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Aims: To determine individual glucose hydroxyl exchange rates at physiological

conditions and use this information for numerical optimization of glucoCEST/CESL

preparation. To give guidelines for in vivo glucoCEST/CESL measurement parameters

at clinical and ultra‐high field strengths.

Methods: Five glucose solution samples at different pH values were measured at

14.1 T at various B1 power levels. Multi‐B1‐Z‐spectra Bloch‐McConnell fits at physi-

ological pH were further improved by the fitting of Z‐spectra of five pH values simul-

taneously. The obtained exchange rates were used in a six‐pool Bloch‐McConnell

simulation including a tissue‐like water pool and semi‐solid MT pool with different

CEST and CESL presaturation pulse trains. In vivo glucose injection experiments were

performed in a tumor mouse model at 7 T.

Results and discussion: Glucose Z‐spectra could be fitted with four exchanging

pools at 0.66, 1.28, 2.08 and 2.88 ppm. Corresponding hydroxyl exchange rates could

be determined at pH = 7.2, T = 37°C and 1X PBS. Simulation of saturation transfer for

this glucose system in a gray matter‐like and a tumor‐like system revealed optimal

pulses at different field strengths of 9.4, 7 and 3 T. Different existing sequences

and approaches are simulated and discussed. The optima found could be experimen-

tally verified in an animal model at 7 T.

Conclusion: For the determined fast exchange regime, presaturation pulses in the

spin‐lock regime (long recover time, short yet strong saturation) were found to be

optimal. This study gives an estimation for optimization of the glucoCEST signal

in vivo on the basis of glucose exchange rate at physiological conditions.
ell; CESL, chemical exchange sensitive spin‐lock; CEST, chemical exchange saturation transfer; CNR, contrast‐to‐noise ratio; GM, gray

tio; ssMT, semi‐solid MT
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FIGURE 1 Glucose structure and anomers
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1 | INTRODUCTION

Chemical exchange saturation transfer (CEST) MRI enables the indirect detection of metabolites in small concentrations via exchange of protons in

functional groups and water protons. CEST effects were observed in vivo for amide protons of proteins, amine protons of glutamate, guanidyl pro-

tons of creatine,1-3 and also for hydroxyl protons of glycosaminoglycans and myo‐inositol.4,5 As hydroxyls of sugars also showed significant CEST

effects in vitro, in vivo experiments could be performed to detect the uptake of injected glucose and glucose analogs in animal models using

CEST,6-11 and also the related chemical exchange sensitive spin‐lock (CESL) technique.12,13 GlucoCEST/CESL imaging using natural D‐glucose

has already been shown to be feasible in human brain tumors at 7 T.14-17 Although proof of concept has been provided, to date there is no com-

prehensive study investigating the optimal CEST/CESL presaturation parameters. A major problem is that optimization in vivo is complicated,

especially in human subjects, as only a few protocols can be tested reliably during one examination. Moreover, exchange rates for each individual

hydroxyl proton of the glucose molecule have not been determined, nor their pH dependence, thus preventing a proper and accurate simulation

and investigation of saturation conditions for optimizing the attainable CEST contrast. To overcome this problem a numerical approach is followed

in the present work: by quantification of glucose exchange rates at physiological conditions in vitro, a tissue‐like two‐pool model of water and a

semi‐solid magnetization transfer (ssMT) can be extended by the determined glucose hydroxyl pools. This in silico pool model is then used in

Bloch‐McConnell simulations to gain insight into the expected signal and contrast‐to‐noise of a glucose injection experiment as near as possible

to an in vivo experiment.

The present work consists of three major parts. In the first part, glucose exchange rates are determined at physiological conditions using

