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The single cell is considered the basic unit of biology, and the pursuit of understanding how
heterogeneous populations of cells can functionally coexist in tissues, organisms, microbial
ecosystems, and even cancer, makes them the subject of intense study. Next-generation
sequencing (NGS) of RNA and DNA has opened a new frontier of (single)-cell biology.
Hundreds to millions of cells now can be assayed in parallel, providing the molecular
profile of each cell in its milieu inexpensively and in a manner that can be analyzed math-
ematically. The goal of this article is to provide a high-level overview of single-cell sequenc-
ing for the nonexpert and show how its applications are influencing both basic and applied
clinical studies in embryology, developmental genetics, and cancer.

As recently as 2 years ago, a review article
about single-cell sequencing technologies

would have mainly focused on methods for effi-
cient extraction, types of nucleic acid amplifica-
tion, coverage, and even the price/unit (i.e., cell
or nuclei). Today, although these aspects are re-
garded as basic contributors for successful sin-
gle-cell experimentation, researchers are con-
centrating more on applying the right method
and the right mathematical analysis to the prob-
lem at hand rather than in the “art” of getting a
single-cell genomics laboratory set up. This is
largely the result of the advent of high-through-
put droplet encapsulation and emulsion-based
amplification of nucleic acids and, more recent-

ly, the implementation of commercial droplet-
based (Drop-Seq) instruments in nearly every
sequencing core. Indeed, when large numbers
of cells are available, as from whole tumors or
embryos, commercial microfluidic bead emul-
sion devices such as the 10X Chromium (10X
Genomics) and BD Rhapsody can amplify tens
of thousands of single-cell transcriptomes at
once and have them ready for sequencing in
little more than 1 day. This technology is being
exploited to profile the expression states and lin-
eages of cells across species, from flatworms to
vertebrates.

In this article, we will attempt to provide
a snapshot of how next-generation sequenc-

Editors: W. Richard McCombie, Elaine R. Mardis, James A. Knowles, and John D. McPherson
Additional Perspectives on Next-Generation Sequencing in Medicine available at www.perspectivesinmedicine.org

Copyright © 2019 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a026898
Cite this article as Cold Spring Harb Perspect Med 2019;9:a026898

1

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg

mailto:jameshic@usc.edu
mailto:jameshic@usc.edu
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org/site/misc/terms.xhtml


ing (NGS) is bringing subjects as complex as
cancer, neurobiology, microbial ecology, and
embryology to a new level of resolution. For
additional detail, the overall topic has been thor-
oughly reviewed in several recent publications
for cancer (Baslan and Hicks 2017; Tsoucas
and Yuan 2017), neurobiology (Poulin et al.
2016), and microbiology (Woyke et al. 2017),
and a series of key reviews on the topic has
been assembled in Nature Reviews (see www
.nature.com/collections/sxnwgntqsk).

Each single cell is unique in both time (e.g.,
cell cycle) and space (e.g., microenvironment,
nearest neighbors). Single-cell sequencing has
beendeveloped to gain insight into that “unique-
ness” and to unmask the distinctive molecular
properties of cells, not by themselves but as part
of the functional coherent populations that col-
onize tissues, organs, tumors, andmicrobial eco-
systems. Traditionally, scientists named cell
types according to their appearance or location
in a tissue or organism. Single-cell sequencing
has not only redefined the molecular classi-
fication of cells but also uncovered new and un-
suspected cell types and opened the window to
further understanding the spatiotemporal orga-
nization of cells fromembryonic development to
tumor progression to aging itself. Furthermore,
the very nature of genomic and transcriptomic
data and the constant development of very clever
computational tools makes it possible to evi-
dence the most incredibly nuanced distinctions
among cells, their types and states, aswell as their
fate (e.g., differentiation, death, etc.) within
complex tissues such as the brain or developing
embryo.

SINGLE-CELL SEQUENCING APPLICATIONS

Entire areas of investigation are being invigorat-
ed by single-cell sequencing. The first is cancer
research, where the long known, but seldom ac-
knowledged in practice, heterogeneity of tumor
tissue can be tracked at its most basic level, the
single cell. A second area is sequencing complex
microbial populations, either from an organism,
say human gut or mouth, or from our physical
environment. Recent advances in microbial cell
genomics and transcriptomics have enabled the

assignment of functional roles tomembers of the
humanmicrobiome for which there are not suc-
cessful methods available for culturing them.
These approaches paved the way to deeper un-
derstanding of the phenotypic variation that ex-
ists among genetically related strains, opening
new opportunities for studies of immunogenic
microorganisms in disease. Another important
but often overlooked area is in vitro fertilization
(IVF), in which various levels of genomic se-
quence from a single cell isolated by hand from
a human embryo can provide evidence of triso-
my 21 or a suspected genetic disease, and at the
same time enhance the chances for successful
conception (Xu et al. 2016). Currently, however,
the greatest scientific breakthroughs are likely to
come in neurobiology and developmental biol-
ogy. Indeed, the ability to perform transcription
studies on thousands to millions of cells in a few
hours or days using microfluidic emulsion am-
plifications has revolutionized the study of cell
lineage and the detailed structure of complex cell
populations. The explosion of new data in these
areas was foreseen by Linnarsson and colleagues
in a prescient review published in 2013 (Shapiro
et al. 2013). At that time, they predicted that it
would be possible to obtain molecular data from
thousands of cells and, further, that methods to
combine genomics, transcriptomics, epigenom-
ics, and proteomics would be common in the
ensuing decade. It has, in fact, taken less than 5
years for these predictions to be realized.

SINGLE-CELL SEQUENCING
METHODOLOGY

Methods for the genome-wide amplification of
RNA and DNA were in development from the
early 1990s (Van Gelder et al. 1990; Telenius
et al. 1992; Dean et al. 2002). However, it was
not until both a relatively accurate reference hu-
man genomewas drafted andmade readily avail-
able (Lander et al. 2001; Kent et al. 2002) and
massively parallel short-read sequencing was
developed that the concept of genome-wide, sin-
gle-cell sequencing began to be explored.

The first report of whole-transcriptome
sequencing (Tang et al. 2009) used the ABI
SOLID sequencing platform on complementary
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DNA (cDNA) prepared from a small number of
mouse oocytes and blastomeres demonstrating
clear regulatory effects of mutations in the
microRNA (miRNA) silencing pathways. The
first genome-wide copy number profiling of sin-
gle tumor cells (Navin 2011) used flow sorting of
200 individual nuclei (then a lot) isolated from
multiple sectors of two breast tumors and se-
quencing using the Illumina Genome Analyzer
instrument. The results revealed the power of
genomic copy number profiling to trace tumor
lineage and to distinguish tumor cells from ge-
nomically normal (euploid) stroma. It further
revealed the stability of clonal structure within
a tumor as measured by copy number “break-
points” while at the same time demonstrating
stepwise evolution of the tumor genome through
both increase in ploidy and the systematic in-
crease in copy number alterations (CNAs) with-
in the clonal structure of the lineage.

In those initial reports, the genomic DNA
(gDNA) of single cells/nuclei were amplified,
and the sequencing “libraries” (collection of
DNA fragments prepared for sequencing) were
constructed virtually one by one for each cell. In
thewake of those initial reports, awide variety of
methods were described for both RNA and
DNA sequencing, implementing important im-
provements in efficiency and reproducibility and
cost. By 2013, single-cell sequencing was named
“Method of the Year” by the journal Nature
Methods.

