clustered the post-MAGIC data and computed 

the rand index (a measure of similarity between clustering solutions (Rand, 1971)) between 

the pre-MAGIC and post-MAGIC clusters, resulting in a rand index of 0.93.

MAGIC extends beyond clustering to highlight heterogeneity and gene-gene relationships 

within each cluster. We plotted various gene-gene interactions before and after MAGIC, and 

colored cells by their pre-MAGIC cluster, finding gene-gene relations that vary across 

clusters (Figure 3A). For example, the ON bipolar cone markers SCGN and GRM6 relate to 

each other differently in different clusters of cells. In clusters 5–7 SCGN and GRM6 are 

both highly expressed and show a positive relationship (Figure 3Ai). Clusters 14–17 have 

high expression of SCGN and low expression of GRM6 and show a negative relationship 

within the clusters. These trends and distinctions are not detectable prior to MAGIC and 

would be missed by simple population averaging.

van Dijk et al. Page 5

Cell. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Next, we assessed MAGIC’s ability to maintain clusters using a deeply sequenced mouse 

cortex dataset from (Zeisel et al., 2015) collected with smart-seq2 (Islam et al., 2014). 

MAGIC preserved the discrete nature of the clusters and did not add spurious intermediate 

states between them; diffusion components remain the same before and after MAGIC 

(Figure 3B). The relatively deep sampling of this dataset enabled a systematic evaluation, 

where we dropout transcripts from the original data, cluster, and compare the original 

clustering, before and after MAGIC. We dropped out up to 90% of the data and compared 

clustering solutions. While clustering on the dropped out data steadily decreases in quality 

(dipping to rand index 0.6 at 80% dropout), clustering after MAGIC retains a consistent 

quality (Rand index 0.89–0.94) throughout all levels of dropout, including 90% (Figure 3C).

Evaluating MAGIC’s accuracy and robustness

To illustrate MAGIC’s ability to correct for contamination (e.g. ambient mRNA or cell 

barcode swapping), we generated a synthetic test case creating two cell clusters (Gaussian 

mixture in high dimensions) and then randomly selected a fraction of matrix entries and 

switched their values between clusters (10% and 30% corruption). We used MAGIC (ka=10, 

t=4, npca=10) to correct this high-frequency noise. Figure 3D shows that while corruption 

leads to placing cells in the wrong clusters, MAGIC is able to correct this; 98% recovery for 

10% corruption and 81% recovery for 30% corruption.

To quantitatively evaluate the accuracy of MAGIC’s imputation, we created two synthetic 

datasets where ground truth is known. By directly comparing the original and imputed data, 

we found that MAGIC was able to correctly recover ground truth data both qualitatively and 

quantitatively (Figures S2B-C, S3A-B). MAGIC can also capture multivariate relations 

effectively -- surprisingly the agreement between the original and imputed data is even 

higher in the case of gene-gene correlations (Figure S3Aii), likely because these correlations 

are part of the structure that MAGIC harnesses for its imputation. We performed systematic 

robustness analysis on our EMT dataset and find that MAGIC is robust to sub-sampling of 

cells (Figure S3C) and to different parameters (Figures S3D-E). See STAR for full details.

Characterizing the Epithelial-to-Mesenchymal Transition

We chose to study EMT, a cell state transition during which cells gradually lose epithelial 

markers (including E-cadherin, Epcam and epithelial cytokeratins), and gain mesenchymal 

markers (including Vimentin, Fibronectin and N-cadherin) (Nieto et al., 2016). At a 

transcriptional level, multiple drivers of EMT have been characterized and include the 

transcription factors ZEB1, SNAIL (SNAI1) and TWIST1. However, knowledge of the EMT 

process has been largely derived from studies comparing the extreme states of the EMT, i.e. 

the beginning epithelial state with the endpoint mesenchymal state. Moreover, most studies 

have been conducted in bulk where the state of individual cells is not resolved. Hence, while 

the initiation and the final outcome of EMT are well characterized, little is known about 

intermediary states.

Transformed mammary epithelial cells (HMLE) were induced to undergo the EMT via 

TGFβ treatment (8 days) and measured using inDrops (Klein et al., 2015). We observe that 

induction of EMT is asynchronous; each cell progresses along the transition at a different 
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rate. Consequently, on days 8 and 10, we see that cells reside in all phases along the 

continuum of the EMT. MAGIC unveils a continuum of transitional states that comprise 

EMT. Before MAGIC, the canonical decrease in CDH1 (E-cadherin) coinciding with an 

increase in VIM (Vimentin) and FN1 (Fibronectin) is obscured. After MAGIC (npca=20, 

ka=10, t=6) this relationship is successfully recovered (Figure 4A). ZEB1, a key 

transcription factor known to induce EMT (Lamouille et al., 2014), progressively increases 

as VIM and FN1 increase. Another progression revealed by MAGIC involves two branches 

that deviate from the main structure, which display an increase in mitochondrial RNA, 

reflecting a progression into apoptosis (Figure 4A). The apoptotic state is supported by the 

rise of additional apoptotic markers in these cells (data not shown).

Characterizing Intermediate States during EMT

A surprising revelation is that most of the cells (79%) reside in an intermediate state that is 

neither epithelial, nor mesenchymal. Moreover, the intermediate cells are highly 

heterogeneous, occupying a multi-dimensional manifold that does not seem to follow a 

simple one-dimensional progression. Thus, next characterized this structure and in 

particular, its boundaries. We used archetypal analysis (Cutler and Breiman, 1994) to 

characterize the extreme phenotypic states (Shoval et al., 2012), and states that lie in 

between these extrema. While archetypal analysis has been used to characterize single-cell 

data (Korem et al., 2015), MAGIC learns a better-formed structure that is amenable to 

archetypal analysis (Figures 4A,B).

Archetype analysis identified 10 archetypes (AT) in our data. While these archetypes 

represent extrema in a higher-dimensional space, Figure 4C shows their projection onto two 

different 3D plots. We use the neighborhood of cells around each archetype to characterize 

the gene expression profile for that archetype (see STAR) and find unique gene expression 

patterns for each AT (Figure 4D). We performed differential gene expression analysis (see 

STAR) to gain a more comprehensive characterization of each AT (Figures 4E, 

Supplementary Table 1). These archetypes fall into the following categories: ‘epithelial’ – 

AT6, AT7, ‘intermediary’ – AT1 to AT5, ‘mesenchymal’ – AT9, and ‘apoptotic’ – AT8, 

AT10. We performed 100 random sub-samplings of the cells and found that we repeatedly 

identified a very similar set of ATs, where similarity was quantified by correlating AT gene 

expression (Figure S4A), demonstrating the ATs are robust.

The epithelial ATs (AT6 and AT7) are defined by strong epithelial marker expression 

including CDH1, CDH3, MUC1 and CD24. The transcriptional profile of AT7 includes 

higher ESR2 and GATA3, commonly associated with the luminal mammary epithelial cells, 

and higher CD24 and CDH1, suggesting a more differentiated epithelial phenotype than 

AT6. Of note, AT6 and AT7 express high levels of SOX4, recently shown to be a master 

regulator of a TGFβ-induced EMT (Tiwari et al., 2013). The mesenchymal AT9 is 

characterized by high expression of core EMT TFs SNAI1, ZEB1, SMAD4, TGFB1, 

TWIST1 (see Figure 4E). Thus, AT9 may represent a gene expression program of cells that 

have undergone EMT in response to TGFβ.

Our analysis highlights five intermediate ATs (AT1–5), which reside along a continuous 

spectrum of phenotypes, supporting recent findings suggesting that cells undergoing the 
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EMT move through a series of partial and/or metastable cell states (Nieto et al., 2016; Tam 

and Weinberg, 2013). AT2 shows a similar gene expression profile as AT7, including 

upregulation of SOX4 and is closest to the epithelial state. However, AT2 expresses a 

recently characterized partner in EMT, KLF5 (David et al., 2016). AT3 is closest to the 

mesenchymal state, with SMAD3 and mesenchymal regulator MSX1 upregulated. AT1 3,4 

all express a large number of chromatin modifiers, including EZH2, and several CBX genes, 

suggesting that these might play a role in the reprogramming. ATs 1,4,5 segregate from the 

other ATs with concomitant increase in multiple embryonic genes (including TRIM28, 

FOXB1, HOXA5, HOXB2, HOXA3). Indeed, it has been postulated that epithelial cells 

undergoing EMT may revert to a more primitive state before acquiring the ability to 

differentiate into a mesenchymal cell (Ben-Porath et al., 2008). Together these data suggest 

AT1,4, have entered into a marked reprogramming phase of the EMT, while AT3 is further 

along this reprogramming phase, further supported by the increasing levels of VIM, along 

this progression. Gene set enrichments for the ATs appear in table S1.

Applying a similar archetypal analysis to the data prior to MAGIC fails to find distinct 

archetypes that differ in their expression profiles (Figure S4B-D). Further, genes involved in 

the EMT process do not vary across the identified archetypes. Thus the structure revealed by 

MAGIC enabled the characterization of previously unappreciated intermediate states.

MAGIC reveals gene-gene relationships

The core-regulatory circuit defining EMT has been well established, with both ZEB1 and 

SNAIL1 as potent repressors of the epithelial phenotype. However, the breadth of targets 

regulated by these EMT-TFs remains largely unknown. Defining the EMT circuitry, and 

importantly, the timing of different regulatory factors, can shed light upon how this state 

transition occurs.

The asynchronous nature of the data allows us to explore temporal trends as cells progress 

from the epithelial to the mesenchymal state. We organize the cells along a pseudo-time 

progression, using VIM expression as a proxy for EMT state. Thus, we can observe 

temporal trends of regulatory factors along this transition. However, TFs are typically 

expressed at low levels and the signal is obscured. For example, the biaxial plots of both 

ZEB1 and SNAI1 against VIM lack any discernable trend (Figure 5A). However, after 

imputation, the rise in these key TFs is revealed, recapitulating their known temporal trends.

A considerable number of regulators peak at intermediate levels of VIM (e.g. MYC and 

SNAI2, Figure 5A). The activity of these genes is restricted to intermediate states, whereas 

their expression is similarly low in both the epithelial and mesenchymal states and would 

hence be missed by studies that focus only on end states. To systematically explore gene-

gene interactions, we need a quantitative metric to score statistical dependency between 

genes, which takes into account non-linearity observed in the data (e.g. MYC and SNAI2).

To quantify relationships, we adapted DREMI (Krishnaswamy, 2014) to scRNA-seq data, 

which measures statistical dependency between genes. DREMI captures the functional 

relationship between two genes across their entire dynamic range. The key change to kNN-

DREMI is the replacement of the heat diffusion based kernel-density estimator from (Botev 
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et al., 2010) by a k-nearest neighbor based density estimator (Sricharan et al., 2012) (Figure 

5B), which has been shown to be an effective method for sparse and high dimensional 

datasets (STAR). Moreover, we show that kNN-DREMI is highly robust over a wide range 

of parameters (Figures S5A).

We illustrate this computation using the relationship between VIM and EZH2 on the same 

data before MAGIC (Figure 5C) and after MAGIC (figure 5D). We note that Figure 5C is 

representative of almost any pair of genes in the data, even gene-pairs that are known to be 

related. The kNN-DREMI score between VIM and EZH2 is 0.28 and 1.02, before and after 

MAGIC respectively. For perspective, Figure S5B shows a histogram of DREMI scores of 

10,000 random gene pairs. Note, there is limited correlation between DREMI before and 

after MAGIC (Figure S5C), indicating that MAGIC does not simply shift the values. 

Moreover, DREMI is able to capture gene-gene dependencies beyond correlation (Figure 

S5D,E).

Characterizing Expression Dynamics Underlying EMT

We next constructed a genome-wide view of expression dynamics during the course of EMT 

to assess which genes change, when and how. We filtered out apoptotic cells (based MT-

ND1 expression) and use the remaining cells to compute kNN-DREMI between VIM and all 

genes. We found that the majority of the genes demonstrate a temporal trend that follows 

VIM and selected 13,487 genes having kNN-DREMI > 0.5 with VIM for further study.

We used the DREVI plot (Figure 5Div) to cluster genes based on the shape and timing of 

their relationship with VIM (see STAR). This resulted in 22 groups of genes with distinct 

temporal trends. This clustering filters noise by averaging over trends with roughly similar 

shape and timing. We then fit a spline curve to each cluster, estimate the timing of peak 

expression, and order the clusters based on this timing.

The result is a global map of the pseudo-temporal gene dynamics leading to the 

mesenchymal state (Figure 6A), with the majority of the genes (2/3 of the genome) 

participating in this transition with clear temporal trends. We observe clusters of genes that 

change expression in waves as VIM rises, with three modes of behavior that vary in their 

timing. The first set of clusters decrease with VIM, for example, SDC1 and LAMA3, which 

are both involved with cell adhesion and binding. There are genes that increase and then 

decrease before entering the mesenchymal state, including MYC and EZH2. Finally, as cells 

transition into the mesenchymal state, a large number of genes monotonically increase, 

including the canonical EMT-TFs ZEB1, TWIST, SNAIL and SLUG. A full list of genes 

and their associated clusters appear in Table S2.

To ensure these pseudo-temporal dynamics are robust and representative of EMT, we 

repeated this analysis with three other canonical markers of the mesenchymal state, CDH2, 

ITGB4 and CD44. The resulting gene dynamics are both visually and quantitatively similar 

for all four markers of EMT progression (Figure S6A-B).
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Characterization of ZEB1 Targets

We have shown that MAGIC can recover gene-gene relationships, as well as a fine-grained 

pseudo-time ordering of gene activation. This offers the possibility of directly learning gene 

regulatory networks at large scales without perturbation. While DREMI only suggests 

statistical dependency, incorporating pseudo-time can indicate a causal relationship. In case 

of activation, we assume that target’s expression should peak after the TF. Thus, we harness 

the temporally ordered clusters to limit potential targets only to those that peak after the 

regulator. Additionally, the expression of the regulator should be strongly informative of the 

expression of its targets, meaning we should only consider genes that have strong kNN-

DREMI with the TF. These two criteria combined can predict a set of candidate targets for 

each TF (see STAR).