Bloch‐McConnell (BM) fitting of Z‐spectra. While BM fitting of Z‐spectra with separated pools and lower exchange rate has been shown to be

successful for exchange rate quantification,18 the glucose system has two additional challenges: (i) the hydroxyl resonances are very close to each

other and to the water proton resonance; and (ii) exchange rates are in the intermediate to fast exchange regime, thus peaks are coalescent. To

gain more insight into and reliability in the nonlinear BM fit, in addition to physiological conditions, lower pH values are also quantified to get a

valid extrapolation to the fast exchange regime and thus to the more difficult to fit physiological situation. In the second part, the obtained glucose

pool model is used to create a gray matter (GM)‐like system including realistic water relaxation rates and a ssMT component. As the fast hydroxyl

exchange requires relatively strong saturation, proper modeling of the B1‐sensitive direct saturation and ssMT is crucial for obtaining reliable pre-

dictions for in vivo effect strength. This allowed for optimization of the presaturation parameters and analysis of previous approaches; optimal

parameters are presented for the static field strengths of 3, 7 and 9.4 T. In the third part, the gained insights are translated to in vivo application

in a mouse model with tumors measured at 7 T, where a small range of saturation parameters could be tested and the corresponding CEST effects

directly compared.
2 | METHODS
2.1 | Glucose hydroxyl pool model

In solution, D‐glucopyranose (D‐glucose) is predominantly in the form of a pyranose ring with two possible anomeric conformations, α and β

(Figure 1). At equilibrium the anomeric ratio (AR), which is the ratio of concentration of both forms in solution, is AR/(1‐AR) = 0.36/0.64 for α:β.
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In both anomeric conformations, the –OH at the sixth carbon atom (numbering as in Figure 1) has a chemical shift from water of 0.66 ppm; the

three –OH groups at positions 2, 3 and 4 have very similar chemical shifts of ~ 1.28 ppm.19 The chemical shift of the hydroxyl at position 1

depends on the anomeric conformation: it is 2.08 ppm for the α form and 2.88 ppm for the β form. The chemical shifts relative to water are

assumed to be independent of pH and temperature.

With the assumption that each proton site with the same chemical shift shows the same exchange rate to water (assumption 1), we can build a

four‐pool model for a glucose solution in water.

We label the –OH sites using the letters B, D, E and F, in the order of increasing chemical shift relative to water; thus the chemical shifts of

these pools are δB = 0.66 ppm, δD = 1.28 ppm, δE = 2.08 ppm and δF = 2.88 ppm (pool A is the water pool; pool C is omitted here as it is reserved

in the BM simulation for the ssMT pool).

We now define the fraction of glucose molecules relative to water protons:

fglc ¼ Glc½ �= 2 H2O½ �ð Þ ¼ Glc½ �=111M

With this, the proton fractions of each pool can be written by using fglc and the AR:

fB ¼ fglc; fD ¼ 3 fglc; fE ¼ AR·fglc; fF ¼ 1 − ARð Þ·fglc

To decrease the number of unknowns, the chemical shifts of these pools are set to the aforementioned fixed values; also, the proton fractions

are fixed and directly given by the glucose concentration fraction; the only degree of freedom for the concentrations is the AR, which depends on

the pH or temperature of the solution.

We also neglect intramolecular exchange between the individual hydroxyl groups (assumption 2), only considering an exchange directly to the

water pool (that can still be base‐, acid‐ or water‐catalyzed at this point). We also assume that the transverse and longitudinal relaxation rates of

the hydroxyl protons are negligible compared with the exchange with water (assumption 3). Thus the only free parameters of the fit are the

exchange rates, kB, kD, kE and kF, and the AR, as well as the transverse relaxation rate of water, R2A. The R1A values for the water pool were mea-

sured by a saturation recovery sequence and provided to the fit.

In a second model, we extend the Bloch equations by pH as a parameter, by assuming that the exchange rate can be expressed as a sum of

base‐ and water‐catalyzed exchange (assumption 4).

kx ¼ kx1⋅10
pH−7 þ kx0 (1)

Then, for each pool, x = B, D, E, F, two unknowns are added, kx1 and kx0. This seems like an introduction of more parameters, yet multiple pH Z‐

spectra can then be fitted simultaneously. Thus, for five pH values and four pools, the previous model required (5 x 4) 20 exchange rates, but now

only (2 x 4) 8 unknown exchange constants must be determined by the fit. In addition, the better defined exchange rates at low pH values are then

implicitly used for better extrapolation and determination of the exchange rates at high pH values, and therefore an increased stability is expected.

