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SUMMARY

Active tactile perception combines directed motion with sensory signals to generate mental 

representations of objects in space. Competing models exist for how mice use these signals to 

determine the precise location of objects along their face. We tested six of these models using 

behavioral manipulations and statistical learning in head-fixed mice. Trained mice used a whisker 

to locate a pole in a continuous range of locations along the anteroposterior axis. Mice 

discriminated locations to ≤0.5 mm (<2°) resolution. Their motor program was noisy, adaptive to 

touch, and directed to the rewarded range. This exploration produced several sets of sensorimotor 

features that could discriminate location. Integration of two features, touch count and whisking 

midpoint at touch, was the simplest model that explained behavior best. These results show how 

mice locate objects at hyperacute resolution using a learned motor strategy and minimal set of 

mentally accessible sensorimotor features.
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In Brief

Competing models exist for how mice use sensory and motor signals to determine the precise 

location of objects along their face with their whiskers. Cheung et al. test six of these models in 

head-fixed mice. The integration of two features, touch count and whisking midpoint at touch, is 

the simplest model that explains behavior best.

INTRODUCTION

Locating objects through the sense of touch is an essential behavior across animal species. In 

humans and rodents, tactile object localization is an active process that combines directed 

sensor motion with mechanosensory signals. Rodents sweep their large whiskers back and 

forth and use the resulting tactile sensations to locate [1] and orient to objects [2] and guide 

navigation [3]. Identifying the motor strategies deployed and the resulting sensorimotor 

features that underlie object location perception during these behaviors is an essential step to 

understanding algorithms and neural circuit implementations of active sensory perception [4, 

5].

Head-fixed preparations are advantageous for investigating object localization due to their 

exquisite level of experimental control, including the ability to monitor motion with high 

precision [6, 7]. Rodents can determine the location of objects by active exploration with 

whiskers [8], even when head fixed [9]. High-speed videography [10] and physical models 

[11-14] can quantify motion and forces that drive whisker input with submillisecond 
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resolution during behavior [15, 16]. This input is transformed and integrated in a 

topographic arrangement of columns in primary somatosensory cortex (S1) that have a one-

to-one mapping to individual whiskers. Examination of the activity patterns within and 

across these cortical columns has revealed how sensorimotor features of tactile exploration 

are represented and processed in the brain [17-21].

Whiskers project from an array of follicles arranged in columns and rows across the face. 

From posterior to anterior positions within a row, each large whisker (i.e., macrovibrissa) 

launches from its follicle at progressively greater azimuthal angles, with about 20° of 

angular difference between neighboring whiskers. Thus, discriminating object locations 

separated by ≥20° along the anteroposterior (i.e., horizontal) axis is trivial using multiple 

whiskers and a labeled-line code based on touch presence [22]. However, head-fixed mice 

with a full whisker field can do better than this and discriminate object location to at least 6° 

of resolution [9]. Achieving this hyperacute localization resolution is not trivial. Head-fixed 

mice can also discriminate well-separated anteroposterior locations (~15°) with a single 

whisker [23] using motor strategies that establish large differences in touch likelihood [24] 

or direction [25] between locations. The perceptual limits, motor strategies, and 

sensorimotor features that drive hyperacute object location perception remain unclear.

Several plausible models have been proposed for how rodents achieve location hyperacuity 

along the anteroposterior axis (Figure 1A), all of which have gaps in experimental support. 

These models differ in the sensorimotor features gathered and used to construct location 

perception. In a roll angle model (Figure 1B), rodents sense how much the whisker has 

rotated on its long axis at time of touch through a differing pattern of mechanoreceptor 

activation [22, 26]. In a whisk latency model (Figure 1C), rodents measure the time of touch 

referenced to the time from maximum retraction. More anterior objects take longer to reach 

[27]. Similarly, in a cue latency model (Figure 1C), mice measure the time from cue-

triggered whisking onset to the time of touch across one or more whisks. In a touch count 

model (Figure 1D), rodents direct their whisking to a location range, so objects more central 

to this range generate more touches and consequently more spikes in S1. Location is read 

out by spike count in S1 with more central objects represented by more spikes [24, 28]. In a 

radial distance model (Figure 1E), rodents measure the distance between follicle and object 

by comparing the angle of the normal force relative to the angle of the follicle. This varies 

depending on where along the whisker touch occurs due to increasing whisker flexibility 

with distance [29-32]. In a Hilbert recomposition model (Figure 1F), rodents integrate three 

Hilbert components of whisker motion (amplitude, midpoint, and phase) to compute the 

azimuthal angle of the whisker at time of touch [33]. Amplitude and midpoint originate from 

primary motor cortex (M1) as efference copy [34], and phase is encoded in a reafferent 

sensory signal from the whisker follicle [35-37]. Despite this proliferation of models, no 

consensus has emerged for which approach, or mix thereof, is actually used.

Here, we use behavioral manipulations and statistical learning to identify the simplest model 

that best explains localization hyperacuity with a single whisker. We quantify the perceptual 

limits of anteroposterior localization and determine what motor strategies are deployed, how 

they influence sensorimotor information gathered, and how this information influences 

location perception. We identify a two-stage classifier that combines touch count with 
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whisking midpoint at touch as the simplest, best performing model. This provides insight 

into where and how active location computations are performed by neural circuits and a 

foundation from which natural object localization can be better understood.

RESULTS

Task Design and Animal Performance

To investigate the sensorimotor basis of object location perception, we used a variation of a 

go/no-go whisker-guided localization task in head-fixed mice [9] that requires precise 

knowledge of object location to achieve maximum performance. We trained water-restricted 

head-fixed mice (n = 15) to discriminate the location of a smooth vertical pole randomly 

presented in contiguous ranges of go (0–5 mm) and no-go (5–10 mm) positions along the 

anteroposterior axis of the animal, about 8 mm lateral from the whisker pad (Figure 2A). 

Mice were trimmed to a single whisker at the start of training, maintained until task mastery. 

We traced whisker motion, touch, and deflection from an overhead view at 1,000 fps (Figure 

2B).