With respect to the transcriptional targets of the EMT-TFs, it is clear that a certain level of 

redundancy exists. However, a recent study suggests that there are actually profound 

differences in the transcriptional programs they induce (Ye et al., 2015). We focused on 

ZEB1, a key regulator of EMT whose transcriptional targets remain poorly defined to date. 

We found 4,509 genes that changed with EMT and peaked along with or after ZEB1 (Figure 

6A), and among these 1,085 genes had DREMI >= 1 with ZEB1 (Figure 6B). We predict 

that ZEB1 activates these genes, either directly or indirectly. See Table S3 for full list of 

targets.

To validate our predicted targets of ZEB1, we used a variant of the HMLE cell line, where 

ZEB1 can be over-expressed using a Dox-inducible promoter. We measured the cells after 

two days of continuous Dox treatment (see STAR), which is sufficient to induce significant 

numbers of mesenchymal cells (10% of the cells). In the ZEB1 induction, we expect ZEB1 

targets to be up-regulated relative to other genes. For a given set of genes (e.g. list of 

predicted targets), we define an impact score, which compares the relative ranking of gene 

expression between the ZEB1 and TGFβ inductions (see STAR).

Our predicted ZEB1 targets are indeed up-regulated in the ZEB1 induction with a 

significance of p=3.1E-73, against a background of all genes involved in EMT (Figure 6C). 

Including all 4,509 genes that peak after ZEB1 results in a significant but diminished impact 

score (Figure 6D, p=0.004), indicating that while ZEB1 is a key regulator of EMT, there are 

additional regulatory factors at play in the TGFβ-induced EMT, even during late stages of 

the transition. Predicting targets based on DREMI with ZEB1 alone results in an impact 

score that is not significant (Figure 6E, p=0.13). We note that our prediction focuses only on 

genes activated by Zeb1, whereas Zeb1 is also a potent repressor, indeed among these high 

DREMI genes, ~1/3 are negatively correlated with ZEB1.

Our top predicted targets include many genes known to be involved in EMT, including 

SNAI1, ZEB2, BMP (bone morphogenic) antagonist family proteins and MMP (matrix 

metaloproteinase) family proteins such as MMP3. In addition, we see proteins involved in 

cell cycle, remodeling of cell cytoskeleton, extracellular matrix remodeling, and cell 

migration. This includes: CDKN1C, a negative regulator of proliferation, RHOA, involved 

in reorganization of the actin cytoskeleton and regulates cell shape, attachment, and motility, 

CCBE1, involved in extracellular matrix remodeling and migration, and interestingly NTN4, 
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normally involved in neural migration. While these genes are less known in their EMT 

involvement, their phenotypic annotations match with known phenotypic changes involved 

in EMT, providing further evidence that ZEB1 is critical in activating a myriad of processes 

that result in cellular trans-differentiation. Thus we have demonstrated that combining 

MAGIC, pseudo-time and kNN-DREMI, we are able to predict regulatory targets, without 

perturbation.

Systematic Validation of an EMT regulatory network

To build a global regulatory network of EMT, we selected all TFs that change considerably 

along EMT (kNN-DREMI with VIM is >0.5) and predicted targets of each using the 

analysis applied to ZEB1. This resulted in a large regulatory network consisting of 719 

regulators over a total of 11,126 targets (Supplementary Table 3). To systematically validate 

our target predictions, we used ATAC-seq (Assay for Transposase-Accessible Chromatin 

using sequencing) (Buenrostro et al., 2013) as an independent and well-accepted approach 

for target prediction (STAR) (Kundaje et al., 2015). ATAC-seq was carried out on HMLE 

cells 8 days following TGFb stimulation. Cells were FACS sorted by CD44+ to enrich for 

the mesenchymal population. We used the ATAC-seq peaks combined with motif analysis to 

derive a set of targets for each TF using standard approaches (STAR). Note, we do not 

expect the two approaches to perfectly align: our predictions identify both direct and indirect 

targets of a TF, whereas ATAC-seq only captures direct targets. ATAC-seq identifies binding 

of TFs that are activating, poised or inhibiting, whereas our predictions only focus on TF 

activation. Nevertheless, if our predictions are accurate, we expect a significant overlap 

between the two sets.

For each of 292 TFs in our predicted regulatory network, for which we also had ATAC-seq 

based predictions, we used the hypergeometric distribution to assess the significance of 

overlap between the two target sets and false discovery correction (FDR), to correct for 

multiple hypothesis testing (STAR). We find the overlap is greater than expected for 291/292 

TFs, and after FDR this overlap is significant for 268/292 TFs (Figures 6F,G). Thus our 

predictions significantly overlapped with targets derived from ATAC-seq for 92% of the TFs 

tested.

To directly evaluate the gene-gene relationships recovered by MAGIC, we compared 

DREMI scores between targets and non-targets, for each of 418 TFs, and compared the 

distribution of DREMI scores using a one-sided Kolmogorov-Smirnoff (KS) test (STAR). In 

this analysis we comprehensively evaluate all TFs with ATAC-seq based predictions 

(regardless of their relationship to VIM) and all targets, regardless of pseudo-time ordering. 

We find that 372/418 TFs have significantly higher DREMI score with their ATAC-seq 

based targets than with other genes with p < 0.05, whereas many of these are insignificant 

before MAGIC. Figure S6D shows distributions for ZEB1, SNAI1 and MYC, after MAGIC 

all have significant KS scores (p=4.7e-25, p=3e-25 and p=e-8 respectively), whereas none of 

these are significant prior to MAGIC (p=0.16, p=0.99 and p=0.99 respectively).

In summary, we validated a computational approach to build a large-scale regulatory 

network from scRNA-seq data without genetic perturbations.
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Comparison of MAGIC to Other Methods

We compare MAGIC to kNN-imputation and diffusion maps using a few known gene-gene 

relationships from the bone marrow (Figure 7A) and EMT (Figure 7B) datasets. Contrary to 

MAGIC, the simpler kNN-imputation approach fails to recover the known gene-gene 

relationships (Figure 7, peach). Unlike simple smoothing over a kNN-graph, which is 

limited to local information, by propagating data using the diffusion operator, MAGIC is 

able to recover data using longer range, global features. In essence, this pulls in noisy outlier 

data to the manifold and restores the structure.

A popular aggregation approach utilizes diffusion maps (Coifman and Lafon, 2006a), which 

like MAGIC, compute a diffusion operator that defines similarity between data points along 

a manifold. However, diffusion maps find diffusion components (DCs), a nonlinear 

equivalent to a PCA, which have been recently utilized to find pseudotime trends in 

developmental systems (Haghverdi et al., 2015; Haghverdi et al., 2016; Setty et al., 2016). 

Moving average approaches have been successfully used to observe gene trends along DCs, 

smoothing along a single diffusion component, one gene at a time. This performs well when 

DCs correspond to tight developmental pseudo-time trajectories, and only for 

developmentally related genes, whose major component of variation is singular. Moreover, 

because smoothing occurs one gene at a time, the approach cannot be used to reveal gene-

gene relationships. MAGIC, by contrast, uses the diffusion operator to propagate gene 

expression information between similar cells, taking all diffusion components and genes into 

account simultaneously in its inference.

The difference is illustrated in Figure 7, sky blue: while smoothing along DC1 

(corresponding to erythrocytes) results in a roughly correct trend for CD235a (an erythrocyte 

marker), the relationship is entirely incorrect for markers belonging to other lineages such as 

CD11B. Moreover, this approach is unable to recover gene-gene relationships even in cases 

like CD335a and CD34, whose trends both follow DC1 relatively well. Additionally, the 

EMT dataset does not follow a simple trajectory and therefore diffusion components fail to 

capture trends for even the most canonical TFs in this process. For instance, ZEB1 or 

SNAIL vs VIM shows a fluctuating rather than positive trend.

We also compare MAGIC to methods used to fill in missing data, SVD-based low-rank data 

approximation (LRA) (Achlioptas and McSherry, 2007) and Nuclear-Norm-based Matrix 

Completion (NNMC) (Candes and Recht, 2012). Both methods have a low-rank assumption, 

i.e., like MAGIC, they assume that the intrinsic dimensionality of the data is much lower 

than the measurement space and utilize a singular value decomposition (SVD) of the data 

matrix. We compared the performance of the three techniques on synthetic and real data 

(Figure S7), where we demonstrate MAGIC is uniquely well suited to handle the dropout 

rampant in scRNA-seq data (STAR). A likely explanation for NNMC’s poor performance is 

that it “trusts” non-zero values and only attempts to impute possibly missing zero values. 

Whereas in scRNA-seq, dropout of molecules impacts all genes and even non-zero genes are 

likely lower than their true count in the data. Hence NNMC is poorly suited to this data type. 

LRA, a linear method, cannot separate the exact manifold from external noise, likely due to 

its inability to find non-linear directions in the data.
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Discussion

Here, we presented MAGIC, an algorithm to alleviate sparsity and noise due to stochastic 

mRNA capture and recapitulate gene-gene interactions in single-cell data. The cost of 

sequencing limits our ability to measure large numbers of cells at depth, ensuring MAGIC’s 

utility even as scRNA-seq technology improves. Further, MAGIC can be used in newer 

single-cell technologies such as single-cell ATAC-seq, which suffer from similar sparsity 

and noise. Unlike other imputation algorithms, which simply fill in “missing values”, 

MAGIC uses diffusion of values between similar cells along an affinity-based graph 

structure, to correct the entire data matrix and restore it to its underlying manifold structure. 

This diffusion is akin to low-pass filtering of the graph spectrum. Previously, low-pass 

filtering has only been applied to structured data, i.e. data that has a given temporal or spatial 

ordering such as images or audio signals (Buades et al., 2005). Here, we extend this 

operation to data without such ordering, by learning a manifold structure de novo via the 

diffusion operator and filtering on the manifold structure. MAGIC is versatile and is able to 

denoise and correct a wide range of structures and is particularly well suited for structures 

underlying cell states and phenotypes.

MAGIC assumes cell phenotypes can be approximately embedded in a substantially lower 

dimensional structure, which can be of any shape and even comprise of well-separated 

components. Cells are regulated to reside within the boundaries of a restricted portion of the 

state space, i.e., a subspace. Moreover, gene-gene relationships ensure that these subspaces 

exist as lower-dimensional objects relative to the full measurement space. MAGIC’s key 

assumption is that such a subspace corresponds to low frequency trends in the data 

(technically the affinity graph representing the data) containing biological signals of interest, 

while noise, including dropout, are high frequency. Thus, low frequency batch effects or 

artifacts will not be removed and genes behaving in a noisy (high frequency) fashion may be 

smoothed out.

The diffusion time parameter determines the extent of smoothing performed by MAGIC. We 

recommended a diffusion time that retains biological signals but removes ‘intrinsic’ noise, 

such as bursting, as these cannot be distinguished from the large degree of technical noise in 

scRNA-seq data. Additionally, the number of cells affects the frequency of signals in the 

data. For instance, the same signal (such as EMT) can be high frequency if only a few cells 

are undergoing EMT, but this signal is captured as the cell number increases. Our data 

contained only 1% meshenchymal cells, but with thousands of cells we recovered the 

process in detail, including its regulatory process. Thus, while MAGIC is able to find gross 

structures using only hundreds of cells, increasing cell number enables MAGIC to find 

increasingly fine structures and more signals in the data.

We evaluated MAGIC on four different scRNA-seq datasets from different biological 

systems and measurement technologies. MAGIC recovers fine phenotypic structure in the 

data, including well-separated clusters (Figure 3), bifurcating developmental trajectories 

(Figure 2), as well as heterogeneous state transitions (Figure 4). Additionally, MAGIC 

refines cluster structure, trajectories and gene-gene relationships, and enables a myriad of 

subsequent analysis techniques. In the case of EMT, MAGIC recovered a complex structure 
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that is not well represented by a simple trajectory. We applied archetypal analysis to 

characterize this complex structure and reveal several previously-unappreciated intermediate 

states.

We expect MAGIC to be broadly applicable to any single-cell genomics dataset, boosting 

the signal and the interpretability of the data. As with all post-processing, care must be taken 

when applying downstream tools. For example, most tools to detect differentially expressed 

genes (DEGs) assume sparsity and would likely over-estimate DEGs post-MAGIC. Thus, we 

recommend the earth-mover distance (EMD) used in the archetype analysis (STAR). We 

recommend running diffusion map analysis directly on the raw data (otherwise this could 

lead to over smoothing). On the other hand, MAGIC imputed data is well-suited to visualize 

trends along the diffusion components. Most cells no longer have zeros, but instead have 

very small values that can be interpreted as the probability a cell is expressing the transcript, 

thus we recommend treating the very low values as zero, i.e. the cell is not expressing that 

transcript.

Finally, the most important application is MAGIC’s ability to recover gene-gene 

relationships which are largely obscured in scRNA-seq data. We validated our approach 

using: 1) synthetic data, 2) known relationships, 3) by comparing Zeb1 overexpression-

based EMT induction with a TGFb-induced EMT, and 4) an extensive systematic validation 

using ATAC-seq. For network learning, we developed an adaptation of DREMI 

(Krishnaswamy, 2014), termed kNN-DREMI, to quantify the strength of non-linear and 

noisy gene-gene relationships. Post-MAGIC, we inferred regulatory relationships and 

validated predicted targets of a large-scale regulatory network involving hundreds of TFs 

and over 10,000 target genes. Another approach to learn gene-gene interactions is based on 

perturbations through the combination of scRNA-seq with CRISPR(Dixit et al., 2016). 