2.2 | Simulation and full Bloch‐McConnell fitting

The underlying equations used for fitting are the six‐pool BM equations, including a ssMT pool. The matrix equations were described in detail pre-

viously,18 and further details on ssMT are also available.20 Numerical solutions of these equations and corresponding fits are realized as custom‐

written scripts in Matlab version 8.2.0.701 (MathWorks Inc., Natick, MA, USA) following previously reported procedures.18,21 In vitro glucose data

were fitted in Matlab employing the full BM equations and the optimization function lsqcurvefit. The simulation files can be found and

downloaded from the websites, cest‐sources.org or github.org: https://github.com/cest‐sources/BM_sim_fit.

2.3 | Tissue‐like simulation

As CEST and CESL are almost equivalent experiments, with CESL being more general,22,23 only CESL Z‐spectra were simulated using n ideal spin‐

lock (SL) pulses with pulse duration (tp) and amplitude B1. With that, saturation parameters can be optimized, but also the comparison with on‐

resonant SL can easily be performed by looking at short saturation durations, tp. An applied readout will change the initial magnetization

Zi = Mi/M0 before the subsequent saturation phase; for 90° excitation methods like spin‐echo this initial magnetization would be close to Zi = 0

for a low angle gradient‐echo at Ernst condition Zi ~ 1/(2‐TR/T1) ~ 0.5; here it was set to Zi = Mi/M0 = 0.1 as a compromise. Each simulation

started from Zi with a recovery period of duration Trec, followed by the saturation period of duration tsat = n·tp/DC. To account for SAR and

amplifier limits, a duty‐cycle (DC) of 50 % was assumed for the simulations. Using the tissue parameters of Table 1 and optimized exchange

rates derived (Table 2), a tissue‐like full six pool simulation, including water and ssMT (two pools) and the glucose hydroxyls (four pools),

was established.

http://cest-sources.org
http://github.org
https://github.com/cest-sources/BM_sim_fit


TABLE 1 Tissue model parameters at different field strengths. T1 and T2 values were taken from the multi‐field study of Zhu et al.24 MT
parameters (pool C) were adapted from Stanisz et al25; fC = 0.05, T2c = 9.1 μs, kCA = 40 Hz, δC = 0; Super‐Lorentzian lineshape

Tissue\B0 3 T 7 T 9.4 T

tissue model 1 (GM) T1 = 1.31 s; T2 = 0.071 s; fC = 5% T1 = 1.67 s; T2 = 0.043 s; fC = 5% T1 = 2.002 s; T2 = 0.035 s; fC = 5%

tissue model 2 (tumor) T1 = 1.31 s; T2 = 0.2 s; fC = 2% T1 = 1.67 s; T2 = 0.2 s; fC = 2% T1 = 2.002 s; T2 = 0.2 s; fC = 2%

PBS model 37°C ‐ T1 = 4.4 s, T2 = 2.6 s, fC = 0% ‐
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To simulate pre‐ and postinfusion experiments two Z‐spectra are generated, one with the glucose pools activated (Zpost: six‐pool simulation)

and one without (Zpre: two‐pool simulation). We assume that the endogenous CEST effects are negligible for the optimization outcome

(assumption 5).

The glucose contrast is then calculated by

Zdiff Δωð Þ ¼ Zpost Δωð Þ − Zpre Δωð Þ (2)

Assuming constant noise, the CNR is given by

CNR ¼ ΔZdiff Δωð Þ ∝ Zdiff Δωð Þ:
ffiffiffi

2
p

·SNRM0

Thus optimizing Zdiff also optimizes CNR for a constant SNR.

2.4 | Experimental preparation of glucose

Seven model solutions containing 20 mM of glucose were prepared at different pH values ranging from 6.2 to 7.4. Model solutions were buffered

using phosphate‐buffered saline (PBS) defined according to Cold Spring Harb Protoc.27 All model solutions were pipetted from highly concen-

trated stock solutions to ensure a precise adjustment of the concentrations, and pH values were adjusted to the final values using hydrochloric

acid (HCl) at 90 % of the final volume, to take into account the added amounts of HCl. Final pH values were checked by means of a calibrated

pH electrode. Experiments were performed after a waiting time of more than two hours to ensure that the anomeric equilibrium was reached.