SINGLE-CELL SEQUENCING PROTOCOLS

There aremore than 300 publications describing
single-cell protocols and∼50different data anal-
ysis methods listed in a review on the Illumina
website (seewww.illumina.com). In reality, these
various “single-cell sequencing protocols” are
not sequencing protocols at all. In the main,
they are simply the means to isolate different
subsets of RNA or DNA in a manner that they
can be converted into standard short-read NGS
libraries.An Illumina sequencing library ismade
up of 300–500 bp fragments of the target se-
quence flanked by hybrid specialized adap-
tor sequences that the instrument uses to prime
the sequencing reactions. Libraries created from

bulk tissue (DNA or RNA derived from thou-
sands to millions of cells) usually contain very
large numbers of “unique” fragments (a mea-
surement of these number of fragments is “li-
brary complexity”). On the other hand, libraries
made from single cells have a much lower num-
ber of unique fragments and therefore their
library complexity is limited. A single mamma-
lian cellmay contain as fewas300,000messenger
RNA (mRNA)molecules and∼10–30 pg of total
mRNA (and ∼7 pg DNA). For single-cell se-
quencing, the massive output of a single unit,
or “lane” of the sequence is much more than
is needed to fully sequence all those unique
fragments many times over. Thus, several sin-
gle-cell libraries can be run together or “multi-
plexed” on a single lane as long as each library is
constructed with adaptors that carry unique
oligonucleotide sequences or “barcodes,” ulti-
mately enabling each output sequence to be
assigned to a specific cell during subsequent in-
formatic analysis. In addition, in current prac-
tice,most sequencingadaptors also contain 8–10
nucleotides of completely random sequence,
called unique molecular identifiers (UMIs) that
can be used to informatically identify and (op-
tionally) remove PCR duplicates, namely, repli-
cates of the original unique molecules, elimi-
nate errors introduced during the amplification
of nuclei acids and sequencing stages, and to
tag individual original transcripts allowing to
“count” their abundance (i.e., expression level).
The UMI concept was envisioned in several
publications (Casbon et al. 2011; Fu et al.
2011; Kivioja et al. 2012; Shiroguchi et al. 2012)
before it being used successfully by Islam et al.
(2014) for removing duplicates when counting
mRNA molecules in a mouse model and is now
standard practice in most sequencing protocols,
whether for validating point mutations in high-
depth sequencing of bulk DNA, or in molecular
counting applications such as transcriptome
profiling.

SINGLE-CELL REVERSE
TRANSCRIPTION (RT)

The central goal of single-cell transcriptome
profiling is to accurately quantify the levels of
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specific messages in each cell and compare indi-
vidual cells to a population to generate molecu-
lar phenotypes. NGS provides a mechanism for
achieving that goal because each sequence read
can be used as a tag for its template molecule.
Huge numbers of short reads permit count-
ing for millions of individual templates. The
whole-transcriptome amplification method that
is the basis for most transcription profiling was
worked out in the Sandberg and Linnarsson
Laboratories at the Karolinska Institute Stock-
holm and described in three important papers
(Islam et al. 2011, 2014; Ramsköld et al. 2012). In
the first paper used, the goal of the Ramsköld
et al. paper was to generate full-length cDNA
using an oligo(dT) primer carrying a PCR
primer using Maloney murine leukemia virus
(MMLV) reverse transcriptase, which adds a
small stretch of cytosine residues to the 50 end
of the first strand cDNA. Strand switching is
accomplished by the addition of a reverse primer
sequence carrying a sample barcode alongwith a
30dG sequence that hybridizes to the cytosine
overhang and initiates second-strand synthesis
going through to the end of the first strand. They
named themethod Smart-Seq. In the Islam et al.
(2014) variation, the first- and second-strand
primers carry a random UMI along with the
sample barcode. After PCR amplification in
the Islam et al. protocol, the ends of the PCR
products were biotinylated before a fragmenta-
tion, and the fragments representing the 50 and
30 ends of the original transcript were captured
on streptavidin beads and sequenced. Strand of
origin was preserved and identifiable through
the sequence and location of the barcode and
the UMI was used to filter out duplicates, there-
by providing a very accurate counting of the
original mRNA molecules.

The strand-switching method using mouse
mammary tumor virus (MMTV)RT requires no
ligation, captures strand of origin, and is highly
adaptable as the first- and second-strand primer
sequences can be altered at will. Many variations
on the strand-switching method are commer-
cially available as SMART-Seq kits from Takara
Bio USA (formerly ClonTech), including 30 end
capture and full-length cDNA as well as kits for
capturing RNA from formalin-fixed, paraffin-

embedded (FFPE) samples. Sensitivity for single
cells seems to be at the level of 5–10 molecules/
cell. The RNA amplification process is shown
schematically in Figure 1.

It is important to note that it is not necessary
to sequence the entire message to generate sin-
gle-cell transcriptomic profiles. This is essential-
ly a “counting” exercise more than a sequencing
strategy in the traditional sense. For most mo-
lecular phenotyping studies, the sequencing
reads are simply tags for counting up the num-
ber of each RNA molecule present in the cell.
Filtering for duplicates using theUMI sequences
ensure that each initial reverse transcript is only
counted once, adding further stringency to the
counting process. Although some Smart-Seq ap-
plications use random primers to initiate cDNA
synthesis and thus can cover an entire message
sequence, it would not yield complete coverage
andmost of the effortwould be spent on only the
highest frequency messages. For coverage at the
base-pair level to identify mutations, a targeted
protocol rather than awhole-transcriptome pro-
tocol would be favored.

DROPLET CAPTURE

Once itbecameclear thatgenomicand transcrip-
tomic profiling of single cells was achievable in
individual test tubes, the quest for high-through-
put methods was underway. The C-1 amplifica-
tion instrument, marketed by Fluidigm in 2011
was a step forward, but its maximum capacity
of 100 cells did not present a significant im-
provement over what a bench scientist could do
manually using individual tubes. However, the
copublication of two breakthrough microfluidic
applications by Evan Macosko and Allon Klein
quickly changed the landscape for indexing
mRNA from large populations of cells. Drop-
Seq (Macosko et al. 2015) and InDrops (Klein
et al. 2015) from the McCarroll and Kirschner
laboratories at HarvardMedical School not only
demonstrated reliable indexing of mRNA from
thousands of single cells in a single run but also
made theprotocols and reagents accessible forall
researchers. Both methods were based on earlier
work fromDavidWeitz’s laboratorydemonstrat-
ing encapsulation of reagents into droplets that
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were stablewhenmixed inemulsions.Thismeth-
odmakes use of amicrofluidic device to combine
a single cell lysed in a nanoliter droplet with a
hydrogel containing primers and reagents or a
solid bead with primers synthesized on the sur-
face. The InDrops (“indexing droplets”) method

relies on lysing individual cells and capturing
mRNA in nanoliter aqueous droplets that are
mixed one by one in the microfluidic chamber
with hydrogel beads containing barcoded DNA
primers. After hybridization, the droplets are
broken and the first strand cDNA reaction pro-

Cell lysis

RT

Switch oligo

PCR primer

Poly(A) + RNA

rGrGrG
C C C

5′

cDNA amplification

Clean-up

Read 2Poly(dT)VN

PCR primer

Bulk

GEMs

UMIP5 Read 1 10X
Barcode

Poly(dT)VNUMIRead 1 10X
Barcode

Sample
index

S7

Enzymatic fragmentation,
End repair, A-tail. Ligation, sample index PCR

3′ AAAAAAAAAAAAAAAAAAAAA

3′ AAAAAAAAAAAAAAAAAAAAA

Oil

Collect RT
Pool

remove oil

Cells
enzyme

10X barcoded
gel beads

10X barcoded
cDNA

10X barcoded
cDNA

Single-cell
GEMs

Figure 1. Schematic diagrams of single-cell RNA amplification using the strand-switchingmethodology, showing
themolecular steps in generating double-stranded cDNAwith sample barcodes and uniquemolecular identifiers
(UMIs) (top); and the application of the basic method in the 10X high-throughput droplet/bead capture micro-
fluidic mode (bottom). (Figures courtesy of 10X Genomics.)
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ceeds in bulk, with indexed sequences resolved
after sequencing. In the Drop-Seq method, the
DNAprimersaresynthesizedonthebeadsurface
using a “split and pool” method so that the se-
quence on each bead has a constant PCR handle,
a unique 12-base barcode, and each primer con-
tains a UMI plus the oligo(dT) to capture the
mRNA through its poly(A) sequence and initi-
ates cDNA synthesis during the RT reaction. Af-
ter breaking the droplets, the captured mRNA is
reverse-transcribed using template switching
and the double-stranded RNA is amplified and
sequenced, thus labeling the RNA from each cell
with both a sample barcode and UMI.