For each trial, the pole was presented for at least 2 s in the go range (50% trials) or no-go 

range (50% trials). The pole moved vertically into and out of the field with the onset of 

motion associated with a 250 ms sound of a pneumatic valve, which cued mice to task 

structure. Mice voluntarily explored the pole and their surroundings with their whisker (i.e., 

whisking) during the sampling period (0.75 s duration) and reported their perception of 

object location by licking or not licking during the answer period (1.25 s duration; Figure 

2C). The response choice led to different trial outcomes based on pole location (Figure 2D). 

On hit trials, mice were rewarded with a water droplet (4–8 μL), and on false alarm trials, 

mice were punished with a 2 s timeout. Correct rejection and miss trials were neither 

rewarded nor punished. Licking extended the duration of the pole presentation.

In all analyses, we only consider sensorimotor behavior (e.g., whisks and touches) that 

contributed to a decision by including only data before the decision lick. The decision lick is 

defined as the first lick in the answer period or, on no-lick trials, the median of the decision 

lick times. This cutoff excludes post-decision motor activity that is driven by rhythmic 

licking on hit and false alarm trials. The reaction time between the first touch in a trial and 

the decision lick was 736 ± 240 ms (741 ± 249 ms on hit trials and 690 ± 243 ms on false 

alarm trials; Figure 2E). Whisker motion resulted in a change of azimuthal angle (i.e., angle) 

of the whisker base relative to the mediolateral axis of the mouse. Across all mice, this angle 

at onset of touch (i.e., touch angle) spanned 49.4° ± 8.8° from extreme posterior to anterior 

pole positions. Touch angle for the go and no-go range varied across sessions and was 

affected by the radial distance of the pole presentation axis and translation of the follicle 

during whisking. Across all touched pole positions, the follicle translated by 1.5 ± 0.3 mm 

total (1.3 ± 0.4 mm in the anteroposterior axis and 0.7 ± 0.1 mm in the mediolateral axis). 

Mice performed 485 ± 179 trials per session. It took 8,194 ± 1,816 trials (Figure 2F; 

excluding one outlier of 19,923 trials) to reach expert performance, defined as >75% 

accuracy over 200 trials.
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To determine the spatial precision of localization, we examined trials near the go/no-go 

discrimination boundary. On average, there was a significant change in lick probability 

between go and no-go trials when the pole was presented ≤1 mm (3.8° ± 0.5° mean angle 

difference; 29% ± 11% lick difference; p = 4.4e–5; two-tailed t test) or ≤0.5 mm (1.9° ± 0.4° 

mean angle difference; 18% ± 20% lick difference; p = 0.03; two-tailed t test) from the 

boundary (Figures 2G and 2H). This indicates mice can discriminate above chance with 

submillimeter precision along the anteroposterior axis with a single whisker. The mean 

number of pre-decision touches per trial (i.e., touch count) decreased from most posterior 

(6.8 ± 2.6) to anterior bin (1.1 ± 0.9; Figure 2G).

Behavior Is Consistent with Closed-Loop Integration of Sensorimotor Cues for Hyperacute 
Object Localization

Active exploration during object localization was intentional, adaptive, directed, and noisy. 

Mice initiated whisking in a stereotyped manner throughout a session, regardless of trial 

outcome (Figure 3A). Mice held their whiskers steady outside of the period of pole 

availability and began vigorously whisking to the sound of pole-in with short latency (60 

± 16 ms; Figure 3B). This shows that active exploration for object localization is an 

intentional process triggered by a cue.

Mice made 2.5 ± 1.2 whisks before the first touch on trials with touch and 1.9 ± 1.2 whisks 

before the median time of those first touches on trials without touch. There was no 

significant difference in the two distributions (Kld 0.04; Figure 3C), which shows that failure 

to touch on a trial is not due to a failure to initiate a motor program. However, mice made 

many more whisks (6.5 ± 3.2) after the first touch on trials with touch, compared to the 

number of whisks (2.5 ± 2.1; Kld 1.12; Figure 3C) after the median time of those first 

touches on trials without touch. This demonstrates that mice deploy an exploration strategy 

that is adaptive to sensory feedback, consistent with a closed-loop model of tactile 

perception [21, 38, 39].

We quantified the motor strategy and its precision by the angle of maximum protraction for 

each whisk cycle. The first two whisks on go and no-go trials were targeted to the 

discrimination boundary (Figure 3D). On these whisks, the pole was generally still 

ascending and not yet in reach. From the third whisk, the go and no-go trials diverged. On 

go trials, the peak protraction settled around 10° posterior to the decision boundary, due to 

physical restriction by the pole (Figure 3D). On no-go trials, average peak protraction was 

maintained at the discrimination boundary. If this average motor strategy was executed with 

no variance, it would result in at least one touch for go positions and zero touches for no-go 

positions on each trial, essentially transforming our precise discrimination task into an active 

detection task. However, the whisk-to-whisk variance was large (10.9° mean SD), 

suggesting a noisy execution of the motor plan. This variance resulted in mice touching the 

pole on 94.6% ± 1.5% SEM go trials and 54.9% ± 6.1% SEM no-go trials (Figure 3E). A 

logistic classifier based on the presence or absence of touch discriminated go from no-go 

locations with 70.5% ± 9.5% accuracy, but mice significantly outperformed this, correctly 

discriminating 81.2% ± 5.7% of trials (Figure 3F). Furthermore, mice licked on 94.7% 
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± 3.6% of go trials with at least one touch (i.e., touch trials) but only licked on 43.6% 

± 13.2% of no-go touch trials (Figure 3G).

These data show that mice direct their exploration to produce a difference in probability of 

touch between go and no-go positions. If they fail to touch, they rarely lick, similar to a 

detection task. However, if they do touch, they still are able to discriminate the object 

location. Thus, they must be interpreting additional sensorimotor features of touch to locate 

the object.

Sensorimotor Features at Touch that Discriminate Location and Choice

What features of touch could mice possibly use to discriminate location? We examined how 

six sensorimotor features associated with proposed hyperacute localization models (Figure 

1) were distributed at the instant of touch. The torsional roll angle, quantified by the 

apparent whisker curvature 1 ms prior to touch [22], was greater for no-go versus go 

locations (Figure 4A). More posterior locations had shorter average time from whisk onset 

to touch in each whisk cycle (Figure 4B). Similarly, go positions were associated with 

shorter latency from cue to first touch, because mice tended to need fewer whisks before 

hitting the pole (Figure 4C). There were more touches on go trials than no-go trials (Figure 

4D). The radial distance from follicle to pole was greater for no-go trials (Figure 4E). The 

azimuthal angle at touch was more protracted on no-go trials (Figure 4F).