However, these methods require a preselected set of genes to perturb, often disrupt the 

system in unintended ways, and require considerable experimental efforts that are not always 

applicable, e.g., the case of clinical tissue. Our approach requires no perturbations or other 

experimental manipulations, and can be applied to primary tissue and clinical samples. This 

offers the possibility of discovering rogue regulatory pathways in cancer, autoimmune 

disease and developmental disorders, in a patient specific manner, potentially suggesting 

therapeutic interventions.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Dana Pe’er (peerd@mskcc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used female HMLE breast cancer cell lines in this study. The cell lines were not 

authenticated. HMLE and all derived cell lines used in this work were cultured in MEGM 

(Mammary Epithelial Cell Growth Medium) media (Lonza, USA, CC-3051) at 37 °C. Cells 

were cultured in round tissue culture dishes 10cm in diameter (Corning, USA) and split to a 
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ratio of 1:7 every 2 to 3 days or once they reached 80% confluence on a plate. All cell 

dissociations were performed using TrypLE™ (Ambion, USA) reagent.

METHOD DETAILS

TGF-beta and Zeb1 induction of EMT

EMT was induced in HMLE cells by addition of Recombinant Human TGF-β1 (HEK293 

cell derived) (PeproTech, USA 100–21) to a final concentration of 5ng/ml. EMT was also 

induced by overexpression of Zeb1 transcription factor. HMLE cells transfected with FUW 

plasmid, a tetracycline operator, and minimal CMV promoter were used and Zeb1 gene 

overexpression was induced by addition of doxycycline (Sigma, D3447) to a final 

concentration of 1mg/ml. All cells under induction were passaged once they reached 80% 

confluence.

ATAC-seq profiling of TGF-beta induced EMT

HMLE cells were induced with TGF-beta (5 ng/mL, replenished every day) and grown for 8 

days. TGF-beta induced HMLE cells were removed from the cell culture plate with TrypLE 

treatment, washed twice in 1X PBS buffer, and stained with DAPI dye and Anti-Human/

Mouse CD44 (PE-Cyanine 7) antibody. The stained cells were then analyzed by flow 

cytometry and the top 3% (n=48,000) CD44 positive cells (mesenchymal population) were 

FACS sorted into a collection tube. FACS sorted cells were first lysed with 10 mM Tris-HCl 

[pH 7.4], 10 mM NaCl, 3 mM MgCl2 and 0.1% IGEPAL CA-630 buffer. The resulting 

nuclei suspension was pelleted and fragmented using Tn5 transposase reaction mix 

(Illumina), purified (Qiagen) and PCR amplified for sequencing following the protocol 

published previously (Buenrostro et al., 2013).

Single-cell RNA-seq profiling of EMT

Single-cell RNA-seq was performed using the inDrops platform (Klein et al., 2015; Zilionis 

et al., 2017), a droplet microfluidics based single-cell isolation and mRNA barcoding 

technology. Briefly, the cell culture flasks containing HMLE cells were treated with 2 mL 

TrypLE™ Express Enzyme (1X) no-phenol-red for 10 min at 37ºC, washed three times with 

1X PBS containing 0.05% (w/v) BSA, and strained through 40 μm size mesh. The resulting 

suspension of single-cells was supplemented with 16% (v/v) Optiprep and 0.05% (w/v) BSA 

and encapsulated into 3 nL droplets together with custom-made DNA barcoding hydrogel 

beads and RT/lysis reagents. The cell encapsulation was set at ~30,000 cells per hour using a 

cell barcoding chip (v2) (Droplet Genomics), and over 75% of cells entering microfluidics 

chips were co-encapsulated with one DNA barcoding hydrogel bead. After loading cells, 

hydrogel beads and RT/lysis reagents into microfluidic droplets, the composition of a RT 

reaction under which cDNA synthesis was carried out was 155 mM KCl, 50 mM NaCl, 11 

mM MgCl2, 135 mM Tris-HCl [pH 8.0], 0.5 mM KH2PO4, 0.85 mM Na2HPO4, 0.35 % 

(v/v) Igepal-CA630, 0.02 % (v/v) BSA, 4.4% (v/v) Optiprep, 2.4 mM DTT, 0.5 mM dNTPs, 

1.3 U/ml RNAsIN Plus, and 11.4 U/ml SuperScript-III RT enzyme. After cell encapsulation 

the tube containing the emulsified components was exposed to 365 nm light to photo-release 

DNA barcoding primers attached to the hydrogel beads. The RT reaction was initiated by 

transferring the tube to 50ºC for 1-hour and terminated by incubating for 15 min at 75ºC. 
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Post-RT droplets were chemically broken to release barcoded cDNA, which was then 

purified and amplified. At the final step, libraries were amplified using trimmed PE Read 1 

primer (PE1): 5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA 

and indexing PE Read 2 primer (PE2): 5’-

CAAGCAGAAGACGGCATACGAGAT[index]GTGACTGGAGTTCAGACGTGTGCTCT

TCCGATCT, where [index] encoded one of the following sequences: CGTGAT, ACATCG, 

GCCTAA, TGGTCA, CACTGT or ATTGGC). Multiplexing of PCR libraries allowed for 

the pooling of different samples onto one lane of Illumina HiSeq2500 flow cell when 

desired. To prepare the cells for scRNA-seq experiments, they were cultured to 70% 

confluence and dissociated from the plate with the addition of 3ml of trypsin for 5 mins at 

37 °C. After dissociation cells were kept at +4 °C at all times in MEGM-complete media. 

Two 1x PBS (Ambion, USA) washes were performed on the dissociated cells and cell 

viability was evaluated using trypan blue staining prior to scRNA-seq. All inDrops 

experiments were performed with cell viability exceeding 90%.

Overview of the MAGIC Algorithm

MAGIC begins with an n-by-m count matrix D, representing the observed transcript counts 

of m genes in n cells and returns an imputed count matrix Dimputed The expression of each 

individual cell, a row in D, defines a point in the high-dimensional measurement space 
representing the cell’s observed phenotype. The counts in the imputed data matrix Dimputed 

represent the likely expression vectors (phenotypes) for each individual cell, based on data 

diffusion between similar cells.

Key to the success of our graph-based method is a faithful neighborhood of similar cells, 

based on a good similarity metric. Given the sparsity of the data, finding the k-nearest 

neighbors in the raw data using a simple similarity metric is unlikely sufficient to find cells 

whose biology is most similar. Therefore, MAGIC builds its affinity matrix in four steps: (i) 

A data preprocessing step, which is PCA in the case of scRNA-seq. (ii) Converting distances 

to affinities using an adaptive Gaussian Kernel, so that similarity between two cells 

decreases exponentially with their distance. (iii) Converting the affinity matrix A into a 

Markov transition matrix M, representing the probability distribution of transitioning from 

each cell to every other cell in the data in a single step. (iv) Data diffusion through 

exponentiation of M, to filter out similarity based on high frequencies that typically 

represent noise and increase the similarity based on strong trends in the data. Once the 

affinity matrix is constructed, the imputation step of MAGIC involves sharing information 

between cells in the resulting neighborhoods through matrix multiplication Dimputed = Mt * 

D(Figure 1.vi).

Using PCA for data preprocessing

MAGIC can be generally applied to any type of high dimensional single cell data to remove 

noise and clarify structure in the data. However, before a cell-cell distance matrix is 

computed, each data-type typically requires specific pre-processing and normalization steps. 

Pre-processing is particularly important in the case of scRNA-seq to ensure that distances 

between cells reflect biology rather than experimental artifact. We perform two operations 

on the data which are typically applied to single-cell RNA-sequencing datasets (Haghverdi 
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et al., 2016; Setty et al., 2016; Shekhar et al., 2016): 1) library size normalization on the 

cells, and 2) principal component analysis (PCA) on the genes.

ScRNA-seq data entails substantial cell-to-cell variation in library size (number of observed 

molecules) which is largely due to technical variation occurring due to multiple enzymatic 

steps, such as lysis efficiency, mRNA capture efficiency and the efficiency of multiple 

amplification rounds(Grun et al., 2014). For example, the cell barcode associated with each 

cell can have a substantial effect on the PCR efficiency and subsequently the number of 

transcripts in that cell. Therefore, we normalize transcript abundances (library size), so that 

each cell will have an equal transcript count.

Given a m ∗ n data matrix D, the normalized data matrix is defined as follows:

Libsize  =  rowsum D ;

Dnorm(i, j) = D(i, j)
∑k = 1

n D(i, k)
* median(Libsize)

This effectively eliminates cell size as a signal in the measurement for the purposes of 

constructing the affinity matrix and thus the resulting weighted neighborhood is not biased 

by cell size.

Second, we apply principal component analysis (PCA) to further increase the robustness and 

reliability of the constructed affinity matrix. While dropout renders single cell RNA-seq data 

extremely noisy, the modularity of gene expression provides redundancy in the gene 

dimensions, which can be exploited. Therefore, we perform PCA dimensionality reduction 

to retain ~70% of the variation in the data, which typically results in 20 to 100 robust 

dimensions for each cell.

Dpca =  pca D, 0.70

The cell-cell affinity matrix is computed off of these PCA dimensions, but imputation is 

performed on the full data matrix. While MAGIC still gives reasonable results without 

preprocessing with PCA, it gives the diffusion a better starting point, resulting in quicker and 

more robust computation. We also note that MAGIC is relatively robust to the number of 

principle components selected, within a reasonable range (Figure S3D).

Constructing MAGIC’s Markov Affinity Matrix

One of the most critical steps in MAGIC is computing the affinity matrix M. M defines the 

graph structure and cell neighborhoods; MAGIC can only succeed if the affinity matrix 

faithfully represents the geometry of the data. We compute a similarity matrix by applying a 

kernel function to the distance matrix using the following steps:

1) Computation of a cell-cell distance matrix Dist (Figure 1.ii).
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2) Computation of the affinity matrix A based on Dist, via an adaptive Gaussian 

kernel (Figure 1.iii).

3) Symmetrization of A using an additive approach

4) Row-stochastic Markov-normalization of A (so each row sums to 1) into 

Markov matrix M. (Figure 1.iv)

We compute a similarity matrix by applying a kernel function to the distance matrix. After 

data processing (in a technology-dependent manner), MAGIC computes a cell-cell distance 

matrix Dist based on a cell-cell Euclidian distance. Distances are then converted into an 

affinity matrix A using a Gaussian kernel function that emphasizes close similarities 

between cells, as follows

A(i, j) = e
−(Dist(i, j)

σ )
2

Using the Gaussian kernel, similarity between two cells decreases double exponentially with 

their distance. With a negative double exponential function, distances beyond the standard 

deviation σ rapidly drop off to zero and hence the choice of σ, the kernel width, is a key 

parameter. If σ is too small, the graph becomes disconnected leading to noise and instability. 

If σ is too large, distinct and distant phenotypes will be collapsed and averaged together, 

losing resolution and structure in the data. However, cell phenotypic space is not uniform: a 

stem cell can be orders of magnitude less frequent than a mature cell type and transitional 

cell states are also rare. Therefore, s that would be appropriate for a mature cell type would 

be far too coarse to capture fine details of the differentiation in progenitor cell types.

Without proper care, denser phenotypes can dominate the imputation. Cells in dense areas 

have more neighbors and therefore exert more influence than cells with fewer neighbors. 

Moreover, dense phenotypes are further reinforced during diffusion, where dense 

phenotypes iteratively attract more and more cells towards them and dominate the data 

(Figure S1A,B). MAGIC uses an adaptive Gaussian kernel to equalize the effective number 

of neighbors for each cell, thereby diminishing the effect of differences in density. Instead of 

fixing a single value for the kernel width σ, we adapt this value for each cell, based on its 

local density. Specifically, to equalize the number of neighbors we set the value σ(i) for each 

cell i to the distance to its kath nearest neighbor:

σ i = distance i, neighbor(i, ka)

Thus the kernel is wider in sparse areas and smaller in dense areas. To maximize our 

sensitivity to recover fine structure, we choose ka to be as small as possible, such that the 

graph remains connected. We note that MAGIC is relatively robust to selection of ka, within 

a reasonable range (Figure S3D).

Comparing non-adaptive to the adaptive kernel on the EMT data in Figure S1A, we see that 

the non-adaptive kernel coarsely captures only the single strongest trend in the data, whereas 

the adaptive kernel does not collapse the data, but rather imputes finer structures. Figure S1B 
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shows this on synthetic data with 3 rotated sinusoidal arms. The adaptive kernel can impute 

the fine details of the geometry while the fixed bandwidth kernel averages the sinusoidal 

features into a line.

To improve computational efficiency and robustness, we ensure sparsity in the resulting 

affinity matrix A and allow each cell to have at most k neighbors. Since the standard 

deviation of the kernel bandwidth is set locally to the distance to the ka-th neighbor we set k 
= 3ka to ensure that the kNN graph covers the majority of the Gaussian kernel function. All 

additional affinities (which are already close to zero) are set to zero.

Another important factor in MAGIC’s success is the quality of the diffusion process that 

occurs when the affinity matrix is powered. A good process would smooth the data in a 

manner that follows the shape of the underlying manifold. It has been shown (Coifman and 

Lafon, 2006b) that to mimic a discretized diffusion that achieves these properties, the 

affinity matrix must be symmetric and positive semidefinite, with eigenvalues in the range of 

zero to one. Negative eigenvalues would simply flip back and forth at each powering, 

leading to instability. With values greater than one, things would be sensitive to outliers and 

powering would wildly amplify.