In a similar fashion, the Klein group used
their newly developed method, InDrop, to study
the lineages of embryological development in
two familiar vertebrate models, the zebrafish
(Farrell et al. 2018;Wagner et al. 2018) and Xen-
opus, thewestern clawed toad (Briggs et al. 2018).
In both of these efforts, the first steps were to
create a pseudotemporal sequence of events by
profiling single cells isolated from sequential
stages of embryo development. Analyzing the
transcriptome profiles of 60,000 to 139,000 sin-
gle cells, they were able to visualize lineage trees
leading from pluripotent stem cells to mature
tissues and to track the temporal-spatial dynam-
ics of the maturing populations.

These methods have recently becomewidely
accessible through automation and commercial-
ization by BD Bioscience as the BD Rhapsody
instrument and by 10X Genomics as the Chro-
mium instrument. A schematic of the 10XChro-
mium method for single-cell RNA (scRNA)
sample barcoding and RNA amplification with
UMI is shown in Figure 1 (bottom panel).

ANALYTICAL TOOLS FOR SINGLE-CELL
TRANSCRIPTOMICS

Once single-cell transcriptome libraries have
been created, much of thework to glean relevant
information relies on the proper analysis and
interpretation of the resulting data. Early meth-
ods for analysis relied on simple application of
tools created for bulk datasets, with a few extra
quality control (QC) steps implemented to re-
move poorly amplified or degraded libraries.

Newermethods includemore sophisticated stat-
istical tools for QC and for the subsequent steps
to measure transcript abundance, smooth or
impute the expression profiles, and cluster the
cells into similar groups of related and/or novel
cell types.

The extra QC steps needed for single-cell
RNA-Seq (scRNA-Seq) must include an aware-
ness of how single-cell libraries differ from tra-
ditional bulk libraries. Populations of cells with
very similar gross cellular phenotypes might
show large differences in their transcriptomes
for biological reasons such as stochastic tran-
scription or unsynchronized cell-cycle stages.
Unfortunately, these biologically driven differ-
ences can look very similar to technical artifacts
caused by insufficient capture or shallow se-
quencing depth (Grün and van Oudenaarden
2015). Several calibration schemes have been
implemented to try to mitigate these challenges,
such as using spike-in controls to model tech-
nical noise and as a function of transcript abun-
dance (Brennecke et al. 2013; Ding et al. 2015).
The use of transcript UMIs, as discussed above,
can help mitigate the effects of PCR amplifica-
tion artifacts. Even with the use of UMIs and
spike-ins, transcript dropout events are notori-
ously difficult to remove, such that many groups
have resorted to imputing the expression profiles
of genes with anomalously low counts by inter-
polating to match the expression profiles from
similar cells (Li and Li 2018; vanDijk et al. 2018).

Following proper normalization and quality
control, the hope is that novel clusters of cells
will emerge as independent groups on a cluster
map. Clusteringmethodswork best when the set
of input genes are preselected for those most
likely to mark different cell types, for example,
those that are well expressed and also show large
differences between different cells. Selection
methods include calculating the most variable
genes (Klein et al. 2015; Macosko et al. 2015),
determining the genes that are significantly
different between known cell types (Shalek et
al. 2013), or analyzing genes that contribute
strongly to the first few principal components
(Satija et al. 2015). Once a gene list has been
selected, these are used as input for clustering
algorithms that attempt to identify both how
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many clusters are present as well as who belongs
to each cluster. Popular methods include matrix
factorization approaches, k-means clustering
approaches, as well as standard hierarchical
clustering. Choosing the “best” clustering algo-
rithm can depend on the underlying biology of
the datasets. Although many scRNA-Seq analy-
sis tools are optimized for mixed populations of
distinct cells (Kharchenko et al. 2014; Grün and
van Oudenaarden 2015; Haghverdi et al. 2015;
Satija et al. 2015; Xu and Su 2015; Zeisel et al.
2015), their methods differ strongly from those
developed to analyze time-series datasets that
assume a smooth distribution between cell
types, such as those involving development tra-
jectories (Bendall et al. 2014; Marco et al. 2014;
Trapnell et al. 2014; Setty et al. 2016). In practice,
datasets often include a mixture of cells from
distinct cell types as well as related subclusters
with significant overlap. Therefore, trial analysis
with both types of methods might be necessary
before identifying what is best for a given exper-
iment (Haghverdi et al. 2015).

To address the challenges outlined above,
Ho et al. (2018) designed the scRNA-Seq anal-
ysis and klustering evaluation (SAKE). SAKE
provides several modules that include data pre-
processing for quality control, sample cluster-
ing, t-distributed stochastic neighbor embed-
ding (t-SNE) visualization of clusters, differen-
tial expression between clusters, and functional
enrichment analysis. Comparing the perfor-
mance of several published single-cell datasets,
they showed that all of the scRNA-Seq analysis
tools perform similarly for a wide range of sam-
ple types, despite each being algorithmically in-
dependent. However, SAKE performed best for
very complex mixtures of cells with extensive
substructure. Importantly, SAKE also includes
quantitative statistics to evaluate the clustering
results, a feature missing frommost other meth-
ods (Deng et al. 2014; Ting et al. 2014; Zeisel
et al. 2015), and to evaluate its performance by
the ability to correctly identify clusters reported
in these studies. Figure 2 presents an heuristic
example of the manner in which these tech-
niques can be used to rationalize scRNA-Seq
data and to identify genes of interest by func-
tional genomics (Box 1).

t-SNE VISUALIZATION OF CLUSTERS

t-SNE (van der Maaten and Hinton 2008) has
emerged as the most widely used visualization
tool for single-cell transcriptomic studies, and
is often used to represent data clustered and nor-
malized by other methods, including Seurat,
SAKE(Hoet al. 2018), and10XGenomicsLoupe
CellRanger described (see support.10xgenomics
.com/single-cell-vdj/software/visualization/latest/
what-is-loupe-vdj-browser).

The goal of t-SNE plots is to represent the
most relevant differences among points (e.g.,
single-cell genomic profiles) in high-dimen-
sional space and represent them in a low-di-
mensional 2D or 3D scatterplot, such that, for
example, clusters on a t-SNE plot might repre-
sent different cellular types as is shown in Fig-
ure 2. t-SNE implementations for gene expres-
sion datasets begin by reducing the very high
dimensional expression matrix (m genes × n
samples) into a lower dimensional set of prin-
cipal components (PCs) that encode most of the
variance in the dataset, typically 20–30 PCs.
The t-SNE algorithm then calculates the dis-
tance between samples along each of these
PCs and attempts to nonlinearly embed the
PCs into a 2D or 3D representation that reca-
pitulates relatedness of samples. This tends to
work well when a filtered list of a few thousand
genes that carry the most relevant information
of cellular identity is used as the input to the t-
SNE algorithms. A major distinction versus
principal component analysis (PCA) is the ad-
dition of a user determined tunable parameter,
“perplexity,” into the calculations. When per-
plexity is well chosen (typically 5–50, but well
below the number of points) and the algorithm
is allowed to iterate until saturation (typically
∼1000), t-SNE maps can be excellent tools for
visualization of single-cell datasets. In addition,
it has been demonstrated that the results from t-
SNE may vary widely from different runs that
do not saturate the perplexity of the embedded
dimensions, such that cluster membership may
not be reproducible from run to run (Watten-
berg et al. 2016). A brief explanation of t-SNE
for new users is presented elsewhere (see distill
.pub/2016/misread-tsne).
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Figure 2. Examples of a single-cell RNA (scRNA) sequence analysis to detect the molecular basis of drug
resistance in melanoma. (A) Scheme for generating drug resistant derivatives. (B) Testing resistant cells.
(C) Using signature melanoma signature genes to cluster bulk RNA-Seq data from cell lines. (D) t-SNE map
was used to display the expression profiles of 400 single cells isolated using the Fluidigm C-1 instrument.
(E) Heat map showing expression of highly expressed and highly variable genes. (F) t-SNE plot of scRNA-
Seq of 6545 cells performed on a 10X Chromium instrument. (G) Direct comparison of Fluidigm cells and
Chromium cells showing similar differences between resistant and parental but distinct patterns for the two
methods. (H ) Differential expression analysis identifies genes significantly altered in the resistant cell line
derivative (for details, see Ho et al. 2018).
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HIGH-VOLUME SINGLE-CELL
TRANSCRIPTOME STUDIES, THE
“MEGACELL” EXPERIMENTS