Using supervised learning, we built a logistic classifier to identify trial type using each of the 

above features on touch trials. By definition, touch presence had no discrimination power on 

these trials and anteroposterior pole location discriminated perfectly. We quantify 

performance using Matthew’s correlation coefficient (MCC) to account for the unbalanced 

distribution of touch trials between go and no-go positions in the training set (Figures S1A 

and S1B; STAR Methods). Unsurprisingly, radial distance (MCC 0.98 ± 0.02; accuracy 

98.9% ± 0.1%) and azimuthal angle at touch (MCC 0.93 ± 0.04; accuracy 97.0% ± 1.4%) 

were the best discriminators, because they had the least overlap and were dependent on the 

task geometry rather than behavior. Roll angle (MCC 0.23 ± 0.26; accuracy 71.3% ± 9.4%) 

and whisk latency (MCC 0.25 ± 0.19; accuracy 71.4% ± 5.9%) were the worst predictors. 

Cue latency (MCC 0.33 ± 0.15; accuracy 73.1% ± 6.9%) and touch count (MCC 0.43 

± 0.07; accuracy 77.4% ± 2.1%) were significantly better than chance (Figures 4G and S1C).

What features of touch do mice actually use to discriminate location? We built a logistic 

classifier to predict choice using each of the above features. Two models based on actual 

pole position or all other features combined were reference standards. Touch count, radial 

distance, and azimuthal angle classifiers predicted choice best, significantly better than 

shuffled models (Figure 4H). Due to the multicollinearity of features, a combined classifier 

with mean normalized features and L1 regularization allowed us to determine which features 

were most predictive in each mouse (STAR Methods). In the combined classifier, the 

average feature weight of touch count, distance, and angle were significantly different from 

zero (Figure S2). This supports that touch count and correlates of radial distance or 

azimuthal angle at touch, but not roll angle or timing based cues, are used to refine choice on 

touch trials.
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Identifying the Simplest Model that Predicts Choice Best

Having narrowed down potential sensorimotor drivers of choice, we sought to find the 

simplest set of features that predicted choice best. Touch count was the only choice-

predictive feature under active control of the mouse (distance and touch angle are primarily 

dependent on geometry in this task). Therefore, we reasoned that mice may exclusively use 

touch count to drive choice.

If touch count was the only feature that drove choice, then mice should lick at equal 

probability on go and no-go trials that have identical numbers of touches. This was not the 

case. Reminiscent of the results on touch presence (Figure 3G), mice were significantly 

more likely to lick on go than on no-go trials with equal touch counts (Figure 5A). 

Surprisingly, greater stimulus sampling (i.e., more touches) decreased the difference in lick 

probability between trials with equal touches. Because touch count varies with pole position 

(Figure 2G), we isolated the effect of touch count on choice by comparing the difference 

between actual and average number of touch counts for that pole position. Trials with a 

higher number of touches than usual for that position had higher lick probability (Figure 

5B), particularly on no-go trials. This shows that touch count has a direct effect on choice, 

but additional features also must be used.

The two remaining choice-predictive features, radial distance and touch angle, are tightly 

correlated in this anteroposterior localization task. To disentangle their influence on choice, 

we introduced a task variation that decomposed the discrimination to solely depend on 

distance or angle. To establish the baseline context, five expert mice were first presented 120 

trials of the anteroposterior task. Then they were presented with randomly interleaved 

distance and angle trials (Figure 6A). Distance trials matched the contiguous distribution of 

radial distance while holding azimuthal angle fixed at the value of the anteroposterior 

discrimination boundary. Angle trials were vice versa (Figure 6B). Psychometric 

performance curves for angle trials were indistinguishable from anteroposterior trials in all 

mice (n = 5 mice, 15 sessions), and performance fell to chance levels on distance trials, with 

a small bias toward licking (Figures 6C and 6D). This demonstrates that mice do not use 

distance to the pole to achieve anteroposterior location hyperacuity. Instead, they use 

features that co-vary with the azimuthal position of the pole.

This leaves the perplexing question of how azimuthal angle at touch can influence choice, 

because the azimuthal angle of the whisker is not directly encoded by primary sensory 

afferents [40-45]. An influential model has been proposed for how the brain could compute 

this angle from mentally accessible time-varying features. Whisker angle motion can be 

losslessly transformed into three components, amplitude, midpoint, and phase, using the 

Hilbert transform (Figure 7A). These components vary in their characteristic timescales, 

with phase changing completely during a single whisk cycle and midpoint remaining most 

similar across multiple whisk cycles (Figure 7B). Neural correlates of amplitude and 

midpoint are found in areas of M1 that project to S1 [34], and correlates of phase are found 

in ascending projections from the follicle to S1 [35]. The Hilbert recomposition model 

supposes that these components of time-varying angle are combined with touch time to 

produce a precise, unambiguous representation of azimuthal angle at touch [33] (Figure 1F). 

We tested whether the Hilbert recomposition model is consistent with behavior by training a 
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choice classifier on the average of each of these three components for all pre-decision 

touches in each trial (Figure 7C). To avoid difficulties associated with fitting a periodic 

variable, phase, with a logistic function, we only considered trials that had protraction 

touches (89.9% ± 5.9% SD of the touch trials). This Hilbert recomposition classifier 

performed similarly (MCC 0.51 ± 0.17) to angle at touch (MCC 0.48 ± 0.19; Figure 7D). 

Thus, this model, although complex, is a plausible means of computing whisker angle to 

construct location perception.

To assess whether a simpler model could explain choice equally well on trials with touch, 

we trained choice classifiers on only one Hilbert component at a time. On average, these 

classifiers performed similarly to each other and worse than angle or touch count alone 

(Figure 7E). Which classifier performed best varied between mice. To determine whether 

touch count provided redundant or complementary information about choice, we tested the 

combination of each component with touch count on touch trials (Figure 7F). Adding touch 

count improved each classifier’s performance. Midpoint + touch count achieved the highest 

average performance (MCC 0.59 ± 0.04 SEM). This was indistinguishable from the 

performance of angle + touch count (MCC 0.61 ± 0.05 SEM). Angle + touch count 

performance remained significantly better than phase or amplitude + touch count (MCC 0.48 

± 0.07 SEM; MCC 0.48 ± 0.07 SEM). Thus, touch count provides complementary location 

information which, when combined with one Hilbert component, whisking midpoint at 

touch, predicts mouse choice as well as models that compute or use the exact touch angle.