The adaptive kernel results in an asymmetric affinity matrix where A(i,j) ≠ A(j,i), which we 

need to symmetrize to achieve these desired properties for A. We take the additive approach 

to symmetrization, which averages the affinities, helps pull in outliers and denoises the data. 

We construct the symmetric affinity matrix as:

A = A + A′

The final step is the row-stochastic normalization that renders the affinity matrix into a 

Markov transition matrix M. Each row represents a probability distribution, where M(i,j) is 

the probability of cell transitioning to cell j. Each row must sum to 1, which we achieve 

simply by dividing each entry in A by the sum of row affinities.

M(i, j) = A(i, j)
∑k A(i, k)

We note that we want a cell’s own observed values to have the highest impact on the 

imputation of its own values, thus our transition matrix allows for self-loops and these are 

the most probable steps in the random walk. The distance between a cell and itself is zero, 

therefore its weight in the affinity matrix before normalization is 1 (regardless of σ) ensuring 

the measured values in each cell retains a high weight in its imputation.

An adaptive kernel was previously used to handle the lack of uniformity in biological data in 

(Haghverdi et al., 2016). However, the key differences between approaches involve time-

scale of diffusion. The kernel in (Haghverdi et al., 2016) sums up walks of all length scales 

after removal of the first eigenvector. By contrast, we prescribe a particular time scale of 

diffusion, based on convergence so as not to over-smooth in the context of imputation.
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Markov affinity based graph diffusion

Due to sources of technical noise, such as drop out and others, one cannot distinguish 

between similarity due to biological correspondence vs spurious chance. This is 

demonstrated using a synthetically generated Swiss roll (with Gaussian noise) presented in 

figure 1. While most nearest-neighbor edges follow the spiral, there are many short cut 
edges that cut across the spiral (Figure 1.ii), which result in the off-diagonal affinities in 

Figure 1.iii. Consider the following thought experiment, starting with an identical cell, 

mimicking scRNA-seq, if we randomly subsample on a small fraction of the transcripts each 

time, the expression observed across these cells can appear dissimilar. However, each pair of 

cells are likely to at least share many neighbors that overlap with each of them. Whereas 

spurious edges would have similarity in the raw data, but these would not be supported by 

shared neighbors. Thus, exponentiation refines cell affinities, increasing the weight of 

similarity along axes that follow the data manifold. Following the exponentiation of M, 

phenotypically similar cells should have strongly weighted affinities, whereas spurious 

neighbors are down-weighted.

Raising M to the power t results in a matrix where each entry Mt(i,j) represents the 

probability that a random walk of length t starting at cell i will reach cell j, thus we call t the 

“diffusion time”. While the powered Markov affinity matrix increases the number of cell 

neighbors, unlike the effect of increasing k in knn-imputation, MAGIC does not bluntly 

smooth and average over increasingly distant cells. In MAGIC, even as t increases, 

reweighting also occurs: dense areas of the data result in more possible paths and thus 

weights are concentrated in these areas. Importantly, the closest neighbors remain with the 

highest probability: (i) The probability of a path is the product of its steps and hence longer 

paths are less likely; (ii) There will be many paths that linger in the region, points that are 

very close to each other will have many paths that are circular or back and forth that reach 

each other, including self-loops.

Powering M has the effect of low-pass filtering the eigenvalues of the Markov transition 

matrix. Markov matrices have nicely structured eigenvalues, in the range of [1, 0] with 1 

being the highest eigenvalue, and 0 the lowest possible eigenvalue. Much like PCA, the 

magnitude of the eigenvalue is an indication of its importance in explaining (non-linear) 

variability of the associated eigen-dimension. Thus when a Markov matrix is powered, it 

decreases the magnitude of all the eigenvalues besides 1, and diminishes the importance of 

noise dimensions with near-zero explanatory power. In this process, the signal is filtered out 

from the noise. Thus, as t increases, similarity based on high frequency trends (which often 

correspond to technological noise) decreases and the affinity matrix represents similarity 

along lower frequency trends that follow data density. As a result, after the powering of M, 

phenotypically similar cells should have a strong weighted entry, whereas spurious 

neighbors are down-weighted. In our toy example, there are no off-diagonal entries in Figure 

1.v.

Diffusion time for Markov Affinity Matrix

A key parameter in MAGIC is the amount of diffusion, or the power the Markov Affinity 

Matrix is raised to before the imputation step Dimputed = Mt * D. We need a method to 
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determine the optimal value of t for a given dataset, that removes noise and effectively 

impute missing values, without over-smoothing the data. We assume that the data lies on a 

lower dimensional manifold, which is obscured by dropout and additional sources of noise 

in the data. The true manifold structure of the data is captured by the top eigenvectors of M, 

whereas the rest of the eigenvectors likely represent noise. The eigenvalues, which are in the 

range [1,0], are gradually reduced by exponentiation.

We divide the possible diffusion times into two regimes, an imputation regime and a 

smoothing regime. The first few steps of diffusion, which we call the imputation regime, 

diminishes the noise dimensions, bringing these small eigenvalues to zero and removing 

most of the noise in the data including dropout. As t increases, cells learn missing values 

from their neighbors and we rapidly capture proper relations between cells that are 

biologically very similar, and were only separated by collection artifacts. Thus, in the 

imputation regime, the imputed matrix rapidly changes from iteration to iteration.

In the smoothing regime, t is sufficiently large to have recovered the manifold with most of 

the noise removed. Once diffusion creates a common support for cells, diffusing further 

would smooth out lower frequency trends in the data that likely represent real biology. 

Therefore, optimal tuning of t relies on quantifying the point where the noise removal turns 

into signal removal. Since typically noise is of different frequency than the signal itself (i.e., 

high- versus low-frequency respectively), we initially expect to see a rapid change in the 

data as high-frequency information is being removed. Then, slower change, or convergence 

ensues. We therefore expect a regime change in terms of the convergence, or rate of data 

change, as a function of t. To quantify rate of change, we use the coefficient of determination 

(Rsq), between the imputed data at time t and time t-1, and choose a point after this value 

stabilizes. So that our metric is not dominated by few highly expressed genes, we normalize 

by dividing each gene by its sum. We then compute, for each t:

R‐sq data_t, data_ t‐1  = 1 ‐ SSE data_t, data_ t‐1  / SST data_t, data_ t‐1

Where SSE is the sum of squared error and SST is the sum of squared total. Since R-squared 

is a normalized measure, between 0 and 1, we reason that the decay has approximately 

converged after it has gone below 0.05, i.e., less than 5% change from the previous t. To 

make this robust we select the second t after the decay has gone below 0.05 as the optimal t. 
We note that t is robust to a range of values of around the optimal t (Figure S3D), further 

supporting its selection.

In Figure S1C we plot 1 - R-sq(data_t,data_(t-1)) versus t to inspect how the rate of change 

decreases and converges. We show that there are two regimes: an imputation regime, and 

following convergence, a smoothing regime.

We created a ground truth dataset to test our approach for selecting t. We generated 2000 

points on a random tree structure that was generated using a random walk process where 

points accumulate adjacent to existing points, with 4 branches and rotated it in 1000 

dimensions (Figure S1Di). We then simulated dropout on this tree by subtracting random 

values sampled from an exponential distribution to achieve 0%, 2%, 39% and 79% zeros 
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respectively. For each of these noise levels, we ran MAGIC on the dropped out data for 

increasing t values (t=1–8) and computed the convergence, as described in the previous 

section (Figure S1Dii). As expected, we find that increasing levels of noise causes 

convergence to occur at higher values of t. The optimal t is selected at t=0, t=3, t=4 and t=6 

for the increasing noise levels respectively. To determine if these values correspond to actual 

optimal levels of t, we quantify the Rsq of the imputed data with the original data before 

dropout. We reason that the R-squared should be relatively low at low t, then increase and 

peak at the optimal t, after which it decreases for larger t. The closest match between the 

ground truth and imputed data is indeed corresponds very well with the optimal t for all 

tested noise levels (Figure S1Diii) and also looks good visually (Figure S1Div). Moreover, 

we see that the Rsq remains fairly stable as we increase t beyond the optimal value and the 

quality of imputation remains good even as we increase t (Figure S1Diii,iv).

Imputation after graph diffusion

Once Mt is computed, we have a vector of weighted neighbors associated with each cell in 

our data. We can now use this robust neighborhood operator to impute and correct data using 

the library-size normalized count matrix (before PCA). Thus, while we use PCA to gain 

more robustness for the computation of M, the imputation Dimputed = Mt * D.is performed at 

the resolution of individual genes.

The imputation step of MAGIC involves information transfer from cells in the cell 

neighborhoods and right-multiplying Mt by the original data matrix. Dimputed = Mt * D. 

(Figure 1.vi). When a matrix is applied to the right of the Markov Affinity matrix it is 

considered a backward diffusion operator and has the effect of replacing each entry.D(i,j) 
that is gene j in cell i, with the weighted average of the values of the same gene in other cells 

(weighted by Mt).

Dimputed(i, j) = ∑k = 1
n Mt(i, k) * D(k, j)

This process effectively restores the missing data to the underlying manifold, which captures 

the majority of the data.

In the final step of MAGIC, we re-scale the count matrix. The MAGIC process resembles 

heat diffusion in the graph, which has the effect of spreading out molecules, but keeping the 

total sum constant. This means that the average value of each non-zero matrix entry 

decreases after imputation. To match the observed expression levels (per cell), we rescale the 

values so that the max value for each gene equals the 99th percentile of the original data. 

Thus cells with high expression of a gene are brought up to similar levels as the original data 

and all other values are proportionally scaled up with them.
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Drescaled(i, j) = Dimputed(i, j) *
percentile(D j, . 99)

max(D imputed, j)

MAGIC pulls outliers into the data manifold

MAGIC is able to pull outlier data into the manifold due to the properties of diffusion with 

an adaptive kernel. As the Markov affinity matrix M is an asymmetric matrix, the walking 

probabilities from a particular cell, i.e., M(i, x) are not the same as the walking probabilities 

to the cell M(x,i). The gene values for a particular cell i, are the weighted averages of other 

cells based on the i-th row M(i,:). This row reflects the probability that if you start at cell i, 

you end up at a cell x in t steps. As the matrix is exponentiated, if cell x is an outlier cell, 

then there will not be many paths from i to x, and thus this entry in the Markov matrix 

M(i,x) gets down-weighted. Therefore cell i’s values D(i,j) will not veer towards the values 

of the outlier cell x. On the other hand cell x’s corrected values come from the x-th row 

M(x,:), and since cell x is an outlier its nearest neighbors will be on the manifold (and may 

include cell i). Thus the probability of x walking to the manifold is very high and thus cell 

x’s values will become closer to its manifold neighbors and cell x gets brought into the 

manifold as t increases. Due to use of the adaptive bandwidth for the Gaussian kernel, cell x 

is guaranteed to have k nearest-neighbors (based on our setting the kernel sigma to the 

distance to the kth neighbor) and those neighbors are likely to be on the manifold to aid the 

pulling in of outliers. See Figures 2, 4, S1 for examples of denoised manifolds after MAGIC.

Evaluation of the Synthetic Worm Dataset

To quantitatively evaluate the accuracy of MAGIC’s imputation, we created a validation 

dataset that was based on bulk transcriptomic data from 206 developmentally synchronized 

C. elegans young adults, measured at regular time intervals during a 12-hour developmental 

time-course using microarrays (Francesconi and Lehner, 2014). Do to the noise prevalent in 

early microarray experiments, similar to the analysis performed in the original publication of 

the data, we select only genes that load to the first two PCA components of the data. This 

results in a data matrix with 206 worms and 9861 genes.

We down-sampled this data to emulate the sparsity found in scRNA-seq data (Figure S2B-

C). The log-scaled expression levels were exponentiated, and then each entry was 

downsampled using an exponential distribution such that the result had 80% and 90% of the 

values set to 0. Then the data was log-scaled and normalized based on z-score. We applied 

MAGIC (with parameters npca=20, ka=3, t=5) to this synthetically “dropped out” data and 

then compared between the original and imputed data. We note that this dataset is 

particularly challenging as it only contains 206 samples, whereas MAGIC is primarily 

intended for datasets consisting of thousands of samples, as is the case for most single cell 

datasets.
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Based on the expression matrix, the imputed data largely matches the original data (Figure 

S2B). To zoom into finer structure and illustrate MAGIC’s ability to recover key trends in 

the data, we select 3 genes (C27A7.6, ERD2 and C53D5.2) based on their non-monotonic 

developmental time trends and compare the original and imputed shapes for each of these 

trends. For each gene, we find close concordance in the developmental trend between the 

original and imputed data (Figure S2B).

We quantitatively evaluate MAGIC’s accuracy by directly comparing the original and 

imputed values. At dropout of 90%, the R2 increases from 7% to 43% and for 80% dropout, 

the R2 increases from 13% to 53%. The agreement between the original and imputed data is 

even higher in the case of gene-gene correlations than that of the univariate case. For 

example, the agreement in gene-gene correlations between the original data and data with 

90% of the values dropped out is 0.12. MAGIC recovers most of the gene-gene correlations 

so that after imputation we have a R2 of 0.65. For 80% of the values at zero, MAGIC 

improves from 0.35 to 0.78.

Validation Using a Synthetic EMT Dataset

We used the MAGIC-imputed count matrix of the EMT data as the “ground truth” of a 

synthetically created dataset and then re-created synthetic dropout. Starting with data from 

7523 HMLE cells 8–10 days after TGFB treatment, we first imputed the data with MAGIC 

(npca=20, ka=10, t=6) and then we induce dropout by down-sampling using an exponential 

distribution such that 0%, 60%, 80% and 90% of the values are set to 0. We then re-imputed 

the data using MAGIC. We show that MAGIC can also capture multivariate relations 

effectively -- the agreement between the original and imputed data is even higher in the case 

of gene-gene correlations than that of the univariate case (Figure S3Aii).