Perhaps the most revolutionary application of
scRNA-Seq has occurred only recently in the
fields of developmental and organism biology,
and of course, cancer. Using various forms of
droplet capture and bead-based amplification, it
is now possible to obtain transcriptome profiles
from hundreds of thousands to millions of cells
from embryos, whole organs, or tumors in a few

experimental runs. The sheer amount and com-
plexity of the data has spurred the development
of new analytic methods that can create multi-
dimensional arrays for mRNA profiles to reflect
lineage relationships among cell types, fromplu-
ripotent stem cells to fully differentiated somatic
cells. Of course, in dissociating the cells for high-
volume sequencing, the original tissue structure
is lost. The elegance of these “megacell” experi-
ments is in using orthogonal methods to relate
the transcriptomic profiles to cell type and cell
location in the original specimen.

BOX 1. ISOLATION AND AMPLIFICATION OF SINGLE CELLS

The range of methods that have been used to capture single cells for genomic analysis is as varied and
nuanced as the range of experiments being pursued, but roughly they separate into two general
classes according to whether the target cells are abundant, as from disaggregated tissue or cell
lines, or rare, as circulating tumor cells (CTCs) in blood. Cells in suspension can be easily be separated
by characteristic markers and dispensed into reaction tubes or multiwell plates by fluorescence-
activated, cell-sorting FACS (Navin 2011; Baslan et al. 2015; Satija et al. 2015; Alexander et al.
2018) or distributed randomly by flowing across microwells (Yuan and Sims 2016; Gierahn et al.
2017). As of this writing, however, the high-throughput and reproducibility of microfluidic bead-
capture methods for automated capture and amplification of single cells are rapidly becoming the
standard for abundant cells in suspension.

By disaggregating cells from tissue, the spatial relationships are lost. In cases in which the exact
source of cells is important, methods for coupling laser capture microscopy (LCM) with single-cell
sequencing library preparation are available to capture cells from tissue preparations on slides
(Nichterwitz et al. 2016). Another elegant approach for transcriptome mapping live neurons in situ
was developed by Eberwine et al. (1992), in which a combined chemical and fluorescent probe
injected into a cell can be photoactivated to “tag”mRNA molecules with biotin for later purification
using streptavidin beads and sequenced (Lovatt et al. 2014).

Isolating very rare cells, as exemplified by CTCs from blood or bone marrow aspirates (typically
one in a million nucleated cells) is much more difficult, and a wide array of commercial and non-
commercial methods have been developed for this purpose. Among the commercially available
methods, the CellSearch (Silicon Biosystems) system is a clinical application using magnetic
capture of cells using ferrofluid nanoparticles conjugated to EpCAM antibodies to capture epithelial
cells. Captured cell populations can be removed and individual cells isolated by micromanipulation
or by using a coupled DEP Array system (Silicon Biosystems) to electrophoretically maneuver cells
into reaction tubes for amplification. Other forms of automated fluorescence capture include the
CellCelector (Automated Lab Systems, Gmbh) and theCyteFinder/Accucyte system (Rarecyte), which
combines automated identification, cell picking, and amplification of blood samples. Alternatives to
EpCAM as an enrichment method include separation by size using the ISET system (RareCells) and
shape (Biofluidica).

Yet another nonselective method that has yielded an operational clinical assay for the androgen
receptor variant AR-V7 (Scher et al. 2017) is the high-definition, single-cell analysis assay (HD-SCA)
(Marrinucci et al. 2009) offered commercially by Epic Sciences (La Jolla, CA). This method arrays all
nucleated cells on glass slides and uses bothmorphology and fluorescencemarkers to identify cells of
interest. Cells can later be picked for amplification by micromanipulation and DNA copy number
analysis (Dago et al. 2014; Greene et al. 2016).

Single-Cell Applications of Next-Generation Sequencing
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EMBRYOLOGY AND DEVELOPMENT:
FLATWORMS, TOADS, FISH, AND REPTILES

In 2018, two groups synchronously published
cell type atlases of the freshwater planarian (flat-
worm), Schmidtea mediterranea (Fincher et al.
2018; Plass et al. 2018). Planarians are multicell
organisms with an organized body structure and
distributed pluripotent stem cells. They are well
known for their ability to regenerate complete
animals from isolated parts and as such they are
functionally immortal. The goal of these studies
was to create an atlas of transcriptomic cell types
keyed back to the known cell and tissue types in
the animal and shed light on the lineage map of
cells during development and regeneration. Us-
ing Drop-Seq to create libraries of tens of thou-
sands of single cells followed by NGS, both
groups obtained highly detailed and virtually
complete transcriptome atlases of all the known
cell types in the animal. Both groups used the
Seurat R toolkit for single-cell genomics (Satija
et al. 2015; Butler et al. 2018) to cluster the
mRNA expression data and the clustered data
was visualization with t-SNE (van der Maaten
2014). They then used a combination of known
marker genes and in situ hybridization (ISH) on
whole animals to classify the cell types cluster by
cluster, identifying more than 20 known cell
types and discovering several previously un-
known cell types. This process also created a
lineage map of planarian development.

Three simultaneous papers, also in 2018,
took the atlas and lineage concept a step further
into spatiotemporal analysis of vertebrate devel-
opment by scRNA-Seq of tens of thousands of
cells from staged embryos of zebrafish (Farrell et
al. 2018; Wagner et al. 2018) and Xenopus (Wag-
ner et al. 2018). Clustering the transcriptomic
profiles by principle components over the embry-
onic time-points defines progressively branching
tree-like maps of development in which the ul-
timate fates (e.g., organs, brain regions) can be
identified by well-known markers. This work
not only identifies previously unknown cell
types and nodal branch points in the develop-
ment process, but also provides a framework for
comparative analysis of developmental steps
across species and evolutionary time.

A final example reveals new insights into
both neurobiology, evolutionary biology, and
development. The origins and lineages of struc-
tures in the brain across the evolutionary spec-
trum has been an area of intense study for
many decades. Tosches et al. (2018) built a
transcriptomic atlas of cells comprising the ba-
sic brain component (pallium) where develop-
ment varies widely from reptiles to birds to
mammals. The transcriptomic profiles coupled
with ISH enabled tracking the lineages with
high resolution and present new opportunities
for interpreting structure in terms of synaptic
organization.