Although these classifiers predicted choice well for trials with protraction touch, some trials 

have no touches or exclusively retraction touches. To fully assess classifier performance, we 

applied the same classifiers to all trials. Because sensorimotor features at touch are 

undefined on trials without touch, the classifiers were implemented in two steps. For trials 

without touch, choice was predicted using touch count alone, which invariably predicted “no 

lick” for those trials. For trials with touch, either angle or midpoint at touch was combined 

with touch count to predict choice (Figures 7G and S3). These two classifiers predicted 

choice equally well (midpoint + count MCC 0.71 ± 0.03 SEM, accuracy 87.2% ± 3.9%; 

angle + count 0.72 ± 0.04 SEM, accuracy 87.5% ± 4.7%) with little difference in 

performance between mice (MCC r2 = 0.87; Figure 7H) and essentially the same 

performance as the protraction touch only trials. Amplitude or phase with touch count also 

performed reasonably well, though significantly worse than angle with touch count (Figure 

S4).

To determine whether midpoint and touch count provide sufficient information about pole 

location to account for mouse performance, we trained trial type classifiers on either 

midpoint + touch count or angle + touch count and compared their predictions to 

psychometric performance curves of mice. We found that both classifiers provide sufficient 

information about pole position, but the midpoint + touch count classifier better fit the 

psychometric curves in 14/15 mice (Figures 7I and S5). Furthermore, the discrimination 

resolution of midpoint + touch count was a better match to mouse performance than angle + 

touch count (Figure 7J). Together, these data best support a simple model of active tactile 

perception, where mice deploy targeted, noisy, adaptive exploration and use their sense of 
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touch count combined with whisking midpoint to locate objects with submillimeter 

precision.

DISCUSSION

We assessed how well the sensorimotor features associated with six models of active tactile 

perception (Figure 1) could discriminate object position and predict choice during head-

fixed anteroposterior object localization. Mice achieved hyperacuity with a single whisker, 

discriminating locations separated by ≤0.5 mm and <2° (Figure 2). The directed and 

adaptive search strategy used by mice (Figure 3) made the number and characteristics of 

touches to be predictive of object location and choice (Figure 4). Mice discriminated 

location on trials with equal numbers of touches, suggesting location perception was refined 

by other sensorimotor features when touch occurred (Figure 5). By independently 

manipulating the distance or angle of the presented object during localization, we found that 

azimuthal angle, but not radial distance, also drove choice (Figure 6). A model for 

computing azimuthal angle from three Hilbert components of whisker motion predicted 

choice as well as angle on touch trials (Figure 7). When combined with touch count, a single 

Hilbert component, midpoint, predicted choice as well as azimuthal angle with touch count, 

showing that computing azimuthal angle is not necessary (Figure 7). This supports a model 

where neural correlates of touch count and a single motor feature, midpoint, are integrated to 

produce hyperacute perception of object location along the anteroposterior axis of the mouse 

face.

We note several limitations of our work. We relied on a single overhead view of whisker 

curvature to estimate torsional roll angle, which is subject to greater measurement noise than 

a 3D reconstruction from multiple camera angles. We also did not account for inertial 

bending during whisking. Despite these caveats, a prior study showed a tight linear 

relationship between whisker curvature in an overhead projection and roll angle in this range 

of protraction angles in rats [22], which supports that curvature is a good enough proxy for 

roll angle here.

Although azimuthal angle at touch nearly perfectly predicted pole location, the best 

classifiers only achieved 87% performance in predicting choice. This remaining 

unpredictable variability may reflect internal changes in motivation, attention, satiety, or 

frustration that were uncontrolled. Pupillometry and facial expression tracking may allow a 

more precise accounting for the role of internal state changes on choice in future work. 

Alternatively, reward or choice history may influence choice during these types of tasks. A 

recent study of whisker-based object localization found that choice history had a significant 

influence on error trials [25]. However, we were unable to find an influence of choice history 

on choice in our current study. This may be because we restricted analysis to expert mice in 

a contiguous block of 200 trials in the middle of each session, where motor engagement and 

performance was high and stable.

The insights this work provides about how mice naturally explore the world are necessarily 

limited by our experimental constraints: the mice are trimmed to a single whisker, head-

fixed, and highly trained within a stable environmental context. In freely moving mice, the 
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initial strikes of an object along a side of the face are likely to be with a single whisker due 

to a number of factors. Many whiskers are often missing from cohabitating mice, due to 

trimming associated with social hierarchy in C57/BL6 mice [46]. The progressive length of 

whiskers across the pad [13] prevents short whiskers from reaching distant objects. Rodents 

use tactile feedback to adapt their whisking pattern, minimizing impingement during object 

contact [47]. Initial whisker contacts are followed by a shift to asymmetric whisking 

attempting to bring more macrovibrissae into contact and an orienting head movement to 

explore more carefully with their microvibrissae [48]. Head-fixed tasks are thus relevant to 

the localization computations that guide contact-induced whisking asymmetry and head 

orientation to objects.

Classifiers based on roll angle, whisk latency, or cue latency each performed relatively 

poorly at discriminating location and predicting choice. Although mice roll their whiskers 

through cycles of protraction and retraction, our results suggest the variance in this rotation 

is too great to be useful for precise location discrimination. Experimental support of whisk 

latency models are primarily based on electrically evoked artificial whisking in anesthetized 

rats [27], which has minimal trial-to-trial variance in whisker motion. Our results suggest 

that it is difficult to use timing of touch referenced to a point of the whisk cycle for precise 

location discrimination during active whisking due to the variability in amplitude, midpoint, 

and velocity across whisking cycles [41]. Likewise, cue latency requires less whisking 

variance to be useful for precise location discrimination. On the other hand, classifiers based 

directly on angle or angle computed from Hilbert components discriminated location and 

predicted choice well. Adding touch count as a feature improved choice prediction, showing 

its importance for driving choice. Because choice classifiers trained on midpoint + touch 

count equaled the performance of angle + touch count (Figures 7F-7H), we conclude that 

mental computation of the exact angle of the whisker at the exact time of touch [33] is 

unnecessary to precisely locate objects.