With 90% zeros, the R2 between the original data and the down-sampled data is brought 

down to 0.04 and MAGIC corrects the data so that the R2 rises back to 0.7 (Figure S3Ai). 

We see that with 80% zeros, we have R2 of 0.09 after dropout, which is corrected to 0.81 

after imputation. An important feature of MAGIC is that it is particularly good at capturing 

the “shape” of the data (Figure S3B). We note that the imputed data is less noisy and more 

accurately adheres to a low dimensional manifold. However, MAGIC may additionally 

remove some stochastic biological variation, as it removes unstructured, high frequency 

variation.

Robustness of MAGIC to Subsampling

An important feature of any algorithm is its robustness to input parameters and subsampling 

of the data (in this case, cells). First, we consider the sensitivity of MAGIC to subsampling 

of cells. We start with the 7523 cells collected in the EMT HMLE data and consider the 

imputation result on the full data as the ground truth. For this analysis, we only consider the 

9,571 genes that are expressed in more than 250 cells, to ensure these genes will likely 

remain present in each subsample. More generally, we expect the quality of the imputation 

to depend on gene expression, both the absolute expression level of a gene when it is 

observed, as well as how frequently (in how many cells) it is observed. To take this into 

account, we divide remaining genes into two groups, based on the mean log expression in 
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the raw data, highly expressed genes (3,190 genes) and lowly expressed genes (6,381 genes). 

We subsampled cells to different degrees, uniformly at random (100 iterations each). For 

each subsampled dataset, we remove any genes that have no expression and impute the 

remaining genes using MAGIC (for the same set of parameters). For each imputed matrix, 

we compute the correlation-squared R2, per entry against the ground truth (full dataset). 

Figure S3C shows the mean correlation-squared across 100 iterations with 1-standard 

deviation represented by the error bars. MAGIC is highly robust to subsampling of cells 

across both groups of genes. Even for a subsample with only 1000 cells, we obtain R2 > 0.94 

among highly expressed genes and R2 > 0.61 among lowly expressed genes (with standard 

deviation < 0.01 for both).

Since our main interest lies in the quality of imputed cells, for each imputed cell 

(represented as a vector of gene counts) we compute the correlation-squared R2, against the 

ground truth for the same cell and average the result over all cells. This “cell-centric” view 

of the data (Figure S3C, middle column) produces the same results and quality as the 

correlation observed across the full matrix. As demonstrated in previous analysis, MAGIC 

learns a lower dimensional manifold where cells reside and inferred cells adhere to this 

learned structure.

However, a “gene centric” view of each imputed gene (represented as a vector of cells), 

gives slightly different results (Figure S3C, right). While we have good agreement when 

large numbers of cells are subsampled, e.g. when sampling 5000 cells averaged over all 

genes, R2 > 0.89 (std. < 0.01) on the set of highly expressed genes and R2> 0.78 (std. < 

0.01) for the lowly expressed genes. This correspondence declines linearly with the number 

of cells subsampled, so that with only 1000 cells, we find R2 > 0.49 (std. < 0.01) on the set 

of highly expressed genes and > 0.29 (std. < 0.01) for the lowly expressed genes. Most genes 

are only observed in a fraction of cells, thus as the number of cells decline, so does the 

number of observations we have for any given gene. We find that we are successful at 

inferring genes that have high loadings on the top PCA (or diffusion) components. That is, 

some genes behave in a more structured manner, and MAGIC is good at inferring these 

genes. But, not all genes exhibit such structured expression. Importantly, we have the ability 

to predict in advance (based on their PCA loadings), which genes we are likely able to 

impute well.

Robustness of MAGIC to Parameters

MAGIC requires three key input parameters, ka (to set the adaptive kernel to the distance of 

the kth nearest neighbor), t (the number of times M is powered) and npca (the number of 

PCA components used to construct the affinity matrix). While we proposed criteria to guide 

the choice of these parameters, we also analyze MAGIC’s robustness to their exact values.

MAGIC uses an adaptive kernel for cell-cell affinity computation, where σ, the width of the 

Gaussian kernel at each point is set to the distance to its kth nearest neighbor (denoted ka 
(“adaptive k”)). We generally pick ka such that it is the smallest value that still results in a 

connected graph. We test MAGIC’s robustness to ka, applying a range of ka values to the 

EMT data, with t set to 6 and npca to 20. To avoid the possibility of correlation being 

dominated by a small number highly expressed genes, we use z-score values for each gene 
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in the imputed matrix. Then, we compute the R2 of the post-imputation data for each pair of 

ka settings (Figure S3D). MAGIC is highly robust for a suitable range of ka values (between 

10–30), the average R2 value for ka = 10–30 is 0.95 (std 0.05). However, a very large value 

of ka (60–120) over-smooths the graph resulting in a weaker correlation score with other 

settings of ka (mean 0.56, std 0.27).

Next, we consider robustness of MAGIC to the diffusion time (t), by applying MAGIC to a 

range of values, keeping other variables fixed (npca=20, ka=10, Figure S3D,E). Again, we 

find that MAGIC is robust to a suitable range of t (6 – 24). In particular, the average R2 

value for t=6–24 is 0.90 with a standard deviation of 0.10. However, a very large value of t 
(64–128) over-smooths the graph resulting in a weaker correlation. Moreover, we show that 

our criteria for selecting the optimal diffusion time t, is robust. The Optimal t was computed 

on 20 subsamples of 50% of the EMT data, resulting in tight reproducibility (Figure S3Eii).

Lastly, we consider robustness of MAGIC to the number of PCA (npca) components used to 

build the affinity matrix. We compute MAGIC based on a range of values of npca, holding 

other parameters fixed (ka=10, t=6). As shown in Figure S3D, we find that MAGIC is highly 

robust to the choice of npca. In particular, for npca>= 16, the average R2 is 0.94 with a std of 

0.05. However, as expected, since few number of PCA components do not capture enough 

variance in the data, we observe low correlation between small and high npca. Overall we 

conclude that MAGIC is robust to a wide range of parameters, around the level that our 

heuristics for ka, t and npca provide. Thus changes in these parameters should have minimal 

effect on imputed results.

Recovering cluster structure with MAGIC

While MAGIC recovers structure by diffusing values between neighboring cells, values 

should not exchange between different clusters. Cluster structure should therefore be 

maintained even after running MAGIC. To show this we computed a diffusion map on the 

original data and on the data after MAGIC. Figure 3B shows the first two diffusion 

components of the original data (i) and data after MAGIC (ii) colored by Phenograph 

clustering on the original data (k=50). While the diffusion map after MAGIC appears to 

have less noise, the two diffusion maps show the same cluster structure.

Next, to investigate the ability of MAGIC to preserve and recover cluster structure in the 

face of dropout, we performed manual dropout on a dataset of 3005 mouse neurons (Zeisel 

et al., 2015). This dataset has relatively high numbers of molecules (~19% non zero values) 

and is therefor particularly suited for downsampling. We downsampled up to 90% zeros by 

subtracting random values sampled from an exponential distribution. We first performed 

clustering on the original data (after library size correction and log transformation with 

pseudocount 0.1) using Phenograph (k=50). We then downsampled to different levels of 

dropout and for each level either ran MAGIC (t=6, npca=20, k=30, ka=10) and clustered 

using Phenograph, or directly ran Phenograph on the down-sampled data. The clustering 

solutions before and after MAGIC were compared using the Rand index, which measures 

the correspondence between the two clustering solutions. The Rand index gives a value of 

between 0 and 1, with a value of 1 signifying a perfect correspondence. Figure 3C shows the 

Rand index, for Phenograph performed without and with MAGIC, as a function of the 
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dropout level. Phenograph with MAGIC performs significantly better after dropout (after at 

least 40% zeros). At 0–10% dropout the original data performs slightly better (inclustering 

correspondence to the original data), we note however, that even the original data has 

substantial drop-out and thus MAGIC is likely finding additional structure in the data.

MAGIC corrects ambient RNA and mixed barcodes

MAGIC removes high-frequency signal, which typically relates to sources of noise. In 

addition to correcting for drop-out, MAGIC can correct for additional sources of error in 

scRNA-seq, including ambient RNA in the media, barcode swapping between cells and 

other spurious sources of molecules. To illustrate this ability, we generate a test case with 

artificially contaminated cells, by assigning molecules to the wrong cell.

First, we generated a Gaussian mixture in high dimensions (2000 cells in 1000 dimensions) 

consisting of two clusters (1000 cells each) (Figure 3D, original). We then randomly select 

pairs of cells (one from each cluster) and a random gene, and swap their values, for some 

fraction of the data (Figure 3D, 10% and 30% corruption). Finally, we imputed the data with 

MAGIC (ka=10, t=4, npca=10) (Figure 3D, After MAGIC). Figure 3D shows that while 

corruption creates significant noise, i.e. cells in the wrong clusters, MAGIC is able to correct 

this; 98% recovery for 10% corruption and 81% recovery for 30% corruption.

Creation of Synthetic Datasets

We created several synthetic datasets to demonstrate the effects of dropout, noise and 

recovery after application of MAGIC. We have already described datasets created for 

measuring the ability of MAGIC to recover ground truth, i.e., the artificially dropped-out 

worm and EMT datasets. Here we describe datasets used to quantify MAGIC’s ability to 

correct contamination, denoise data along non-linear manifolds and to validate our criteria 

for the optimal diffusion time t.

Creation of corruption dataset

To illustrate the ability of MAGIC to correct for contamination in the transcriptome 

(potentially due to ambient mRNA or other errors), we generate a test case with artificially 

contaminated cells. First, we generated a Gaussian mixture in high dimensions (2000 cells in 

1000 dimensions) consisting of two clusters (1000 cells each) (Figure 3D, original). We then 

randomly selected a fraction of the matrix entries and switched their values between the two 

clusters (Figure 3D, 10% and 30% corruption) in order to evaluate MAGIC’s ability to 

recover the true entries.

Creation of tree structure dataset

To test whether our method for choosing the optimal t does indeed find an optimal t we 

created a ground truth dataset. We generated 2000 points on a random tree structure that was 

generated using a random walk process (diffusion-limited aggregation) where points 

accumulate adjacent to existing points, with 4 branches and rotated it in 1000 dimensions 

(Figure S1Di). We then simulated dropout on this tree by subtracting random values sampled 

from an exponential distribution to achieve 0%, 2%, 39% and 79% zeros respectively 

(Figure S1Dii,iv).
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Creation of Swiss roll datasets

To illustrate the MAGIC algorithm, we generated a Swiss roll dataset. A Swiss roll is a 

prototypical example of a higher dimensional dataset with a continuous lower dimensional 

manifold. We first generated a 2-dimensional Swiss roll sampled at 1000 points. The data is 

embedded in 10 dimensions by random rotation via a randomly generated QR 

transformation. Then these 10 dimensions are extended to 100 dimensions by replicating 

each dimension 10 times with additional Gaussian noise. We added Gaussian noise with 

mean 0 and standard deviation 2.5. The first two PCA components of this data, illustrating 

the Swiss roll shape is shown in Figure 1Aii.

For Figure S7C, the Swiss roll consisted of 2000 points. A Gaussian noise of mean 0 and 

standard deviation 0.35 was added to create a noisy Swiss roll. This was then embedded into 

5000 dimensions via QR transformation. The first two PCA components of this data is 

shown in Figure S7C. In Figure S7D, we added dropout by subtracting values per data-point 

from an exponential distribution with in the inner part of the Swiss Roll and decreasing to 

towards the outer part of the spiral.

MAGIC compared to Diffusion Maps

Diffusion Maps were developed as a nonlinear dimensionality reduction technique (a type of 

Kernel PCA) to find major (non-linear) directions of variation in high dimensional datasets 

by Coifman and Lafon in 2005 (Coifman and Lafon, 2006a). The main idea behind diffusion 

maps is that solutions of the heat equation over a manifold provide global representation of 

its intrinsic dimensions. When applied in a data analysis setting, this corresponds to finding 

the eigen-decomposition of a diffusion operator, i.e., a Markov-normalized affinity matrix 

that defines similarity between data points along a manifold. This operator is exponentiated 

to achieve diffusion, i.e., longer range connectivity between data points via global random 

walks over the data. Finally, this operator is eigendecomposed to find diffusion components 
(a nonlinear analogue to PC components)(Coifman and Lafon, 2006a). Diffusion maps are 

primarily used provide an embedding of the data in a new coordinate system in which 

Euclidean distances are equivalent to diffusion distances.

Recent applications in biology have used the fact that diffusion components encode major 

nonlinear trends in the data to find “pseudotime trends” that often correspond to progression 

of development (Haghverdi et al., 2015; Haghverdi et al., 2016; Setty et al., 2016). 

Therefore, these components have value even when observed individually, rather than as 

coordinates of an embedded space.

Diffusion maps are not designed to recover the original data features and do not perform 

manifold denoising or imputation (i.e., correct the features to the original high-dimensional 

representation of a clean manifold), but rather they find a separate representation, typically 

low dimensional, of trends in the data. Smoothing has been used to recover gene trends 

along individual diffusion components, but this is not equivalent to recovering the data 

taking all components into account (See Figure 7, sky blue).

MAGIC, by contrast, attempts to restore and correct the data (gene measurements) itself. To 

achieve this, MAGIC considers the propagation of information via a data diffusion process 
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directly applied to the data. It recovers each gene in each cell as a weighted average of its 

neighbors based on a walking probability, i.e., each cell X gets values from other cells Y 

proportional to the probability of a random walk proceeding from X to Y. In essence this 

restores outlier data to the manifold and clarifies manifold structure of the data. The 

mathematical foundation for our method is rooted in the emerging field of graph signal 

processing (Shuman et al., 2013), which considers the spectrum of a graph as a Graph 
Fourier Transform, and applies filters to this spectrum. By applying the diffusion operator 

directly to the data, we essentially achieve a low pass filter on the data. Fourier transforms 

are traditionally applied in image processing or audio processing where there is time-or-

space order, also called structure to the data. Our contribution generalizes this approach to 

unstructured data.