2.5 | Experimental CEST data acquisition and processing

Acquisition and processing of CEST data were performed in a similar manner as previously reported.28,29 Model solutions were examined on a

14.1 T (600 MHz for 1H) Avance II narrow‐bore spectrometer (Bruker BioSpin, Karlsruhe‐Rheinstetten, Germany). A 5 mm probe was used for

RF irradiation and signal acquisition. To avoid radiation damping, the probe was operated detuned. The samples were stabilized at 37°C using

the internal heating and cooling device. For CEST measurements, off‐resonance presaturation was achieved by a rectangular (rect) continuous

wave (cw) pulse of length 12 seconds and different amplitudes, B1, ranging from 1 to 5 μT. Signal acquisition was realized by a 90° rect pulse. Prior

to repetition of the presaturation at another off‐resonance frequency, Δω, a relaxation interval of one second was included. Z‐values were calcu-

lated by integration of the water resonance (Msat) and normalization with the equilibrium magnetization (M0). M0 was acquired at different time

points and interpolated to obtain an individual M0 for each presaturation cycle. Z‐spectra were sampled at 117 frequency offsets in unequal steps

between ±5 ppm relative to the water peak. Zinitial was obtained after acquisition of M0 and switching off the presaturation pulse. A T1 measure-

ment was achieved by a saturation recovery pulse sequence.

2.6 | In vivo glucose injection experiments

For in vivo experiments, six‐week‐old female BALB/c mice (Charles River Laboratories Italia S.r.l., Calco, Italy) were maintained in the animal facil-

ity of the Department of Molecular Biotechnology and Health Sciences, University of Turin, under specific pathogen‐free conditions. All animal

studies were approved by the University Ethics Committee in accordance with the European guidelines under directive 2010/63. Mice were

injected subcutaneously with 2.5 x 105 TS/A cells (cell line derived from a mammary adenocarcinoma spontaneously arising in BALB/c mice)

and 15 days after the inoculation MRI acquisitions were performed with a Bruker 7 T Avance 300 MRI scanner equipped with a 30 mm 1H bird-

cage coil. Animals were anesthetized by injecting a mixture of xylazine 5 mg/kg (Rompun, Bayer, Milan, Italy) and tiletamine/zolazepam 20 mg/kg

(Zoletil 100, Virbac, Milan, Italy) and the breath rate was monitored by an air pillow placed below the animal (SA Instruments, Stony Brook, NY,

USA). Glucose (dose: 3 g/kg) was administered through the tail vein using a programmable infusion pump (PHD 22/2000, Harvard Apparatus,

Inc., USA) as a bolus followed by a continuous infusion for 30 minutes (at an infusion rate of 360 μl/h).



ZAISS ET AL. 5 of 14
After acquisition of scout images, a T2‐weighted anatomical reference image was acquired using a fast spin echo (FSE) sequence and the same

geometry was used for the CESL experiments. Briefly, CESL Z‐spectra were acquired by using an adiabatic SL pulse, as reported by Herz et al,30

before and after the glucose injection with several saturation power levels (range: 0.6–5.0 μT) and irradiation times (range: 0.1–5.0 s). A single‐

shot FSE‐centric encoding readout was used with the following parameters: TR = 6 s, TE = 3.5 ms, FOV = 3 x 3 cm, slice thickness = 2 mm, matrix

size = 64 x 64.31

Z‐spectra were interpolated, on a voxel‐by‐voxel basis, by smoothing splines for B0 correction
32 and glucose contrast calculated as Zdiff values

at 1.2 ppm.
3 | RESULTS AND DISCUSSION
3.1 | Glucose hydroxyls exchange rates at 14 T – individual pH

In a first attempt, multi‐B1‐Z‐spectra for each pH were fitted by the numerical Bloch‐McConnell solution individually including the transverse

relaxation of water R2A as a free parameter. Figure 2 shows the fitted Z‐spectra and fitting results for the exchange rates, R2A, and the AR.