A pure touch count model is supported by prior work showing that the number optogenetic 

stimulation pulses applied to layer 4 (L4) of S1, but not their millisecond precise timing, 

influences illusory perception of object location [24]. Yet we show that mice discriminate 

location when identical numbers of touches occur (Figure 5). In the same prior study, 

stimulation needed to be coincident with whisking to influence perception. This suggests 

that touch signals may be referenced to a slowly changing motor variable to refine location 

perception during active exploration. The use of midpoint, which is auto-correlated across 

whisk cycles (Figure 7B), may provide mice with a way to average out the variability in 

whisking during bouts of exploration. Because trial type classifiers trained on midpoint + 

touch count matched the discrimination performance of mice better than angle + touch count 

(Figures 7I and 7J), we conclude that whisking midpoint is more likely to be used than angle 

to precisely locate objects.

Perhaps our most surprising observation was that mice had a higher false alarm rate when 

they made more touches (Figure 5). This was contrary to our expectation that those trials 

would either show higher performance, because pole position would be sampled more times, 

or at least the same performance, as in a decision-making model where evidence is 

accumulated until a confidence boundary is reached. Rats performing active texture 
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discrimination also vary the number of touches prior to a decision, but their performance is 

independent of touch count [39], consistent with bounded evidence accumulation seen in 

tactile [21], auditory [49], and visual discrimination [50] tasks.

A key difference between active object localization and these tasks explains our surprising 

observation. In texture discrimination, mice must touch the object to gather evidence. In 

active localization, both the presence and absence of touch provide evidence of object 

location. Directed exploration makes the act of touching, not just the properties of the touch, 

a location informative feature. This distinction also explains why mice increase their motor 

engagement if touch occurs (Figure 3C). More whisking causes more touches, but noisy, 

directed whisking (Figure 3D) makes the chance of touching less for no-go positions than 

for go positions. Thus, touch count per se informs the mouse’s choice, and the closed-loop 

motor response to touch tends to increase the separation in distributions of this decision-

informative feature between go and no-go trials.

Our finding that midpoint and touch count together best predict choice in this task has 

implications for the origin and site of integration of sensorimotor signals that drive location 

perception. Whisking midpoint is correlated to neural activity in M1 [34], reflects the 

relative activity of intrinsic and extrinsic muscles in the whisker pad [51], and changes over 

timescales of hundreds of milliseconds (Figure 7B). M1 axons strongly excite the tuft and 

proximal dendrites of thick-tufted L5B neurons in S1 [52]. Calcium responses in the axons 

of these projection neurons [53] and the dendritic tuft of L5B-recipient neurons in S1 

correlate to object location [54]. Activity of these L5B neurons forms a distributed 

representation of object location [55]. Meanwhile, touch count is tightly correlated to the 

spike count in L4 excitatory neurons of the primary whisker barrel in S1 [28]. These L4 S1 

neurons strongly excite L5B proximal dendrites of S1 [56]. Combining this evidence with 

our new behavioral results suggests L5B neurons in S1 as a prime candidate for where 

midpoint and touch count signals are integrated to drive perception of object location.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Samuel Andrew Hires (shires@usc.edu). This study did not 

generate new unique reagents or mouse lines.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fifteen VGAT/ChR2/EYFP mice (JAX B6.Cg-Tg), both male and female, of at least 3 

months of age were used for the following experiments. A complete description of head-

plate installation, water restriction procedure and behavioral apparatus has been described in 

previous work [7, 9]. Following head-plate installation, mice were housed with littermates 

and singly housed if fighting occurred. Mice were provided food ad libitum. 7 days prior to 

training, mice were water restricted to 1mL of water per day. During this period, a daily 

health and weight assessment was completed to ensure mice were healthy. All procedures 

were approved under USC IACUC protocols 20169 and 20731.
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METHOD DETAILS

Object localization task—Mice were trained in a whisker-based go/no-go localization 

task. Using a single whisker (C2), mice learned to identify a smooth 0.6mm diameter pole 

7-12mm lateral from the whisker pad as either a posterior rewarded location (go) or anterior 

unrewarded location (no-go). Pole positions were presented across a continuous range of 

10mm along the anteroposterior axis with a go/nogo discrimination boundary at the center of 

this range. The pole was positioned by a pair of stepper linear actuators with 99 nm 

resolution, 25 μm accuracy and < 5μm repeatability (Zaber NA11B30-T4). To avoid 

potential pole motion duration clues to position, between trials the motors first moved to the 

discrimination boundary then to the presentation location. To avoid potential ultrasonic clues 

associated with stepper motor function, the pole location was randomly jittered 0-127 

microsteps (0-25 μm) on each trial. The pole was vertically lifted into reach by a pneumatic 

linear slider (Festo) which also provided a sound cue on pole presentation onset. The 

position of this slider and the valve, and thus the location and amplitude of this cue sound, is 

fixed for all trials, confirmed by audio recording with an Earthworks M50 ultrasonic 

microphone. Mice made their decisions by licking or withholding licking to an electrical 

port during stimulus presentation. 4 trial outcomes were available: hit and miss or false 

alarm and correct rejection by licking or not licking on a go or nogo trial. On hit trials, a 

water reward (4-8μL) was dispensed. The total amount of water dispensed of the session was 

limited only by the number of trials the mice chose to perform. False alarm trials led to a 2 s 

timeout that reset upon each lick. Correct rejection and miss trials were unpunished.

Each trial was 4000 ms or longer. The pole was triggered to rise at 500 ms from trial start 

and came into touch range within ~200 ms. The sampling period was 0-750 ms after pole 

onset. Licking within this time block had no effect. The answer period was 1250-2000 ms. 

Licking within this time block led to Hit or False Alarm outcome. Licking in this time also 

prolonged the period of pole presentation to provide the opportunity for additional sensory 

feedback to help learning. The extended presentation time does not affect any analyses since 

only pre-lick touches are considered in this work. The inter-trial interval was 2000 ms.