MAGIC versus Pseudotime-based Imputation

We compare MAGIC to pseudotime analysis based on diffusion components (Figure 7). 

Pseudo-time refers to methods that derive one dimensional orderings of cells in data, which 

may reflect the order of differentiation or other types of cellular progression (Bendall et al., 

2014; Haghverdi et al., 2016; Setty et al., 2016). Such methods have had recent success in 

inferring certain types of trends in data. We further motivate the necessity of MAGIC by 

showing their inability to correctly infer gene-interactions or even developmental trends in 

sparse single-cell RNA-sequencing data that has more complex structure.

For this purpose, we used the first two diffusion components, as in (Haghverdi et al., 2016), 

which captures the main non-linear progressions in the data(Coifman and Lafon, 2006a), as 

well as known markers of the transition, CD34 for bone marrow and VIM for EMT. Just as 

in MAGIC, the diffusion operator is computed using distances computed off of 20 principle 

component dimensions. On each pseudo-time trajectory, we perform a sliding window 

convolution using a Gaussian kernel with bandwidth set by Silverman’s rule of thumb 

(Silverman, 1986) (to the standard deviation of the data) to impute averaged values of 

particular genes in the data (Figure 7, sky blue).

Compared to MAGIC (2nd column, green), the trends inferred by pseudotime-based 

imputation are noisy, fluctuating, and do not corroborate the known biology. For instance, 

ZEB and SNAIL are both associated with the mesenchymal state and should go up with 

EMT progression, and yet their trends still show fluctuation and downward inflections. 

Thus, we conclude that MAGIC, with its implicit consideration of all diffusion components 

simultaneously (as contained in the diffusion operator itself), and unique treatment of each 

cell, is unique in its ability to restore of gene-gene relationships and behavioral trends in 

single-cell RNA-sequencing data.

Comparison of MAGIC to Other Methods

We compare MAGIC to current state-of-the-art methods to fill in missing data and reduce 

noise, SVD-based low-rank data approximation (LRA) (Achlioptas and McSherry, 2007) 

and Nuclear-Norm-based Matrix Completion (NNMC)(Candes and Recht, 2012). Both 

methods have a low-rank assumption, i.e., like MAGIC, they assume that the intrinsic 

dimensionality of the data is much lower than the measurement space and utilize a singular 
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value decomposition (SVD) of the data matrix. The singular-value decomposition of the data 

matrix, is a factorization of the form D = UEV* where U contains the left singular vectors of 

D,V contains the right singular vectors of D, and E contains the singular values along the 

diagonal. Note, PCA also uses SVD for its dimensionality reduction.

The two methods we compare against MAGIC work as follows:

1) SVD-based low-rank data approximation (LRA)(Achlioptas and McSherry, 

2007): This method for derives a low-rank approximation of a higher rank data 

matrix. After performing SVD, a lower rank version of D,Dlow is created by 

taking only the first k columns of U and E and only the first k rows of V*. This 

is because the first singular vectors, like PCA vectors, explain a larger variation 

in the data, while the subsequent vectors may correspond to noise. Therefore, the 

elimination of the lower singular vectors effectively de-noises the data, albeit, 

only using linear directions of variation.

2) Nuclear-Norm-based Matrix Completion (NNMC)(Candes and Recht, 2012): 

This technique is designed to recover missing values in data matrices, which 

could potentially address the dropout issue. MNMC restores “missing values” so 

that the rank of the data matrix is not increased, as computed through a linear 

programming optimization. However, since minimizing the rank of a matrix is a 

non-convex optimization, they optimize a convex proxy for rank, which is the 

nuclear norm (sum of all singular values) of a matrix.

First, we compared the performance of the three techniques on a two-dimensional Swiss roll 

(See Figure S7). We added Gaussian noise along the Swiss roll (Figure S7C), and then 

embedded the Swiss roll into 5000 dimensions via a random QR rotation matrix. Results 

show that only MAGIC is able to denoise even relatively simple Gaussian noise. While LRA 

can take off noise from outside the plane of the Swiss roll (by decreasing rank and 

essentially discarding noise dimensions), NNMC seems incapable of even that. NNMC is 

only concerned with retaining rank, and so it can fill in data arbitrarily so as not to increase 

rank.

The real advantage of MAGIC becomes clear when we add dropout, typical of scRNA-seq 

data (Figure S7D). Dropout was added to create 80% zeros, creating regions of different 

densities in the data. We find that only MAGIC is able to correct for dropout and restore the 

Swiss Roll. The “recovered” LRA looks identical to the noisy, dropped out LRA, and the 

“recovered” NNMC looks cloud-like. We conclude that MAGIC is uniquely well suited to 

handle the dropout rampant in scRNA-seq data.

We also compared all 3 techniques on 8 known biological relationships in our data (Figure 

7A,B). In each case, NNMC performs poorly, generally only imputing a single linear shape. 

Occasionally the direction of correlation is also incorrect in NNMC. For, instance, the Cdh1 

vs Cdh2 (E-cadherin vs N-cadherin) edge shown in Figure S7A, is known to have a negative 

relationship. However, NMMC imputes a positive correlation between these genes. 

Additionally, NMMC finds no relationship between the well-known negative correlation 

between canonical EMT markers E-cadherin and Vimentin. A possible explanation for this 

poor recovery is that NMMC “trusts” non-zero values and only attempts to impute possibly 

van Dijk et al. Page 30

Cell. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



missing zero values. Whereas in scRNA-seq dropout of molecules impacts all genes and 

even non-zero genes are likely lower than their true count in the data. Hence NMMC is 

poorly suited to this data type.

LRA performs slightly better, as the most significant components of the SVD do usually 

contain the hyperplanes of the data manifold. However, it cannot separate the exact manifold 

from external noise, likely due to its inability to find non-linear directions in the data. 

Therefore, it cannot impute the fine-grained structure that MAGIC imputes as shown 

throughout Figure S7. For instance, in Figure S7Ai we see that MAGIC is the only method 

that is able to impute the details of the sparser branches, which contain the mesenchymal 

and apoptotic cells, while the other methods only impute a cloud shape. In the Bone marrow 

data shown in Figure S7B, we see that MAGIC is the only method that is able to clarify the 

developmental trajectory seen in Figure S7Bi into an arc with myeloid cells developing to 

one arm and erythroid cells developing in the other.

QUANTIFICATION AND STATISTICAL ANALYSIS

Archetype analysis using PCHA

Recently, archetypal analysis (Cutler and Breiman, 1994) has been proposed as a method for 

characterizing high dimensional biological data (Korem et al., 2015; Shoval et al., 2012). 

Under this model, the cellular phenotypic space is fit to a low dimensional convex polytope. 

While the actual phenotypic space is non-convex, we search for a low-dimensional convex 

polytope that closely approximates the data. The corners of this polytope represent extreme 

phenotypic states at the data extrema, with other points being convex combinations of these 

extrema.

While archetypal analysis has previously been applied to single cell data that was not 

imputed (Korem et al., 2015), we find that MAGIC is an essential step into finding 

meaningful archetypes (Figure S4B-D). Before MAGIC the data is dominated by noise and 

as a result there are no apparent extreme states. After MAGIC (Figure 4) we can observe the 

shape of the phenotypic landscape and clearly see “corners” or extreme states in the data 

(compare to Figure S4B). To find the archetypes of our EMT data we use the Principal 

Convex Hull Analysis (PCHA) method (Mørup and Hansen, 2012) on the PCA projection of 

the imputed data, which scales efficiently with the number of cells and has previously been 

used successfully in single cell data analysis (Korem et al., 2015).

To make the archetypal analysis more robust, the dimensionality of the data is reduced via 

PCA (Korem et al., 2015; Shoval et al., 2012). Since volume increases exponentially with 

the dimension, the number of data points needed to robustly approximate the polytope also 

grows exponentially with the dimension. We observe that 90% of the variance of the 

imputed data is explained by 10 PC components, allowing us to robustly estimate the 

polytope in a dramatically reduced dimension that still captures the dominant dimensions of 

variation. Moreover, since PCA is a linear transformation, the convex hull of the data in 

PCA-dimensions is a subset of the convex hull of the original data and therefore the 

archetypes obtained are indeed extreme points of the original data.
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We use the first 10 PC components for the PCHA method, and search for 10 archetypes, 

whose convex-hull closely approximate the data. To ensure a compact and concise shape that 

best approximates the data, the archetypes must exist in the convex hull of the data and in 

turn the convex hull of the archetypes must closely approximate the data. Each archetype is a 

specific convex combination of the data points. In particular, let X = x1, x2, ..., xN , xi ∈ ℝm

be the data points, we define an archetype Z j = ∑i = 1
N ci jxi, where 0 ≤ ci j ≤ 1, ∑ici j = 1

In matrix form, for p archetypes Z = XC, where X ∈ ℝm × N is the data matrix, C ∈ ℝN × p

is the coefficient matrix and Z ∈ ℝm × p is the matrix of archetypes. The constraints 

∑ici j = 1 and 0 ≤ ci j ≤ 1 imply that each archetype is within the convex hull of the data 

points.

The goal in archetypal analysis is to identify an optimal set of archetypes so that the convex 

combination of the archetypes can re-approximate the data points. Mathematically, 

X = ∑ j = 1
p s jiz j, where 0 ≤ s ji ≤ 1, ∑ j s ji = 1 so that X best approximates the original 

data points. In matrix notation, X = ZS = XCS where S ∈ ℝp × N is the matrix of 

coordinates Sji. This second constraint implies that the data can be well approximated by a 

convex combination of the archetypes, which in turn implies that the archetypes must lie on 

or near the convex hull of the data; hence making them the extreme states of the data. The 

PCHA method minimizes the difference between the original data X and the estimated data 

X with the objective function defined as X − X 2
2 = X − XCS 2

2, where the minimum is 

obtained via a projective gradient descent scheme (Mørup and Hansen, 2012).

To summarize, the computation of the archetypes: Let X ∈ ℝN × m be the imputed data 

matrix, where n is the number of cells and m is the number of genes.

1. [U,Y] = pca(X) where U ∈ ℝm × 10 is the principal component coefficient matrix 

and Y ∈ ℝN × 10 is the matrix of the principal component scores (projection of X 
onto U) We note that the number of principle components, 10 in the EMT 

dataset, is data dependent.

2. K = pcha(Y,10), where K ∈ ℝ10  ×  10 are the archetypes on the PCA projection.

3. K f ull = K × U′, where K f ull ∈ ℝ10  × m is the estimated set of archetypes on the 

original phenotypic space.

Differential expression of the archetypes

An archetype is a weighted sum of cells, which allows us to construct archetypal-

neighborhoods, consisting of cells most similar to the archetype. The neighborhoods are 

constructed by assigning cells to their nearest archetype based on the diffusion distance, as 

long as this distance is within a bounded proximity from the archetype. Diffusion distance is 

defined as the Euclidean distance on the diffusion map representation of the data, i.e., using 

diffusion components as a coordinate system (Nadler et al., 2005), denoted by DM(t) which 

is constructed as follows:
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1. [P,Q,R] = eig(M), where M ∈ ℝN  × N is the same Markov matrix as for MAGIC 

(constructed as described above) and P,Q,R are the matrices of the right 

eigenvectors, eigenvalues and left eigenvectors of respectively

2. DM(t) = P × Qt, We used the same value for t as we used for imputation (t = 6)

3. Then, the diffusion distance between any two points xi and xj for diffusion time t 

is computed as Ddi f f (t, xi, x j) = DM(t, x j) 2.

To assign similar cells to each archetype we define a neighborhood of radius ri for each 

archetype zi as 𝒩zi
= x j:Ddi f f (t, zi, x j) ≤ ri, for all j , where ri = 1

2min j ≠ i Ddi f f (t, zi, z j) . 

This choice of the radius guarantees that the neighborhoods span a similar range on the 

manifold for each archetype.

These archetypal neighborhoods now enable us to characterize the gene expression profiles 

as distributions around each archetype and compare these distributions between the 

archetypes. For quantifying differences between distributions, we use earth mover’s distance 
(EMD) (Levina and Bickel, 2001), a nonparametric measure of the distance between two 

distributions that quantifies the flow required to morph one distribution to another. It is 

defined as the L1 norm of the cumulative density functions, DEMD = CDF1 − CDF2 1
and has successfully been used to quantify gene expression differences in single cell data 

(Levine et al., 2015).

We find the genes whose expression maximally distinguishes each archetype against 

background gene expression. For each archetype, the background is constructed using all 

cells that are not a member of the archetypal neighborhood, excluding apoptotic cells. 

However, due to density differences in the data, simply combining the remaining cells over-

represents some archetypes and underrepresents others. Therefore, we create a background 

distribution by randomly subsampling an equal number of cells from each archetypal 

neighborhood. For each archetype, we compute the EMD to background for each gene. To 

ensure robustness, we perform this subsampling and EMD computation 100 times and use 

the average score for each gene. Finally, we select the genes that have the largest average 

EMD distance to background as distinguishing features for each archetype. Note that 

MAGIC is absolutely essential in getting distinct differentially expressed genes between the 

different archetypes, compare Figures 4D,E (differential expressed genes after MAGIC) with 

Figure S4C,D (same analysis before MAGIC).