IMMUNE REPERTOIRE PROFILING

Application of single-cell sequencing for analyz-
ing the transcriptomics of immune cells started
with acquiring cells of known immune types
through use of flow cytometry and antibodies
against known markers. Innovations such as
mass cytometry (CyTOF) increased the number
of proteins that could be simultaneously used to
study cells and made it possible to unravel more
cell types quantitatively and qualitatively. How-
ever, the field has now progressed to unbiased
analysis in which cells are probed without prior
knowledge of their type. MARS-Seq (Jaitin et al.
2014) is one of the early papers that demonstrat-
ed that scRNA-Seq is a great tool for identifica-
tion of different populations in heterogeneous
tissues. Working with the spleen exposed to li-
popolysaccharide (LPS), theywere able to distin-
guish different types of immune cells, including
B cells, macrophages, natural killer (NK) cells,
dendritic cells, andwere able to study the expres-
sion changes in untreated and treated samples.
Soon, a plethora of papers leveraging scRNA-
Seq and its ease tomergewith other technologies
highlighted how scRNA-Seq can be used to pro-
file immune cells in cancer. Immune cell profil-
ing has been extensively reviewed in Rosati et al.
(2017), Seah et al. (2018), andReece et al. (2016).
T- and B-cell repertoire profiling, despite these
advances, presents a challenge because of their
inherent diversity. VDJ recombinations can re-
sult inmillions of differentT-cell receptor (TCR)
chains that are generated in response to specific
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stimuli. Similarly, B cells also have variable re-
gions, essential for building an adaptive im-
munity repertoire. This diversity can be studied
using either gDNA or cDNA. There are several
commercial options available from multiple
companies such as BGI, Adaptive Biotechnolo-
gies, and iRepertoire, which probe different
chains and regions from both starting materials.
Gierahn et al. (2017) designed a Seq-Well device
that is particularly useful for low numbers of
cells. On the other hand, droplet-based sequenc-
ing methods have made it possible to analyze
thousands of these cells at the same time. Azizi
et al. (2018), using InDrop, have demonstrated
the strength of paired gene expression and TCR
sequencing and McDaniel et al. (2016) have
reached the multimillion cell level in ultrahigh-
throughput VDJ sequencing. Both BD Biosci-
ences and 10X Genomics have several commer-
cially available kits for either one of scRNA-Seq
and TCR sequencing or both for use on the BD
Rhapsody and the 10X Genomics Chromium
instruments. These are great alternatives to set-
ting up complex droplet microfluidic systems
and also offer data analysis solutions. In these
kits, the beads have the partial Read1, UMI, and
10XGenomics Barcodewith the template switch
oligo. This allows for full-length transcription of
the mRNA and incorporates the barcode and
UMI on the 50 end, which is key for the dual
application. The cDNA is amplified and divided
for both applications. One half is fragmented
and processed to prepare libraries for transcrip-
tomics analysis and the other for T/B-cell reper-
toire investigation. Primers designed against the
outer and inner constant region of variable
chains are used for targeted PCR enrichment.
These enriched fragments of different lengths
are processed once again to make sequencing
libraries. The libraries from both applications
are also sequenced differently. The gene expres-
sion libraries are sequenced 26 cycles in read 1 to
get the cell and UMI identities and 98 bases in
read 2 to get mRNA insert sequence. The VDJ
repertoire libraries are sequenced 150 bases in
both reads to get the all the pertinent sequence
data. The sequencing results can be easily ana-
lyzed in the software suite designed by 10X Ge-
nomics, which allows for clustering of cells,

check enrichment of T/B cell clonotypes, and
characterize the repertoire, making it an inge-
nious tool for immune profiling.

NOVEL APPLICATIONS OF MICROFLUIDIC
DROPLET-BASED SEQUENCING

The power of genomics and transcriptomics at
the single-cell level has spawned a startling num-
ber of variations on the single-cell sequencing
paradigm with a dizzying array of cleverly acro-
nymic sobriquets, including REAP-Seq, SLaAP-
Seq, ATAC-Seq, G&T-Seq, Hi-C, and others.
The available menu as of early 2017 was re-
viewed carefully by Tsoucas and Yuan (2017).
As with the original scDNA and scRNA meth-
ods, some of these started out as “one cell per
tube” preparations that were adapted to Drop-
Seq, but most recent methods are developed di-
rectly for automated bead emulsion or micro-
well-based formats facilities (see Box 2).

REAP-Seq (RNA expression and protein se-
quencing) (Peterson et al. 2017) and CITE-Seq
(Stoeckius et al. 2017), both introduced in 2017,
are of some particular note among combination
methods because of their novel use of the direct
DNA polymerase activity of reverse transcrip-
tase for identifyingantibodies orothermolecules
that bind to specific cells and the broad applica-
bility of the methods. The rationale for REAP-
Seq andCITE-Seq is thatmRNAexpressiondoes
not necessarily predict protein expression, there-
foremeasuring both simultaneously can provide
a new level of information about cell states and
subtypes. The mRNA transcriptomic compo-
nent of REAP-Seq follows the general rules
for droplet-based mRNA transcriptomics, but
the protein component is assessed by conjugat-
ing specific oligonucleotide tags to antibodies
against cell-surface proteins. The antibody tag
is constructed with a poly(dA) sequence, fol-
lowed by a sequence specific to each antibody
and a PCR handle. After antibody binding to a
cellmixture, the individual cells are encapsulated
within a Drop-Seq bead using a microfluidic ap-
paratus. After cell lysis, both mRNA and anti-
body tags hybridize to the bead primers (con-
taining the cell barcode and UMI) and are
extended by reverse transcriptase. After emul-

Single-Cell Applications of Next-Generation Sequencing
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sion breakage, the tags and cDNA are amplified
and sequenced.

In the initial REAP-Seq publication, 82 an-
tibodies were used to characterize more than
7000 immunocytes by principal component
analysis and t-SNE and identified a small subset
of cells with the population of naïve CD8+ T
cells. This outlier group was present in all do-
nors indicating the presence a new population

enriched in an intermediate step in megakaryo-
cyte development. As of this writing, a variation
on these methods using DNA aptamers (Apt-
Seq) rather than antibodies (Delley et al. 2018)
has also been published.

Yet, another variation exploiting the power
of droplet-based single-cell methods in dissect-
ing cellular circuitry is Perturb-Seq (Adamson
et al. 2016; Dixit et al. 2016). In this method,

BOX 2. THE 10X CHROMIUM SYSTEM

The 10X Chromium system, built on their proprietary GemCode technology, has pushed the single-
cell sequencing field into a new era. The high-throughput function, in which thousands of cells are
barcoded in little time combined with the ability to be used for multiple applications, makes it a
valuable asset in various areas of research.

Most of the droplet-based methods require the coencapsulation of a single cell and a barcoded
bead/hydrogel microsphere. This is a double Poisson distribution loading resulting in low capture
efficiency (7% InDrop, 12.8% Drop-Seq). However, 10X Chromium controller ensures that all drop-
lets formed have a gel bead making the process a single Poisson distribution, greatly increasing the
capture efficiency to 50%. This encapsulation is the core of different single-cell applications of 10X
Chromium and is performed on a chip specific to each application. Samples, reagents, and partition-
ing oil are loaded onto the chip in designatedwells. Gel beads in emulsion (GEMs), that is, the sample
and barcoded gel bead in a single droplet, are collected from the recovery well and processed in PCR
tubes to generate libraries for sequencing.

10X single-cell gene expression solution (scRNA-Seq) chip has the capacity to process up to eight
samples at a time. The cell suspension volume and concentration are critical for obtaining the desired
cell recovery and keeping the number of doublets low. The barcoded gel beads have a partial Illumina
read 1, 16 nucleotide 10X barcode, 10 nucleotide unique molecular identifiers (UMIs), and 30
nucleotide poly(dT) primer sequence, in that order. This combination gives 10X technology a pool
of∼750,000 barcodes to separately index a large number of cells. A single such bead and one cell are
encapsulated in a GEM with the reagents for reverse transcription (RT). These GEMs are transferred
from chip into PCR strip in which the cells are lysed and mRNA is reverse transcribed into full-length
complementary DNA (cDNA) (∼7000–9000 bp) with a cell barcode and UMI. Next, GEMs are
dissolved to release cDNA, which is cleaned, size selected using SPRI beads, and quantified.
Paired end sequencing libraries are constructed by adding Illumina compatible adapters to cDNA,
which is fragmented to 300–700 bp. Also, these fragments are all from the 30 end of cDNA because
this is necessary to identify the origin of cDNA from the sample pool.