To quantify learning rates all sessions leading up to the expert session were used, excluding 

one to two rig acclimation sessions. Expert threshold was set at > 75% accuracy smoothing 

across 200 trials.

Training—15 mice were trained in the object localization task. In the first sessions, the 

farthest go position was set ~30 degrees anterior of the resting whisker position. Optimal 

learning was achieved by first setting a gap between go and nogo ranges and slowly reducing 

that gap as performance improved. The initial gap set between go and no-go ranges were 

4mm. Once mice reached > 75% accuracy over 200 trials, this gap was reduced in 1mm 

increments till the go and nogo ranges were contiguous, with their shared border defined as 

the discrimination boundary.

Five expert mice in the object localization task were tested on the angle/distance task. 

Angles and distances were calculated from the estimated follicle position at the 

discrimination boundary to the full range of pole positions in the object localization task. 

During the angle/distance task, 120 trials of the object localization task were first presented 
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to establish baseline performance levels. Next, angle trials or distance trials were presented 

at 50% chance levels for the remainder of the session.

Whisker motion acquisition and analysis—Whisker behavior was captured for 4 s 

spanning the period prior to pole onset to response window. Video frames were acquired at 

1000 fps using Basler acA200-340kmNIR camera and Edmund Optics 0.18× ½” GoldTL 

Telecentric Lens (Model # 52-258) under 940 nm illumination on Streampix 6 software. 

Whisker position was tracked using Janelia Whisker Tracker (https://www.janelia.org/open-

science/whisk-whisker-tracking [10]). A mask was traced from the edge of the fur and 

whisker follicle was estimated 1mm back from the mask. The whisker’s azimuthal angle was 

quantified at the point of intersection of the mask and whisker trace, to avoid tracking noise 

in the fur. Whisking midpoint, amplitude and phase was decomposed from this angle using 

the Hilbert transform. Hilbert decompositions were calculated from band-pass filtered (6-60 

Hz, Butterworth) whisker angle time-series. Whisking amplitude is defined as the magnitude 

of the Hilbert transform of the filtered whisker angle. Whisking midpoint is defined as the 

filtered (6-60 Hz) difference between the raw whisker angle time-series and the band-pass 

filtered signal. Whisking phase is defined as the phase angles of the Hilbert transform of the 

filtered whisker angle time-series. Whisker curvature was measured at 3-5mm out from the 

mask.

The precise millisecond of touch was determined through custom MATLAB software 

(https://github.com/hireslab/HLab_Whiskers) using distance to pole and change in whisker 

curvature, followed by manual curation of images of uncertain whisker and pole 

intersections.

QUANTIFICATION AND STATISTICAL ANALYSIS

In all analyses, we considered only whisker motion and touch before the decision lick, the 

first lick of the answer period. On trials without licking, the median decision lick time on 

lick trials was used as the decision point. Licks before the answer period were ignored. To 

minimize the effects of change internal states of motivation, attention, satiety or frustration, 

the set of the 200 highest performing contiguous trials in a single session per mouse was 

used for all analyses. Trials (0-15) where the animal was grooming or the video dropped 1 or 

more frames were removed from this set of 200.

Adaptive whisking analyses—Pre-touch windows were defined as the time from 

stimulus onset to first touch. Post-touch windows were set as time of first touch to the first 

lick. If no first touch or first lick was present, the median first touch time or median first lick 

time of the session was used. A whisk is defined as the number of whisking peaks with a 

whisking amplitude of 5 degrees or greater. The difference in distributions is quantified 

using Kullback-Leibler divergence from using KLDiv from Mathworks (https://

www.mathworks.com/matlabcentral/fileexchange/20688-kullback-leibler-divergence).

Trial type and choice prediction—Retraction and protraction touches occur with ~pi 

radian offset in phase, which makes phase difficult to express as a linear function. Therefore 
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we excluded retraction touches and trials with exclusively retraction touches for the Hilbert 

transform decoders (Figures 7C-7F). For all other analysis retraction touches were included.

• The list of features used to predict trial type (go/no-go) or choice (lick/no-lick) 

and their description are:

• motor position (the horizontal motor position in microsteps for each trial)

• touch presence (the presence or absence of a touch pre-decision)

• touch counts (the number of touches pre-decision)

• roll angle (the mean whisker curvature 1 ms prior to touch for each trial)

• whisk latency (the mean time in milliseconds from the nearest whisking trough 

prior to touch for each trial)

• cue latency (the time of first touch from cue onset in milliseconds)

• radial distance (the mean radial distance from follicle at touch to pole position 

for each trial)

• angle (the mean whisker angle at touch for each trial)

• phase (the mean phase of the whisker at touch for each trial)

• amplitude (the mean amplitude of the whisker at touch for each trial)

• midpoint (the mean midpoint of the whisker at touch for each trial)

• combined (curvature, cue latency, whisk latency, touch counts, radial distance 

and angle for each trial)

• hilbert decomposition (phase, amplitude, and midpoint)

• For features using multiple predictors, each feature was mean normalized using 

the following equation:

x′ = x − mean(x)
max(x) − min(x)

The logistic classifier was adapted from Andrew Ng’s Machine Learning Course (https://

www.coursera.org/learn/machine-learning) and modified to include lasso regularization.

Sigmoid link function:

hθ(x) = g(θ⊺x)

where g(z) = 1
1 + e−z

Cost function:
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Cost(hθ(x), y) =
−log(hθ(x))if y = 1

−log(1 − hθ(x))if y = 0

J(θ) = 1
m ∑

i = 1

m
[ − yi log(hθ(xi)) − (1 − yi)log(1 − hθ(xi))] + Regularization

L1 lasso regularization equation:

λ ∗ ∑
i = 1

N
∣ θi ∣

Where λ is the regularization parameter, θ are the partial regression coefficients of the 

model and N is the number of parameters.

Gradient (partial derivative of the cost function):

∂J(θ)
∂θ j

= 1
m ∑

i = 1

m
(hθ(xi) − yi)x j

(i)

The cost function was minimized through the fmincg MATLAB function. The inputs of this 

function are the cost and the gradient:

J(θ) and . ∂J(θ)
∂θ j

Classifier model evaluation—For each set of features the optimal regularization 

parameter λ, classifier performance and partial regression coefficients θ were evaluated 

across 20 iterations with 5-fold stratified cross-validation. Optimal λ was chosen as the 

mean λ value between the λ that yielded the lowest error and the first λ that yielded error 

one SEM away from the minimum.