Robustness analysis of archetypes

To determine whether the 10 archetypes that we found are robust, we randomly 

downsampled the EMT data to 90% of the 7523 cells 100 times and reran the archetype 

analysis (with the same parameters) each time. Each of 100 subsamples resulted in 10 

archetypes. To quantify the robustness between subsamples, for each archetype we 

computed the Pearson correlation with all 99 replicates of that archetype. Figure S4A shows 

a 3D PCA plot of the EMT data, with the archetypes from each replicate plotted. Each color 

represents one archetype, and the multiple points per color show the 100 replicates per 
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archetype. Each archetype is annotated with the average Pearson correlation between pairs 

of replicates. The Pearson correlation was > 0.95 for 9/10 archetypes and closer to 1 in most 

cases.

Computation of kNN-DREMI

To quantify relationships, we adapt DREMI (conditional-Density Resampled Estimate of 

Mutual Information) (Krishnaswamy, 2014) to scRNA-seq data. The main idea underlying 

DREMI is the use of conditional density instead of joint density, thus capturing the 

functional relationship between two genes across their entire dynamic range. The key 

change in kNN-DREMI is the replacement of the heat diffusion based kernel-density 

estimator from (Botev et al., 2010) by a k-nearest neighbor based density 

estimator(Sricharan et al., 2012), which has been shown to be an effective method for sparse 

and high dimensional datasets. This involves a local computation involving only the k-

nearest neighbors for each cell, which scales linearly with the number of cells. Moreover, 

while density estimation becomes prohibitively slow at higher dimensions and requires 

exponentially more data for stable estimates (Scott, 2015), a neighbor-graph has no 

dimensions and is only dependent on a good affinity matrix. The steps of kNN-DREMI 

include.

1. Kernel density estimation to compute p(x,y) for two variables x and y.

2. Coarse-graining of KDE into larger discrete bins for entropy computation.

3. Normalization of the coarse-grained KDE to compute p(y x) = p(x, y)
p(x)

4. Entropy and mutual information computation based on the discrete bins.

1) Computation of joint density using kNN: In the first step, the joint density is 

computed using k-nearest neighbors on a fine grid of points (Figure 5B). To be able to 

capture fine, non-parametric structures in the data, we partition the 2-dimensional space into 

a fine grid of points uniformly spaced points (gray dots). For each grid point, we compute its 

density based on the distance to its kth nearest neighbor, where neighbors are the actual data 

points (black dots). Figure 5B shows two data points colored by density based on their 

distance to the nearest neighboring data-point (k=1). More generally, the density at each grid 

point is calculated by:

k
N * V(r, d)

Where N is the total number of data-points and r is set to the distance to the kth neighbor. 

Then the volume of a d-dimensional ball of radius r is given by:

V(r, d) = πd /2

Γ(d
2 + 1)

* rd
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kNN-based density estimation has been shown to be particularly robust approach to handle 

sparse data (Sricharan et al., 2012). Since we are computing pairwise relationships, d=2 in 

this context. We set k=10 for robustness against outliers and construct a grid of 60×60 points 

to capture fine structure in the data.

2) Coarse graining the density estimate: While the KDE is computed on a fine-

grid, to achieve robustness, the discrete mutual information is computed on a coarser grid 

(Figure 5Bii). While density estimate is intended to smooth and fill in gaps in the data 

requiring a finer scale of resolution, having a coarser-scale resolution for mutual information 

renders the mutual information more robust. A coarse grid can identify clear relationships 

and is less dependent on noise and irregularities in the partitions. Therefore, we accumulate 

the density estimates for each grid point into a coarser 20×20 grid on which to compute 

entropy.

3) Computation of conditional density using a kNN-method: To capture the 

functional relationship between two genes over their full dynamics range, we use the 

conditional density rather than joint density. For instance, in Figure 5Di we see that the left 

half of the relationship is much more densely sampled than the right half and that the joint 

density (shown in Figure 5Diii) only picks up signal in the left half. By contrast, the 

conditional density estimate (shown in Figure 5Div) picks up the relationship in both halves 

revealing that EZH2 peaks at intermediate levels of Vimentin and subsequently declines.

To compute the conditional density estimate, we simply column-normalize the joint density 

estimate, i.e., divide the joint density estimate by the marginal. More formally, for joint 

density estimate on a n * n matrix G, to condition on the columns, divide each entry by the 

column-total:

G(i, j) = G(i, j)
∑k G(i, k)

We call the resulting matrix (e.g. Figure 5Div) DREVI (Density reweighted visualization), 

essentially producing a 20×20 image that captures the shape of the gene-gene relationship, 

which we can visualize, vectorize and apply curve fitting to this representation of the 

relationship.

4) Computation of Mutual Information from conditional density.—The final step 

of kNNDREMI is the computation of entropy and mutual information using the coarse-

grained conditional density estimate from step 3. In the discrete case where X and Y can 

take on values between 1 and m, mutual information between two variables X and Y is 

generally computed as the difference between the entropy of Y, and its conditional entropy 

after conditioning on X:

I Χ :Y = H Y – H Y X

Here H is the Shannon Entropy is:
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H(Y) = ∑
y = 1

m
−p(y)log(p(y x))

Conditional Shannon Entropy is given by:

H(Y X) = ∑
x

p(x)∑
y

− p(y x)log(p(y x))

After computation of the coarse-grained conditional density estimates, we simply compute 

the mutual information using the equation above. Effectively, this simply added another level 

of conditioning to the original formulation of mutual information:

DREMI(X :Y) = H(Y X) − H(Y X X)

We illustrate this computation using the relationship between VIM and EZH2, revealing a 

clear non-linear relationship between the two variables (Figure 5D). kNN-based kernel 

density estimation is computed on a fine grid (panel ii), which is aggregated into a coarser 

grid (panel iii) and converted to a conditional density estimate by column normalization. The 

resulting DREVI image (panel iv) provides us with a non-parametric, vectorized 

representation of the gene-gene relationship, enabling quantification and comparison 

between different gene pairs. Finally the kNN-DREMI score is the mutual information 

computed on the conditional density estimate.

MAGIC substantially increases our ability to detect gene-gene relationships, whereas the 

pre-MAGIC DREMI range is between 0–0.4, after MAGIC, this range increases to 0–1.7 

(Figure S5B), with the mode shifting from 0 to 0.2. We note that there is almost no 

correlation between the DREMI scores before and after MAGIC (Figure S5C) and moreover, 

we find gene pairs with very high-DREMI after MAGIC, across the entire range of DREMI 

scores before MAGIC. We see that if the correlation coefficient is high then DREMI will 

also be high. However, there are additional relationships (highlighted in the box in Figure 

S5D) that only DREMI identifies (Figure S5E,F).

Robustness analysis of kNN-DREMI

kNN-DREMI requires three parameters to compute the DREMI score between two gene 

expression vectors; the number of neighbors for kNN density estimation (k), the size of the 

fine-grained grid on which kNN density is computed (nGrid---square root of grid size), and 

the number of bins in the coarse grid (nBin). We choose k such that it is small enough to 

focus on local density and large enough to ensure robustness, setting k=10. nBin should be 

chosen such that enough resolution exists to capture mutual information across a range of 

relationships, but small enough such that each bin has a fairly large amount of data points. 

We set nBin to 20, thus giving 400 bins. Finally, nGrid should be significantly larger than 

nBin such that multiple grid points exist within each coarse bin. As a rule of thumb we set 

this value to 3 times nBin, thus 60. While our parameter choices are based on reason, we 
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wish to ensure that the DREMI score is relatively robust to these choices. We evaluated 

robustness to changes in the three parameters (see Figure S5A). We computed kNN-DREMI 

for 3000 random gene pairs of the EMT data for the following parameter values: k = [1 2 5 

10 20], nBin = [5 10 20 30 40], and nGrid = [20 30 60 90 120], around the default parameter 

setting k=10, nBin=20 and nGrid=60. To quantify robustness we computed R2 between each 

pair of parameter settings, for each of the three parameters. Figures S5A show that the kNN-

DREMI score is highly robust to changes of the parameters within a reasonable range.

Clustering and Ordering Using DREVI

To characterize the dynamics of gene expression during EMT we first require a pseudo-time 

representing EMT progression. We decided to use the expression level of the canonical EMT 

marker Vimentin as a pseudo-time representing EMT progression (we get similar results 

using alternative genes as markers, see Figure S6A). We performed the following steps:

1. Filter the genes to include only those that have clear temporal trends along EMT 

progression based on DREMI with Vimentin.

2. Shape based clustering of the genes, by representing each gene with its 

vectorized DREVI with Vimentin and clustering these images.

3. Estimate the timing of peak gene expression for each cluster based on a spline 

curve, fit to the cluster’s geometric mean.

4. Order the clusters based on their peak timing.

First, we filtered the data. We removed apoptotic cells, based on expression of the 

mitochondrial gene MT-ND1 (normalized expression > 5). Next, we removed genes that are 

expressed in less than 5 cells, as these have a very low signal-to-noise ratio. We computed 

DREMI between Vimentin and all genes and removed genes that had less than 0.5 DREMI 

with Vimentin (the bottom ⅓), as these are likely uninvolved with EMT. We consider the 

remaining genes (whose DREMI with vimentin is greater than 0.5) the set of EMT related 
genes, and limit the rest of the analysis to these genes.

The remaining genes have a temporal trend with Vimentin, resulting in a DREVI image with 

structure. We vectorized their DREVI images resulting in a 400×1 vector for each gene, 

which captures the shape of the temporal trend (see Figure 5Div). Rather than clustering the 

genes based on their gene expression, we clustered them based on this vectorized DREVI 

image, representing their dynamics along EMT. We used correlation as a similarity metric, 

as relative intensities better capture the temporal trends of each gene.

Correlation distance between vectorized DREVI images xs and xt is defined as follows:

dst = 1 −
(xs − xs)(xt − xt)′

(xs − xs)(xs − xs)′ (xt − xt)(xt − xt)′

where
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xs = 1
n ∑

j
xs j

and

xt = 1
n ∑

j
xt j

We constructed an agglomerative hierarchical cluster tree from correlation distances using 

complete linkage. Complete linkage uses the largest distance between objects in the two 

clusters, r and s, to define distance between clusters:

d(r, s) = max dist(xri, xs j) , i ∈ (1, ..., nr), j ∈ (1, ..., ns)

Clusters were merged until reaching a stopping criteria of d(r,s) < 1.2. This clusters the 

genes based on their relationship with Vimentin and results in 22 clusters with distinct 

temporal trends that differ based on shape and timing of the curve (Supplementary Table 2).

We estimated the timing of peak gene expression for each cluster based on a spline curve fit 

to the cluster’s geometric mean. The average DREVI plot per cluster was computed by 

taking the geometric mean of the vectorized DREVI plots. Because these clusters share 

roughly a similar shape, averaging over a number of genes clarifies the shape of the curve 

and reduces spurious noise that could mislead peak finding at the level of individual genes. 

We then fit a spline curve to this averaged DREVI image. The smoothing spline s is 

constructed for the smoothing parameter p and the weights wi. The smoothing spline 

minimizes

p∑
i

wi yi − s(xi)
2 + (1 − p) ∫ d2s

dx2

2
dx

where x and y are the coordinates of the 20×20 DREVI image, and weights w are the 

normalized density values in the averaged DREVI image. The default smoothing parameter 

p = 0.9 (approximately 1/(1+h3/6) is used, where h is the average spacing of the data points).

Clusters were then ordered based on the timing of their peak expression, genes in cluster 1 

peak early along the Vimentin trajectory, while cluster 22 peaks late. The resulting clusters 

and their ordering appears in Figure 6A and Supplementary Table 2.

Event ordering robustness to EMT-proxy

The DREVI based clustering and event-ordering approach has considerable dependency on 

the pseudo-time, in our case, the expression of Vimentin as a marker of EMT progression 

leading to the mesenchymal phenotype. To ensure that the resulting clustering and ordering 

of genes is robust to the specific EMT marker selected, we repeated our analysis using three 
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other known EMT markers (CDH2, ITGβ4 and CD44). We used each the expression of each 

of these genes as a proxy for EMT progression and followed the steps described above, 

replacing Vimentin with CDH2, ITGβ4 and CD44 respectively, resulting in 4 different 

clustering solutions and the gene ordering associated with each. The resulting heat-maps for 

each of these solutions look qualitatively similar (Figure S6A).

To evaluate similarity between clustering solutions we use Rand Index, which gives a score 

between 0 and 1 (0 indicating no similarity, 1 indicating perfect similarity). We obtain rand 

index > 0.86 (average rand index = 0.89) indicating a high degree of similarity between the 

clustering results (Figure S6B) between all pairs of genes used as EMT proxies. To evaluate 

similarity between the gene orderings, we compute Spearman correlation between all pairs 

of orderings. We obtain correlation > 0.70 (average correlation = 0.77) indicating that the 

ordering is consistent (Figure S6B). Combined, these results show that our characterization 

of gene expression dynamics along EMT gives consistent results for four different canonical 

EMT markers.

Transcription Factor Target Prediction

We can combine DREMI with the pseudo-temporal ordering of genes to predict candidate 

targets of regulatory genes. We make two assumptions:

1. A TF should be predictive of its targets’ expression, evaluated as a high DREMI 

score between TF and its target.

2. Positively regulated targets reach maximal activation at the same time or 

following the peak activation of the TF during EMT progression.

Statistical dependency has frequently been used to infer regulatory networks (Friedman et 

al., 2000) including between individual cells (Sachs et al., 2005). Thus, X such that 

DREMI(TF, X) > threshold is a potential regulatory target of the TF. However, statistical 

dependency alone is insufficient to indicate a regulatory or causal relationship. Statistical 

dependency does not indicate the direction of influence and in many cases can be caused due 

to co-regulation by a common factor.