Single-cell copy number variation (CNV) uses the same principles but has cell bead, gel bead
(CBGB) droplets instead of GEMs. The chip for this application is designed to handle up to four
samples in one run. Cells are first encapsulated with cell matrix to generate cell beads (CBs). In
CBs, the cell is lysed and nuclear proteins are degraded although genomic DNA remains trapped
in the cell bead. These CBs undergo a further encapsulation step with barcoded gel beads and
reagents to generate CBGBs. CBGBs are then harvested from the chip for amplification of DNA to
generate barcoded sequencing libraries. All DNA from a single cell shares a common barcode. This
enables separation of sequencing reads and assigning them to individual cells to generate CNVs and
this processing of data can be performed easily using software tools from 10X. In addition to these
single-cell applications, 10X Chromium can also be used for other applications such as single-cell
immune profiling, genome, and exome sequencing. The barcodes on gel beads are different fromone
another and specific to each application.
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the cells of interest are transduced with lentiviral
vectors carrying multiple CRISPR-based per-
turbations and then subjected to an experimen-
tal stimulation. In the Broad example, CRISPR
perturbations targeted transcription factors im-
plicated in dendritic cell responses. After im-
mune stimulation, the cells were processed by
droplet-based transcriptomic analysis. The re-
sulting sequences reveal both the specific per-
turbation(s) and the overall transcriptomic pro-
file for each cell, yielding complex cause and
effect networks that go far beyond the informa-
tion gained by perturbing one target gene at
a time.

SINGLE-CELL EPIGENETICS

Single-cell epigenetic analysis has been a long-
standing goal that is now being approached, al-
beit with some difficulty. The basic issue is that
epigenetic events cannot be directly read out by
amplification with DNA polymerase, and the
most commonmethod for detecting CpGmeth-
ylation, bisulfite treatment to convert unmethy-
latedC residues toU, is very harsh and requires a
large pool of starting DNA to be reliable. Several
methods, including Hi-C (Nagano et al. 2013),
pBAT (Miura et al. 2012), and scRRBS (single-
cell reduced representation bisulfite sequencing)
(Guo et al. 2013), have been published but their
initial impact has been limited because of limit-
ed coverage of the methylated C residues in any
single cell. In addition, because of the technical
sensitivity of bisulfite treatment, these methods
may be difficult to introduce into high-through-
put droplet-based or microwell-based pipelines.

A different epigenetic methodology based
on detecting open versus closed chromatin rath-
er than CpG methylation relies on marking the
chromatin regions accessible to a sequence con-
serving modifier. One such approach, ATAC-
Seq (Buenrostro et al. 2015), makes use of the
Tn5 transposase tagmentation process, often
used to generate fragments for bulk NGS librar-
ies, coupled with droplet-based amplification to
identify genomic regions preferentially accessi-
ble to the transposase enzyme. The reported
correspondence between the single-cell profiles
of open chromatin near gene promoters and the

data from bulk populations is remarkable. Very
quickly, single-cell epigenetics has joined the
realm of multi-omics, with a plethora of meth-
ods and acronymic names. Recently, 10X Geno-
mics has come up with their own solution to
probe the regulatory landscape of chromatin in
hundreds to thousands of cells in a single sam-
ple. The recently launched Chromium Single
Cell ATAC Solution allows use in bulk and
in nuclei transposition reaction before using a
microfluidic chip to partition nuclei into nano-
liter-scale gel bead in emulsion (GEM) samples.
A pool of ∼750,000 10X Genomics barcodes
(GemCode technology) allows separately and
uniquely indexing the transposed DNA of each
individual cell. Libraries are generated and se-
quenced, and 10X Genomics barcodes are used
to associate individual reads back to the in-
dividual partitions, and thereby, to each individ-
ual cell.

Single-cell epigenome data has limited
utility without a functional readout, preferably
in the form of transcription data. Combining
single-cell transcriptomics with methylation
data (scM&T-Seq) was demonstrated by Anger-
mueller et al. (2016), using a modification of an
earlier method for combined genomics and
transcriptomics called scG&T-Seq (Macaulay
et al. 2015). Hou et al. (2016) extended the mul-
tiplicity to combine genomic copy number pro-
filing and bisulfite sequencing for detecting
methylation with transcriptomics by gently lys-
ing cells in individual tubes and separating the
soluble RNA from the nucleus by centrifuga-
tion. Processing the nuclear DNA for bisulfite
sequencing and amplification yields both geno-
mic copy number variations (CNVs) data and
methylationmapping data, although the RNA is
prepared for a Smart-Seq-based transcriptomic
analysis (Hou et al. 2016). Combining genomic
analysis with methylation and a transcriptional
readout will be extremely important for a new
level of genomic exploration in cancer. Further
advances in multi-omics undoubtedly await,
likely involving some of the novel methods de-
scribed above, and exemplified most recently by
a report from Clark et al. (2018) on the combi-
nation of chromatin accessibility, DNA methyl-
ation, and transcription as scNMT-Seq.

Single-Cell Applications of Next-Generation Sequencing
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APPLICATION IN NEUROBIOLOGY

Characterizing the cellular components of the
complex ecosystem that is the brain is a prime
application for single-cell genomic analysis,
starting with the detection of specific gene ex-
pression in live rat neurons using antisense RNA
ISH (Eberwine et al. 1992), to transcriptome in
vivo analysis ([TIVA]; Lovatt et al. 2014) selec-
tion of RNA molecules for NGS, and now high-
throughput RNA transcriptomics to both clas-
sify all the neuroanatomical cell types and trace
the lineages back to stem cells (Dulken et al.
2017; also see Kester and van Oudenaarden
2018 for a detailed review on the general topic
of transcriptomics and lineage).

The obvious applicability of scRNA-Seq
to brain mapping and neuroanatomy has led
to a literal “tsunami” of publications involving
scRNA-Seq and there are far too many to ad-
dress individually in this review. Furthermore,
public interest in understanding the brain has
led to the establishment and funding, by both
the National Institutes of Health (NIH) and pri-
vate foundations, of a large collection of brain
transcriptome databases. Descriptions of the
various databases have been collected in “The
Brain Transcriptome Database: A User’s Guide”
by Kenneth Kwan and colleagues (Keil et al.
2018). This publication also provides details
concerning access to the databases and an in-
sightful review of the field.

As reviewed by Poulin et al. (2016), cellular
identity is determined by the sum of all gene
expression. Therefore, cellular classification must
include expression profiling of all genes at the
single-cell level. Further, to be maximally use-
ful, the results must be rationalized within
the framework of existing cell taxonomy and
neural structure. Perhaps the most important
privately funded effort to satisfy those needs
and to combine scRNA-Seq data with neuro-
anatomy is focused on expanding the Allen
Brain Atlas, an effort begun in 2001 and ded-
icated to characterize the cellular diversity of
the brain at the molecular level (see brain-
map.org). Efforts to complete the taxonomy
of both human and mouse adult and develop-
ing brains are numerous, and more than 50

published and ongoing studies are listed on the
Broad Institute Single Cell Portal along with
instructions for accessing published data (see
portals.broadinstitute.org/single_cell). As de-
scribed in the Poulin et al. (2016) review, the
resulting molecular atlas will not only identify
cell types with high resolution, it will empower
efforts aimed at mapping connectivity between
specific neuronal cell types, determining the
neuronal types contributing to behavior, and
understanding selective degradation of neurons
in age and disease.

The neuroscience literature also yields
another example of the flexibility of the high-
throughput scRNA-Seq methodology. High-
throughput “megacell” experiments require dis-
aggregation of tissue to obtain individual cells or
nuclei and it is, of course, desirable that the cells
be as close to the native state as possible. It has
been a long-standing issue that artificial alter-
ations in cell state would occur as a result of the
process of disrupting living tissue and masking
or contaminating the native transcription pro-
file. In an attempt to reliably identify the expres-
sion of immediate-early genes (IEGs) after neu-
ron activation in single cells without having
them artificially activated by the disaggregation
process at the single-cell level, Wu et al. (2017)
adapted an old trick for analyzing transcription
to high-throughput scRNA-Seq by freezing
transcription with actinomycin-D before cell
isolation (Keil et al. 2018). Dubbed Act-Seq,
the method permitted identification of an array
of IEGs and activation states in the amygdala
and opens the way for linking stimulation with
transcriptional state in a manner not previously
possible.