The fits are less stable at high pH values where exchange rates are faster and peaks coalesce, even at such high B0. The AR is close to the literature

value of 0.37 for low pH, yet shows an implausible pH dependence, decreasing to almost 0 for pH 6.8. Also, the fit output for the exchange rate of

the anomeric proton E at high pH values is too low and hints at inaccuracies or instabilities of the fit at high pH.
3.2 | Glucose hydroxyls exchange rates at 14 T – multi‐pH

To overcome the instabilities, a second model was used that combined the multi‐pH measurements in the Bloch equations. Thus a stack of 25

multi‐pH‐multi‐B1 Z‐spectra were fitted simultaneously by employing Equation 1. A pH‐independent but variable AR was used, and the results

are shown in Figure 3; this resulted in a more reliable exchange rate estimation, kB = (2900 ± 500) Hz, kD = (6500 ± 170) Hz, kE = (5200 ± 500)

Hz, kF = (14000 ± 650) Hz, R2A = (0.43 ± 0.01) Hz, and AR = 0.374 ± 0.01 at physiological conditions of pH = 7.2 and T = 37°C (see againTable 2,

the full parametrization k(pH) can be found in Supporting informationTable S1). Table 2 also shows that both results compare relatively well with

the averaged results of Jin et al12, who assumed a single exchanging pool and used on‐resonant SL for quantification of this fictional pool, which

was then found at 1.5 ppm with an exchange rate of 6000 Hz. It is also in plausible agreement with the relaxometric studies at 25°C of Aroulmoji

et al21 with an average exchange rate of ~ 3400 Hz for T = 25°C (Table 2).
FIGURE 2 (A) Simultaneous multi‐B1‐fit of five Z‐spectra of 20mM glucose model solutions acquired at 14.1 T yields glucose hydroxyl exchange
rates for each pH at T = 37°C (B) and R2A and anomeric ratio (C)



FIGURE 3 (A) Simultaneous multi‐B1‐pH‐fit of 25 Z‐spectra of 20mM glucose model solutions acquired at 14.1 T yields glucose hydroxyl
exchange rates as a function of pH at T = 37°C (B) and R2A and anomeric ratio (C)

TABLE 2 Exchange rate estimations at physiological conditions: 1X PBS, 37°C, pH = 7.2. As a compromise between blood pH = 7.4 and intra-
cellular tissue pH = 7, we use pH = 7.2 as physiological pH here for simplification. GOF, goodness‐of‐fit parameter adjusted R2 (ranging from 0 to 1
with 1 being a perfect fit); Jin et al,12 Aroulmoji et al26

Method\exchange rate kB (Hz) kD (Hz) kE (Hz) kF (Hz) AR R2A (Hz) GOF adjusted R2

Multi‐B1 1570 ± 220 7360 ± 476 5662 ± 2660 10 000 ± 3800 0.5 ± 0.5 0.41 ± 0.13 0.9953 (pH 6.8) 0.9946 (pH 7.2)

Multi‐B1‐multi‐pH 2900 ± 500 6500 ± 170 5200 ± 500 14 000 ± 650 0.374 ± 0.01 0.43 ± 0.01 0.99551

Jin et al7 6000 for single pool at 1.5 ppm and with concentration 5·fglc

Aroulmoji et al21 3421 For single pool, glucose 10%, 25 °C
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The proposed multi‐pH‐multi‐B1 method can also be applied to other CEST active metabolites such as glucose analogs. A prerequisite is that a

suitable pool model is found, which can be trickier if more anomers or protons affected by the anomeric structure are present. Also, in vivo coa-

lesced effects are reported33-35; conceivably, ex vivo multi‐pH‐multi‐B1 experiments can improve exchange rate determination.

For our purpose, to optimize the glucoCEST saturation, the exchange parameters given describe the multi‐pH multi‐B1 data best (GOF inTable 2).

Thus a glucose pool model is created by the data inTable 2 (row 2) and changes in the Z‐spectrum are studied at B0 = 7 T using only individual pools