Classifier performance was calculated using Matthew’s correlation coefficient (MCC). MCC 

provides an unbiased metric of model performance in light of imbalanced datasets [57]. 

MCC values range from 1 to −1 with 1 meaning perfect model performance, 0 meaning 

chance, and −1 meaning all predictions are errors. The MCC was calculated using the 

following equation:

MCC = TP ∗ FN − FP ∗ FN
(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

where TP are true positives, TN are true negatives, FN are false negatives and FP are false 

positives predictions.
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In order to interpret the weight of the logistic classifier, partial regression coefficients were 

converted to odds ratios using the following equation:

Odds Ratio = eθ

Odds ratios were normalized between 0 and 1 and multiplied by their respective sign for 

each cross-validation step and averaged to calculate the normalized weight of each feature in 

prediction.

DATA AND CODE AVAILABILITY

The datasets generated during this study are available on the Hires Lab Dropbox repository 

at (https://www.dropbox.com/sh/bjla01r0bzt49j7/AAAzMjaq2mZSH5Gp8sf_UY5ga).

The code generated during this study and any updated links to the datasets are available on 

GitHub at (https://github.com/hireslab/Pub_LocalizationBehavior).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mice discriminate anteroposterior object locations to ≤ 0.5 mm using a single 

whisker

• Mice locate objects using targeted, noisy exploration that is adaptive to touch

• Mice don’t use roll angle, precise timing, or distance to locate these objects

• Whisking midpoint and the number of touches made best explains 

localization acuity
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Figure 1. Models of Anteroposterior Object Localization
(A) Schematic of task geometry. The whisker is actively swept back and forth to locate a 

pole (black circle). Angle is the azimuthal angle of the whisker at the follicle relative to the 

mediolateral axis of the animal.

(B) Position is discriminated by how much the follicle has rotated at the moment of touch.

(C) Position is discriminated by when spikes occur relative to onset of whisking.

(D) Position is discriminated by the number of touches during a bout of directed exploration.

(E) Position is discriminated by the degree to which the normal force of object is pointing 

laterally versus toward the follicle launch angle.

(F) Position is discriminated by which neurons are activated by touch at specific angles. 

Angle is uniquely specified by the amplitude, midpoint, and phase of a whisk cycle. Activity 

from primary sensory neurons that are modulated by phase is combined with an internal 

representation of whisking amplitude and midpoint to activate distinct sets of neurons in S1 

at the moment of touch, depending on the azimuthal angle at which touch occurs.
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Figure 2. Head-Fixed Task and Performance
(A) Trained mice report the perceived location of a pole presented along the anteroposterior 

axis via licking (go) or not licking (no-go).

(B) Overhead view of tracked whisker for two trials. To eliminate variation from fur, 

azimuthal angle is determined at the intersection of mask and whisker trace.

(C) Trial structure with example imaging frames at top. Pole presentation is triggered 500 

ms from session start and takes ~200 ms to come into reach. Azimuthal angle time series for 

15 consecutive trials is overlaid with the sampling period (750-ms duration), answer period 

(1,250-ms duration), and licks.

(D) Possible trial outcomes based on pole presentation and mouse choice.

(E) The average reaction time for each individual mouse (gray circles) and the mean ± SEM 

for all mice (black circle).

(F) Learning rates for this task highlighting 7,000 trials before and 1,000 trials after reaching 

expert (75% accuracy over 200 trials). Inset, number of trials required to reach expert for 

each mouse in gray and population in black (mean ± SD; 8,194 ± 1,816 trials).

(G) Psychometric performance curves for individual mice (gray) and across the population 

(black) expert in the task (n = 15 mice). Bars denote the mean number of touches prior to 

decision for go (blue) and no-go (red) trials.

(H) Performance between go/no-go pairs of bins with the max distance of 0.5, 1, 2, 3, 4, and 

5 mm from the discrimination boundary. Circles denote individual mice. X denotes mean ± 

SEM across the population. p values comparing population hit trials to false alarm trials are 
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as follows: 0.5 mm p = 9.2e–3; 1 mm p = 5.2e–13; 2 mm p = 1.5e–15; 3 mm p = 1.5e–15; 4 

mm p = 1.5e–15; and 5 mm p = 1.5e–15; 2-sample t-test (t-stat, degrees of freedom: 0.5 mm 

= 2.6, 276; 1 mm = 7.4, 552; 2 mm = 20.0, 596; 3 mm = 21.8, 569; 4 mm = 26.4, 578; 5 mm 

= 31.8, 594).
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Figure 3. Motor Strategy and Its Influence on Patterns of Touch
(A) Heatmap of whisking amplitude for one mouse. Trials are sorted with first at the bottom 

and grouped by trial outcome. White dots are time points of first touch. Magenta circles 

show time points of first lick after onset of pole presentation.

(B) Whisking amplitude relative to time of pole onset for each mouse (gray) and average for 

all mice (black). Mean ± SD of whisking onset from cue is 60 ± 16 ms.

(C) Left: population distribution for the number of whisks before first touch. Right: 

population distribution of the number of whisks after first touch and before decision is 

shown. For no-touch trials, the median first touch time for that mouse was used. Distribution 

difference is quantified using Kullback-Leibler divergence (STAR Methods).

(D) Mean ± SD of the peak protraction relative to the discrimination boundary for each 

whisk in a go (blue) or no-go (red) trial before decision.
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(E) Proportion of trials with touch for each mouse based on trial type. Bars represent SEM.

(F) Trial type prediction performance of a logistic classifier based on touch presence 

compared to each mouse’s trial type discrimination performance. Bars represent SEM. p = 

2.2e–3; Wilcoxon signed-rank test.

(G) The proportion of go or no-go trials in which licking occurs conditioned on whether 

touch occurred on that trial. Bars represent SD.
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Figure 4. The Distribution of Sensorimotor Features and Their Utility for Predicting Trial Type 
and Choice
(A–F) Histogram of feature values and classifiers for predicting trial type using (A) roll 

angle, (B) whisk latency, (C) cue latency, (D) touch count, (E) radial distance at touch, and 

(F) angle at touch.