MAPPING AND ANALYSIS FOR CNV
PROFILING IN CANCER

Cancer is a genetic disease caused by mutations
and rearrangements of the genome. It is also a
disease of cell state. Alterations in the genome
lead to alterations in the transcriptome and al-
terations in cell phenotype to a diseased state.
Therefore, both transcriptomic and genomic in-
formation is required to fully characterize can-
cer at the single-cell level.
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SINGLE-CELL DNA PROFILING OF TUMORS

Perhaps, the most extensive use of whole-ge-
nome single-cell DNA sequencing in cancer
has been in studying tumor heterogeneity and
using copy number profiling to identify subclo-
nal complexity and tumor lineage. In this spe-
cialized application, the density of reads across
the genome directly reflects CNVs resulting
from gross genomic rearrangements and chro-
mosome sorting mistakes during mitosis that
lead to aberrant gains and losses that diverge
from the diploid condition of the normal ge-
nome of somatic cells. Genomic rearrangements
are a common feature of both hematologic and
solid tumors, but the mitotic errors and sequen-
tial errors in recombination repair that lead to
aberrant gains and losses of whole chromosome
arms and the focal amplification of oncogenes
are a hallmark of nearly all solid tumor tissue.
We note that copy number variants are often
called CNAs in cancerous tissue, but we will
use the more common term CNV here.

Although most sequencing methods are
measured in read depth, or x-fold coverage of
the genome, for the majority of single-cell
CNV profiling the actual genome coverage re-
quired is actually minimal. Generally, there is no
attempt to cover every base-pair as in deep se-
quencing of bulk tissue. There are limits to the
coverage that can be obtained from just two sets
of chromosomes using the amplification meth-
ods available, although studies with near whole-
genome coverage have been reported using rep-
licating premitotic cells (Wang et al. 2014), and
improved high-coverage, single-cell amplifica-
tion have been reported (Chen et al. 2017). A
single cell contains up to thousands of copies
of some mRNAmolecules, but the nucleus con-
tains only two copies (four strands) of each
DNA molecule and the overall target sequence
is 100 times larger, so collecting and amplifying
a complete genome’s worth of sequence infor-
mation from single-cell DNA is much more dif-
ficult. However, as with the transcriptome im-
portant information can be gained from using
NGS “reads” as “tags” for individual sequences.
In the case of transcriptomics, the tags are used
to count individual mRNAmolecules to create a

transcriptomic profile of the cell. For the ge-
nome, the most frequent approach is to use in-
dividual reads as tags representing segments of
the genome. The density of tags across the ge-
nome is a very accurate measure of the relative
copy number of each segment of the genome.
This method was used by Navin (2011) to de-
scribe spatiotemporal evolution of a single tu-
mor and by Alexander et al. (2018) to follow
tumor evolution in prostate cancer biopsies.
The segments are defined informatically by the
user and the numberof reads required to define a
copy number profile is very low compared with
base-pair level sequencing. Using sample bar-
codes, severalhundrednuclei canbeprofiledona
single Illumina sequencing lane using ∼250,000
mapped reads per cell (Baslan et al. 2015). De-
tails of themethod and informatics analysis may
be found in Baslan et al. (2012) and Kendall and
Krasnitz (2014). Examples of typical results are
shown in Figure 3.

A key aspect of cancer cell copy number pro-
filing as shown in Figure 3 is the establishment of
direct genetic lineage using the complexity of
CNV gains and losses as “genomic barcoding.”
Even as the complexity of the CNV landscape
increases, the specific breakpoints of the CNVs
remain stable and can be used as if they were
novel SNPs to follow the history of the tumor
or cell population. The Navin laboratory has
used this method extensively in resolving tumor
evolution and response to chemotherapy in
breast cancer (Wang et al. 2014; Gao et al.
2016; Casasent et al. 2018). It should be noted
that applications listed abovewere performed on
purified nuclei or cells disaggregated from fresh
or fresh-frozen tissue. Most pathology speci-
mens, especially valuable archived specimens
from clinical trials are preserved as FFPE tissue.
With that in mind, Martelotto et al. (2017) de-
veloped a method for isolating and sequencing
single nuclei from FFPE sections.

Once again, 10X Genomics has developed
the Chromium single-cell CNV solution to de-
termine genomic heterogeneity and map clonal
evolution by profiling hundreds to thousands of
cells in a single sample. This method is signifi-
cantly more laborious than others developed by
10X Genomics. The method requires encapsu-
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lation of individual nuclei (nuclei suspensions
are prepared beforehand) in a hydrogelmatrix to
generate cell beads on a microfluidic chip. The
cell bead is treated to lyse the encapsulated cell
and denature the gDNA. Then, a second micro-
fluidic chip is used to separately index the gDNA
of each individual cell in away akin to other 10X
Genomics protocols. The caveat with this meth-
od is that the low recovery rate of∼15%–17% (of
∼3000 inputted, only ∼500 are recovered). Data
resolution is relatively good (∼1–2 Mb) and can
be improved by increasing the amount of se-
quencing/cell and, consequently, costs.

ESTIMATING COPY NUMBER FROM
TRANSCRIPTOME DATA

In single-cell transcriptomic cancer studies us-
ing disaggregated cells, it is of great importance
to distinguish actual malignant cells from tu-
mor-associated stromal cells and other sur-
rounding normal tissue cells in the sample. In
the absence of specific protein markers, it is be-
coming common practice to use expression data
from a population of single cells as a basis for
inferring clonal genomic CNVs that identify the
malignant aneuploid cells. Several methods for
parallel genomic and transcriptomic analysis on
single cells have been published (Dey et al. 2015;
Macaulay et al. 2015); however, they require
manual separation of DNA and RNA and are
not amenable to high-throughput methods. In a
study to identify a developmental hierarchy in
dendroglioma, Tirosh et al. (2016a) used this
method to separate the malignant populations
from three tumors and then further analyzed
their transcriptomic profiles to show that differ-
ent development states existed within each CNV
defined subclone, indicating a developmental
hierarchy in the cancer independent of the ge-
nome. They used a sliding window of 100 genes
across the genome to compare genome-wide ex-
pression levels among the cells and were able to
define two populations; in one, the expression
patternsmatched knownCNVs from bulk DNA
sequencing. These were designated the malig-
nant cells for the rest of the study. Although
this method is based on inference and does
not provide an accurate copy number profile

of each cell, it can work well when enough sup-
porting evidence (e.g., bulk CNV analysis) is
available. A similar, but distinct, approach was
successfully used by Müller et al. (2016) in
studying glioblastoma multiforme (GBM) (Ti-
rosh et al. 2016a), and software programs are
available online at the Broad Institute website
(see github.com/broadinstitute/inferCNV).

SINGLE-CELL TRANSCRIPTION STUDIES
IN CANCER

Numerous groups have applied various scRNA-
Seqmethods to assess heterogeneity, tumor evo-
lution, and cell-of-origin studies in tumors with
relatively low throughput methods (Patel et al.
2014; Tirosh et al. 2016b; Li et al. 2017). Using
high-throughputDrop-Seqmethods, thisfield is
being revolutionized. Targeted sequencing of
thousands of single cells has enabled the identi-
fication of pathogenic mutations in patients in
remission revealing complex clonal evolution in
acute myeloid leukemia (AML) (Pellegrino et
al. 2018). Using whole-transcriptome methods,
other groups have cataloged the array of stromal
cells in the lung cancer microenvironment
(Lambrechts et al. 2018) and identified the cell
of origin of kidney cancer (Young et al. 2018).

One study in particular demonstrates the
power of multiplex single-cell analysis going be-
yond sequencing. A recent report from the lab-
oratories of Derrick Lin, Aviv Regev, and Brad
Bernstein, used single-cell transcription analy-
sis, coupled with histology and cell biology to
revise the subtypes of head and neck squamous
cell cancer (HNSCC) and reveal the presence
and location and function of novel tumor cell
phenotypes related to metastasis in HNSCC
(Puram et al. 2017).

