Skip to main content
. 2019 Aug 8;12(17):4082–4087. doi: 10.1002/cssc.201901210

Table 3.

Results of the hydrogenation/re‐etherification of the polyesters shown in Figure 5.[a]

Entry Polyester M n(GPC)[b]
[g mol−1]
M w(GPC)[b]
[g mol−1]
M n(GPC)[c]
[g mol−1]
M w(GPC)[c]
[g mol−1]
M n(NMR)[c,d]
[g mol−1]
Conv.[e] [%] Yield[f] [%]
1 PHDD 4200 13 000 600 2000 614 >99 80
2[g] PHA 3000 13 000 900 2100 892 96 90
3 PEGP 3200 13 000 n.d. n.d. n.d. 49[i] n.a.
4[h] PBA 4200 11 000 700 1100 563 >99 >99
5 C36‐co‐PHA 2400 4000 1500 2800 1000 >99 80
6[j] PHA+1,4‐BDM 1100 2000 1238 >99 89

[a] Conditions (unless otherwise stated): Polymer (3.0 g), Ru(acac)3 (3 mol %), Triphos (4.5 mol %), Al(OTf)3 (7.5 mol %), THF (30 mL), 40 bar H2 at RT, 140 °C, 24 h. [b] Determined by GPC with THF as eluent, before hydrogenation of the polyester sample. [c] Measured after hydrogenation. [d] Calculated from NMR spectra by end group analysis. [e] Conversion of COOR groups as analyzed by NMR spectroscopy. [f] Calculated w.r.t. the theoretical conversion of all ester groups into ether groups. [g] T=180 °C; [h] Ru(acac)3 (2 mol %), Triphos (3 mol %), Al(OTf)3 (5 mol %). [i] Determined from hydrogen consumption. [j] 1,4‐benzene dimethanol (22 mol %) was added; yield based only on the ether groups obtained by the conversion of original ether groups.