(G) Trial type prediction performance of logistic classifiers for all mice based on each of the 

six features. Bars represent SEM. p values; Wilcoxon signed-rank test against shuffled 

models. Touch trials only are shown. See also Figure S1.

(H) Choice prediction performance of logistic classifiers for all mice trained on pole 

position, each of the six features, or all six features combined. Bars represent SEM. Touch 

trials only are shown. values; Wilcoxon signed-rank test against shuffled models. See also 

Figure S2.
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Figure 5. Mice Discriminate Location Using More Than Touch Count
(A) Population average of touch count distributions and associated lick probabilities for all 

mice in go (blue) and no-go (red) trials. p values for 0 to 5 touches = 0.64, 4.4e–4, 1.7e–3, 

1.1e–4, 7.0e–4, 5.8e–3; two-tailed paired t test (t-stat, degrees of freedom: 0 touches = 0.48, 

13; 1 touch = 4.9, 11; 2 touches = 3.9, 13; 3 touches = 5.3, 4; 4 touches = 4.4, 13; 5 touches 

= 3.5, 10).

(B) Touch count influence on licking controlled for pole position. Number of touches 

normalized to mean number of touches for each pole position plotted against lick 

probabilities for go (blue) and no-go (red) trials. Lick probabilities are shown as mean 

± 95% confidence intervals.
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Figure 6. Mice Discriminate Location Using Features Correlated to Azimuthal Angle Rather 
Than Radial Distance
(A) Task design. After 120 trials of anteroposterior pole presentation, angle or distance trials 

were presented with 50% probability.

(B) The angle presentation positions (blue) held distance to the discrimination boundary 

constant while varying azimuthal angle across the anteroposterior task range. The distance 

presentation positions (cyan) held azimuthal angle fixed to the discrimination boundary 

angle while varying distance across the anteroposterior task range. Go positions spanned a 

range of 31° ± 1.6° or 8–10 mm distance, and no-go positions spanned 19° ± 2.9° or 10–13 

mm distance.

(C) Mean psychometric performance curves ± SEM for each class of trials across the 

population (n = 5 mice, 15 sessions).

(D) The mean performance for angle trials was not significantly different from 

anteroposterior trials (p = 0.26; one-way ANOVA). Distance trials performance was at 

chance and significantly different from the anteroposterior and angle task (anteroposterior p 

= 9.6e–10, angle p = 9.5e–10; one-way ANOVA [F-value, degrees of freedom = 96.5, 36]). 

Bars represent SD.
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Figure 7. Choice Can Be Best Predicted by a Combination of Touch Count and Whisking 
Midpoint at Touch
(A) Time-varying azimuthal angle can be transformed to the Hilbert components amplitude, 

midpoint, and phase. Example exploration bout for go (blue) and no-go (red) trial is shown.

(B) Average autocorrelation across all mice for angle, amplitude, midpoint, and phase.

(C) Choice prediction space for one mouse using Hilbert features.

(D) Classifier performance measured using MCC between angle and Hilbert features. Bars 

represent SEM. p = 0.76; Wilcoxon signed-rank test.

(E) Performance (MCC) of classifiers trained with individual model components versus 

angle at touch. Bars represent SEM. Significant differences: angle to phase (p = 1.5e–2); 

amplitude (p = 6.7e–3); and midpoint (p = 1.2e–2). Non-significant differences: phase to 

amplitude (p = 0.23); phase to midpoint (p = 0.80); and amplitude to midpoint (p = 0.52). 

All compared using Wilcoxon signed-rank test.

(F) Performance (MCC) of classifiers trained with individual model components plus touch 

count versus angle at touch plus touch count. Bars represent SEM. Significant differences: 
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angle to phase (p = 3.4e–3) and amplitude (p = 2.0e–3). Non-significant differences: phase 

to amplitude (p = 0.64); phase to midpoint (p = 19); amplitude to midpoint (p = 0.12); and 

angle to midpoint (p = 0.64). All compared using Wilcoxon signed-rank test.

(G) Heatmap of one sorted session task structure, sensorimotor inputs, classifier predictions, 

and mouse choice. Continuous variables (pole position, touch count, midpoint at touch, 

angle at touch, midpoint + touch count choice prediction, and angle + touch count choice 

prediction) are normalized from minimum (−1) to maximum (+1). NaN data are gray. 

Categorical variables (trial type, primary touch direction, and mouse choice) are colored as 

in the legend. See also Figure S3.

(H) Comparison of midpoint + touch count and angle + touch count classifiers for all trials. 

Bars represent SEM. p = 0.64; Wilcoxon signed-rank test. Black arrow denotes mouse 

shown in example in (G). See also Figure S4.

(I) Psychometric curves for optimal trial type discrimination performance using midpoint + 

counts and angle + counts compared against mouse choice for example mouse in (G). See 

also Figure S5.

(J) Comparison of discrimination resolution between optimal trial type classifiers and mouse 

performance from Figure 2H. Shading denotes distance from discrimination boundary.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Mouse: B6.Cg-Tg(Slc32a1-COP4*H134R/
EYFP)8Gfng/J

The Jackson 
Laboratory

JAX: 014548

Software and Algorithms

MATLAB v.2013b and v.2018b MathWorks 2013b and 2018b

Ephus Vidrio Technologies http://www.scanimage.vidriotechnologies.com/display/ephus/
Ephus

StreamPix Norpix https://www.norpix.com/news/newsletters/streampix6.php

Janelia Whisker Tracker [10] https://www.janelia.org/open-science/whisk-whisker-tracking

HLab_Whiskers package Hires Lab https://github.com/hireslab/HLab_Whiskers

Pub_LocalizationBehavior package This paper https://github.com/hireslab/Pub_LocalizationBehavior

Localization behavior dataset This paper https://www.dropbox.com/sh/bjla01r0bzt49j7/
AAAzMjaq2mZSH5Gp8sf_UY5ga

Other

High speed CMOS Camera Basler acA200-340kmNIR

Telecentric lens Edmund Optics 0.18× ½" GoldTL™ Telecentric Lens (Model # 52-258)
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