Traditional molecular analyses of disaggre-
gated tumor specimens are complicated by the
variety of nonmalignant stromal and immuno-
cytes that along with the tumor cells comprise
the tumor tissue. However, rather than describ-
ing the average genomic signal from the bulk
analysis of a homogenized tumor, the investiga-
tors performed scRNA sequencing on more
than 6000 individual cells from 18 head and
neck cancer patients to explore the diversity of
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cells within the all three populations, literally
creating a molecular and cellular atlas of the
disease. A schematic of the method taken from
their paper is shown in Figure 4. Key to this
single-cell study was the use of complementary
genomic techniques, including inferred copy
number profiling from scRNA-Seq data and
expression phenotyping, with the aim of distin-
guishing individual malignant cells with aneu-
ploid genomes from the copy number normal
(euploid) but phenotypically distinct stromal
populations, including cancer-associated fibro-
blasts and immunocytes. Once identified, anal-
ysis of the expression profiles by t-SNE revealed
that the malignant (aneuploid) cells fell into
separate clusters according to cancer subtype,
whereas the stromal cells from all cases clustered
together around identifiable cell phenotypes.
Furthermore, the malignant cells defined three
subtypes, rather than the four thatwere clinically
recognized. The fourth category being identical
to one of the others, but with an overabundance
of fibroblasts that made it appear as a distinct

subtype in bulk cell analysis. The project further
became a tour de force when they used the RNA
expression profiles to infer differing protein ex-
pression patterns among the tumor cells, and in
fact defined a new epithelial mesenchymal tran-
sition (EMT)-like phenotype, which they call p
(partial) EMT, which was inversely expressed
relative to the epithelial profile of the tumor
body. They then returned to the tumor itself
by using antibodies made to those proteins to
determine the positions of each cell type on
mounted sections of primary tissue, showing
that the pEMT cells created a layer on the grow-
ing front on the tumor facing the stroma and a
concentration of cancer-associated fibroblasts
(CAFs). This result lead to an examination of
the ligands and receptors expressed at the tu-
mor–stroma boundary, which revealed a cor-
responding overexpression of receptor–ligand
pairs, indicating the activity of a pEMT induc-
tion pathway between the CAFs and boundary
tumor cells. Thus, the study took disaggregated
single-cell transcriptomics frommolecular phe-

Patients with
oral cavity HNSCC

Single-cell
RNA-Seq

Immuno-
histochemistry

t-SNE

T cells

Epithelial
malignant

cells

pEMT
malignant

cells

CAFs
Fibroblasts

In situ

5 matching
LNs

18 primary
tumors

Figure 4 . Schematic of multiplex analysis of head and neck tumors. HNSCC, head and neck squamous cell
cancer; LNs, lymph nodes; pEMT, partial epithelial mesenchymal transition; CAFs, cancer-associated fibroblasts.
(From Puram et al. 2017; reprinted, with permission, from Elsevier © 2017.)
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notyping, to histopathology to functional geno-
mics and clinical subtyping. Although this study
on a small number of HNSCC tumors is not
definitive, it demonstrates the power that can
be realized using single-cell omics coupled
with functional genomics and classical clinical
pathology.

SINGLE-CELL SEQUENCING ON RARE
AND ULTRA-RARE CELLS

As a polar opposite to the “megacell” experi-
ments described above is the profiling of ultra-
rare cells from liquid (blood) biopsies, in which
information from a very few cells could provide
near real-time information on the progress of
cancer treatment. The killing force in cancer is
metastasis, occurring often years after the pri-
mary tumor is discovered and excised. Yet, can-
cer treatment is most often based on biomarkers
in the primary tumor alone. Biopsies of meta-
static sites are infrequent, and necessarily in-
complete because it is impossible to find,
let alone biopsy, all of the metastatic sites in a
progressing patient. One avenue to the real-time
state of the tumor is the blood, either through
circulating cell-free DNA or RNA, or through
individual cells shed into the blood from the
various metastatic sites. The key is identifying
and then isolating cells that in most cases repre-
sent perhaps 10–100 nucleated cells in a stan-
dard blood draw containing up to 30 million
nucleated white blood cells (WBCs).

Capture and detailed analysis of circulating
tumor cells (CTCs) has been a goal for two de-
cades, and although at least 35 different technol-
ogies are in development, only one method,
CellSearch, has gained Food and Drug Admin-
istration (FDA) approval for identifying cancer
that is starting to progress. Single-cell DNA se-
quencing has presented an opportunity to ad-
vance the information gained from liquid biop-
sies and our understanding of metastasis itself.
CellSearch is a well-developed method that cap-
tures putative tumor cells on the basis of the
epithelial marker EpCam, but has been mainly
used for simply enumerating EpCam-positive
cells. Other parameters that have been used for
capture include cell size or plasticity among oth-

ers. Nonselective methods in which putative
cells are identified and characterized in situ by
immunofluorescent antibody tags have shown
promise for both enumeration and molecular
analysis at the single-cell level. In particular,
the high-density, single-cell analysis or “no cell
left behind assay” originally developed by Kuhn
and colleagues (Marrinucci et al. 2009) and
commercially developed by Epic Sciences (Wer-
ner et al. 2015; Greene et al. 2016) plates a full
blood draw on slides and then identifies non-
WBC with immunofluorohistochemistry. This
method has been used to identify clonal rela-
tionships based onCNVprofiles, follow changes
in cell populations during therapy in castrate-
resistant prostate cancer (Dago et al. 2014; Ma-
lihi et al. 2018), confirm vascular mimicry by
tumor cells in small-cell lung cancer (William-
son et al. 2016), and confirm the identity of cir-
culating cells inmelanoma (Ruiz et al. 2015). An
example of the utility of this method is shown in
Figure 5, in which Malihi and colleagues used
single-cell CNV profiling to track the lineage of
circulating cells in a metastatic prostate cancer
patient from the primary lesion to the bonemar-
row (Malihi et al. 2018). As with the prostate
cancer biopsies shown in Figure 3, CNV profil-
ing is key to the identification of actual tumor
cells from genomically normal cells in the anal-
ysis of mixed populations, and is especially crit-
ical in identifying ultra-rare (one in a million)
tumor cells from liquid biopsies. An automated
version of this slide-based method based on the
same principle has been developed by RareCyte
(Seattle, WA).

CONCLUSIONS

As we experienced in the 2000s with NextGen
Sequencing itself, automation has democratized
single-cell sequencing. Single-cell sequencing in
all of its variations has passed from the develop-
ment stage in individual laboratories to a point
where it can be applied by every laboratory and
across every area of biology. Technical methods
for single-cell genomic copy number and tran-
scriptome profiling as well as targeted sequenc-
ing for mutation analysis are highly evolved and
data can be presented in accepted formats. It has
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indeed progressed from the technology of the
future to the technology of the present, and still
more novel approaches are continually being
realized and combined to create more insightful
observations. The versatility in the cell-isolation
methods has removed many previous barriers.
We can analyze large populations, small popu-
lations, and even ultra-rare cells, without limits.
Cell “atlases” of the type created by “megacell”
projects described above will take advantage of
all of these novel methods and will have an im-

portant role in understanding multicellular bi-
ology at increasingly detailed levels. A particu-
larly important example is the effort sponsored
by the Chan-Zuckerberg Initiative to create a
complete human cell atlas based on multiplex
molecular single-cell profiling of every cell type
in the body (see www.chanzuckerberg.com/
human-cell-atlas).

Such projects will undoubtedly lead to new
insights into cell–cell and cell–organism dy-
namics in all life forms and may well be the
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Figure 5. Tumor cell identification and clonal lineage by single-cell copy number variants (CNVs) profiling.
Heat map and phylogenic tree of CNVs across the entire population of cells from metastatic circulation (MTC),
bone marrow biopsy (BMTP), and primary resection (PTP). Sample type and clones are identified using color
key. Three clones were identified: clone 1 consisting of prostate cells with hallmark alterations, clone 2 with few
copy number alterations (CNAs), and clone 3 showing lineage relationship of bone marrow, primary, and
circulation. Key genes such as MYC, NCOA2, PTEN, and TP53 have been highlighted by chromosome location
across clone and sample type. (From Malihi et al. 2018; reprinted courtesy of the American Association for
Cancer Research.)
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keys to profound new understanding of the hu-
man condition and indeed life itself in both
health and disease. We await these develop-
ments with great anticipation.
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