Temporal data is often used to suggest causality. While we only measure a single time point, 

due to the asynchronous nature of progression through EMT, we can instead use pseudo-

time to provide further support for gene regulation. Specifically, we use the DREVI-based 

gene ordering (Figure 6A) and consider genes that peak at the same time or following the 

peak of the TF during EMT progression.

Thus for a given TF, our predicted targets are genes that match both the DREMI and the 

ordering based criteria. In the case of ZEB1, which we subsequently validate, we consider 

targets where DREMI(ZEB1, X) > 1 (95 percentile), a total of 1667 genes. There are 4509 

genes that peak with or after ZEB1. Intersecting these two criteria results in 1085 genes, that 

we consider our predicted targets of Zeb1 activation (Supplementary Table 3).
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Validation of Zeb1 Targets

To validate our prediction of 1085 targets of ZEB1, we collected an additional scRNA-seq 

dataset of 3500 cells from an engineered cell line that has Zeb1 under a DOX-inducible 

promoter and induced EMT by directly up-regulating ZEB1. This cell line is identical to the 

wild-type HMLE cell line except that Zeb1, a key regulator of EMT, is under a Dox 

inducible promoter. We measured the cells after two days of continuous Dox treatment, 

which is sufficient to induce significant numbers of mesenchymal cells (10% of the total cell 

population). This data thus enables the comparison of EMT that is induced via TGFβ 
stimulation to EMT that is induced directly and exclusively via Zeb1 over-expression.

TGFB-induction activates multiple pathways, including Zeb1, to drive the cells towards the 

mesenchymal phenotype. By contrast, zeb1-induction is likely to “skip” several steps 

involved in the transition and directly induce a concise transcriptional program typically 

activated at later stages of the transition. Thus, in the Zeb1-induction, targets that fall under 

Zeb1’s regulatory cascade (direct and indirect targets) will have higher gene expression, 

relative to genes that are not targeted by Zeb1. Therefore, we validate our predicted Zeb1 

targets by comparing their relative expression under TGFβ versus zeb1 induction of EMT 

and expect that genes regulated by Zeb1 to be ranked significantly higher in the Zeb1 

induction.

For a given set of genes G, we define an impact score to quantify the impact of perturbation 

(the Zeb1 induction in this case) on the ranking of that gene set. We rank the genes from 

highest to lowest (based on mean expression) for each of TGFβ versus zeb1 inductions, and 

sum the ranks of the gene set under each condition. The impact score is the average 
difference between the summed ranks of the two conditions, in N subsamples of G of fixed 

size S. This subsampling procedure controls for the size of G, as p-values will be biased 

towards 0 given larger sized gene sets G.

Let rt(g) and rz(g) denote the rank of gene g (based on its mean expression as described 

above) in TGFβ-induction and zeb1-induction respectively. Then:

impactscore(G) = 1
N ∑

j = 1

N
∑

i = 1

s
rz(gi

j) − ∑
i = 1

s
rt(gi

j) ,

Here, we set S=200 and N = 1000.

A large impact score corresponds to an increase in relative expression of the predicted 

targets under Zeb1 induction but not in TGFβ induction. To compute the significance of this 

impact score, we produce subsamples of size S of the background gene set (all genes 

involved in EMT, DREMI with VIM > 0.5) and compute the impact score of those (as 

above) and repeat this M times, with M set to 1000. The p-value is the fraction of 

subsamples that have equal or greater impact score than the predicted gene set G.
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ATAC-seq Processing Pipeline

To systematically validate our target predictions, we used ATAC-seq (Assay for 

Transposase-Accessible Chromatin using sequencing) (Buenrostro et al., 2013) as an 

independent and well-accepted approach for target prediction (Buenrostro et al., 2013; 

Kundaje et al., 2015).

The following filtering and analysis steps were carried out in order to go from raw 

sequencing data from the ATAC-seq protocol to calling peaks:

1. Adapters and low quality bases were trimmed from reads using Trimmomatic 

v0.36 in paired end mode. Minimum retained read length is 30bp, and first/last 

5bp are trimmed off the ends if low-quality. Also use a sliding window to trim 

reads if below quality phred score 10. Nextera transposase adapters from 

Trimmomatic were used to detect adapter contamination.

2. Reads were aligned with bowtie2 using default parameters for paired-end reads 

to hg19.

3. Alignments were filtered with MAPQ below 10 using samtools after which the 

bam file was sorted by chromosome and position.

4. Duplicates were removed with MarkDuplicates from picard with default 

parameters, except REMOVE_DUPLICATES option is set to true so that 

duplicates are removed instead of flagged.

5. All reads that map to the mitochondrial genome were removed.

6. Peaks were called using MACS2 in paired-end mode with an FDR of 0.1

ATAC-seq Validation of TF-target Predictions

Once we identified robust peaks from the ATAC-seq data, we used the following procedure 

to obtain TF targets from the ATAC-seq peaks. To quantify which TFs bind at the peaks we 

computed TF motif binding scores for a large set of known TFs based on the motif database 

cisPB(Weirauch et al., 2014), obtained from the meme suite’s motif databases. We used 

FIMO(Grant et al., 2011), with default parameters, to identify binding motifs and peak 

locations with significant predicted binding were associated with their closest gene. This 

resulted in a list of targets for each of 418 TFs with significant biding scores.

There was a set of 292 TFs for which we both had computationally predicted targets (TFs 

with knn-DREMI>0.5) and ATAC-seq predicted targets (as described above), for we could 

compare the two sets of predicted genes. A significant overlap between these two 

independent sets of predictions, derived from different biological replicates, different 

technologies (scRNA-seq verses ATAC-seq) and two computational approaches for 

prediction (DREMI verses motif analysis) would indicate that these independently derived 

predictions are likely correct. For each TF, we use the hypergeometic distribution to 

compute the significance of the intersection between its two target sets:
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P(X = k) =

N
k

N − K
n − k
N
n

Here, N = total number of genes, K = size of the ATAC-seq target set, n is the size of our 

predicted target set, and k is the observed intersection size. We use the one-sided 

hypergeometric test to test whether our observed intersection is significantly larger than is 

expected from random. Almost all TFs, 291/292, have a higher overlap than expected by 

chance, after false discovery correction we find that 268 out of 292 TFs (92%) have a 

significant intersection size (Figure 6F,G).

Additionally, for each of 418 TFs that we obtained ATAC-seq targets for, we compare the 

distribution of the DREMI scores between TF to all targets with the DREMI-scores of all 

non-targets. We then computed a one-sided KS-test on these distributions to determine if the 

DREMI values of the ATAC-seq targets are significantly higher than the DREMI values of 

the non-targets. We find that 372 out of 418 TFs (89%) have p < 0.05, and thus have a 

significantly higher DREMI score with their ATAC-seq targets than with other genes. This is 

not the case for data prior to DREMI (Figure S6D)

DATA AND SOFTWARE AVAILABILITY

Python, Matlab and R implementations of MAGIC are available on GitHub: https://

github.com/DpeerLab/magic or https://github.com/KrishnaswamyLab/magic

SEQC single-cell analysis pipeline is available on GitHub: https://github.com/dpeerlab/seqc

Single-cell RNA-seq and ATAC-seq data are accessible through GEO Series accession 

number GSE114397 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114397)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Pseudo-code of the MAGIC procedure:

MAGIC(D,t)

 D = preprocess(D)

 Dist = compute_distance_matrix(D)

 A = compute_affinity_matrix(Dist)

 M = compute_markov_affinity_matrix(A)

 Dimputed = Mt * D

 Drescaled = Rescale (Dimputed)

 Dimputed = Drescaled

            END
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Fig 1: Steps of the MAGIC algorithm:
(i) The input data consists of a matrix of cells by genes (middle) of the data (right). (ii) We 

compute a cell by cell distance matrix. (iii) The distance matrix is converted to an affinity 

matrix (middle) using a Gaussian kernel. A graphical depiction of the kernel function is 

shown (right). (iv) The affinities are normalized, resulting in a Markov matrix (middle). The 

normalized affinities are shown for a single point as transition probabilities (right). (v) To 

perform diffusion we exponentiate the Markov matrix to a chosen power t. (vi) We matrix 

multiply the exponentiated Markov matrix (left) with the original data matrix (middle) to 

obtain a denoised and imputed data matrix (right). See also Figure S1.
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Fig 2: MAGIC applied to mouse myeloid progenitor data:
Mouse bone marrow dataset (Paul et al., 2015). A) Gene expression matrix for 

hematopoietic genes (top) and characteristic surface markers of immune subsets (bottom) 

before and after MAGIC. See also Figure S2A. B) Scatter plots of several gene-gene 

relationships after different amounts of diffusion. In these scatter plots, each dot represents a 

single cell, plotted according to its expression values (measured at t=0 and imputed for 

t=1,3,7), and colored based on the clusters identified in (Paul et al., 2015). C) Shows before 

and after MAGIC of a 3D relationships (with diffusion time t=7). D) FACS measurements of 

CD34 and FCGR3 protein levels versus transcript levels, before and after MAGIC. Both 

FACS measurements and mRNA levels are log-scaled as per FACS conventions.
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Fig 3: MAGIC preserves cluster structure.
A) Mouse retinal bipolar cells from (Shekhar et al., 2016) showing 2D relationships before 

and after MAGIC. Cells colored by Phenograph clusters and show differing trends among 

clusters. B-C): Mouse cortex and hippocampus cells (Zeisel et al., 2015). B) Diffusion 

components before MAGIC (i) and after MAGIC (ii) colored with clusters, MAGIC does not 

merge clusters. C) Rand index (Y-axis) of Phenograph clustering after dropout, with MAGIC 

(red) or without MAGIC (blue), against Phenograph original data. D) Synthetic mixture of 

two Gaussians embedded in high dimension (original, left), 10% and 30% of the values are 

corrupted by randomly switching values between the clusters (middle). MAGIC is able to fix 

the majority of the corruptions (right); 98% recovery for 10% corruption and 81% recovery 

for 30% corruption.
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Fig 4: MAGIC recovers a state space in EMT data.
EMT data collected 8 and 10 days after TGFβ-stimulation of HMLE breast cancer cells. A) 

3D scatterplots between canonical EMT genes CDH1, VIM, and FN1. (Left) Before 

MAGIC (Middle) after MAGIC with cells colored by the level of ZEB1 and (Right) MT-

ND1. See also Figure S3. B) 3D PCA plots before MAGIC (i) and after MAGIC (ii) with 

cells colored by levels of ZEB1, MYC and SOX4 respectively. C) 3D scatter plots after 

MAGIC, red dots represent each of the 10 archetypes in the data. Plotted by (Left) CDH1, 

VIM and FN1, and (right) PCA. D) (Left) most archetypal neighborhoods, cell colored by 

archetype, grey cells are not associated with any archetype. Histograms represent 

distributions of genes in archetypal neighborhoods, color-coded by the colors shown in the 

leftmost plot. E) A subset of differentially expressed genes for each archetype including 
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highlighted genes, transcription factors and chromatin modifiers. Additional differentially 

expressed genes are shown in table S1. See also Figure S4.
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Fig. 5: Gene-Gene Relationships and kNN-DREMI.
A) 2D scatterplots before and after MAGIC. B) Illustrates the computation of kNN-based 

density estimation on an 18 × 18 grid, shown as gray points with data points shown in black. 

Each grid point (yellow, and red grid points are examples) is given density inversely 

proportional to the volume of a circle with radius r equal to the distance to its nearest data 

neighbor (black point). After density estimation on the grid-points, the grid is coarse grained 

into a 6×6 discrete density estimate (red and yellow squares show coarse grained partitions) 

by accumulation of all densities within each square bin. C) The steps for computing kNN-

DREMI are shown for EZH2 (Y-axis) and VIM (X-axis) before MAGIC, with (i) a scatter 

plot, (ii) kNN-based density estimation on a fine grid (60×60), (iii) coarse-grained joint 

probability estimate on probability to obtain conditional probability density, resulting in 20 × 
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20 partition, and (iv) normalization of joint kNN-DREMI = 0.28. D) Same steps as (C) 

shown after MAGIC resulting in a kNN-DREMI = 1.02. See also Figure S5.
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Fig. 6: Gene Expression Dynamics Underlying EMT and TF target predictions
(A) Expression of genes (Y-axis) ordered by DREVI-based clustering and by peak 

expression along VIM (X-axis). ZEB1 is highlighted with dashed line. Representative 

DREVI plots with VIM shown to the right. B) (Left) Distribution of kNN-DREMI with 

ZEB1. The dashed line marks the threshold for genes that we include in the prediction. 

(Right) DREVI plots and DREMI values for a set of example genes above the threshold (top 

row) and below threshold (bottom row). C) Impact score of the predicted ZEB1 targets. D) 

Impact score of all genes that peak after ZEB1. E) Impact score of all genes with kNN-

DREMI against ZEB1 >= 1. F) Histogram of 292 FDR corrected p-values (log transformed) 

obtained using a hypergeometric test on TF-target predictions soverlap with targets obtained 

from ATAC-seq data, 268 out of 292 TFs have p-value < 0.05. G) Expected number of genes 
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in intersection (log10 scale, X-axis) based on the hypergeometric distribution, versus the 

observed intersection (log10 scale, Y-axis). For all TFs except one, the observed intersection 

is higher than expected from random. For 268 TFs (blue points) the difference is significant, 

and 24 (red points) are not significant. See also Figure S6.
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Fig. 7: Comparison of MAGIC to other imputation and smoothing methods.
A) Comparison shown on bone marrow data (as in Figure 2), raw data (first column), 

MAGIC imputed (second column). The other columns show kNN-based imputation, 

smoothing on diffusion components 1 to 2, and smoothing on CD34, respectively. B) The 

same as in A but for the EMT data. See also Figure S7.
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