(Figure 4). Initially, none of the pools shows a peak at their respective resonance frequencies, but instead saturation transfer effects coalesce

completely with their on‐resonant T2ex contribution (see also36). As expected by their concentrations, pools D and F are the strongest contributors

to the saturation transfer effects of this model. Pools E and F show higher CEST signals than pool B due to the higher chemical shift. Investigating

the difference spectra (Zdiff, Equation 2), shows that the contribution of hydroxyl exchange on the negative ppm side is of the same order of magni-

tude as that on the positive side for all hydroxyl pools. The exchange dependent relaxation value, Rex (full details in
36), of each hydroxyl can be cal-

culated,21 as shown in Figure 4 (bottom row). Here, it can be seen that the strongest contribution of all hydroxyls is still on‐resonant, yet this broad

peak is asymmetric: only the direct water saturation lets these effects appear as selective off‐resonant effects. Thus, in terms of selectivity, it is dif-

ficult to talk about hydroxyl proton “peaks” in the Z‐spectrum. The peak appears where the labeling and spillover effects have equal influence, thus

the peak position is mostly dependent on B1 and the type of reference used. We can conclude from this that: (i) asymmetry is not optimal to measure

changes by glucose administration as effect size is decreased by the effects from the negative side; (ii) even the difference Z‐spectra are governed by

direct water saturation, thus methods that have reduced direct saturation are of benefit, and lowering B1 and saturation time in vivo could be the

most crucial optimization step; and (iii) on‐resonant methods with access to Rex such as SL must be evaluated as its exchange contribution is highest.



FIGURE 4 Simulation of glucose model at 7 T in PBS. Top row: Z‐spectra; middle row: Zdiff for the derived physiological glucose model with
different number of pools; bottom row: R1ρ of water, Rex contribution for each pool separately and combined (details about R1p and Rex are in
reference36)
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Most important for the simulation are the actual tissue parameters for relaxation and ssMT. As spillover and ssMT will each have a very impor-

tant contribution at the required powers, the optimal parameters will strongly depend on the tissue of interest. To reduce the number of hypoth-

eses in the tested models, we assumed two tissue types, one healthy GM including semi‐solid MT, and one more liquid tissue type based on GM

but with a long T2 of 200 ms and decreased ssMT concentration (this could reflect either tumorous tissue or also a vascular compartment, but at

least it shows what influence a reduced direct saturation and MT has on the optimal parameters). How strong the influence of the tissue param-

eters is can be seen when comparing Figures 5E and 5F, which show CEST effects of the same pools in PBS and in GM: the same CEST pool sys-

tem yields CEST effects of an order of magnitude lower when the tissue relaxation parameters are altered from PBS‐like to tissue‐like.
FIGURE 5 (A‐D) Schemes of different saturation approaches used in each column: long steady‐state saturation (A,B), intermediate saturation
with precedent recovery phase (C), and short saturation after long recovery (D). In silico model of four glucose hydroxyl pools for different
saturation regimes at 7 T in PBS (E,I) and tissue‐like GM environment (F‐H,J‐L). Z‐spectra (E‐H) and Zdiff (I‐L) in the steady‐state CEST regime (E,F,I,
J), the intermediate regime with only one second of saturation (G,K), and the spin‐lock regime with 100 ms of saturation (H,L)
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Before we look at the optimization outcome, we must gain insight into the simulation for GM and the four glucose hydroxyl pools for three

typical CEST/CESL protocols. One is the typical long saturation to steady state (tsat = 25 x 2 x 100 ms = 5 s) without any recovery time (Trec)

before saturation (Figure 5A,B). Second is the shorter saturation sequence with a Trec = 5 s before one second of saturation (Figure 5C). Third

is saturation in the SL regime with only 100 ms of saturation after five seconds of recovery (Figure 5D). To be able to compare the parameters,

all of the simulations were performed as spin‐lock experiments, only with different parameters, which also enabled a direct comparison of

off‐resonant CESL (more CEST‐like) with on‐resonant CESL. Figure 5 shows the Z‐spectra and the difference spectra Zdiff. Obviously the four

parameters, Trec, tsat, saturation amplitude B1 and saturation frequency offset, are nonlinearly related and have to be optimized simultaneously. From

this first simulation we can already conclude that the optimal parameters may be closer to the on‐resonant SL regimewith relatively short saturation.

As the parameters are interrelated and maximal effect strengths can be at different offsets, automatic optimization is not that easy. In a manual

iterative process, we repeatedly performed the following steps: (i) find the optimal B1 for long tsat; (ii) fix this B1 level; (iii) find the optimal tsat for

this B1 level; (iv) fix tsat; and (v) repeat the steps from (i) until no further visible changes occur. The optimal saturation parameters were defined by

finding the maxima shown in Figure 6. In addition, we tested if the Trec affected the optimum. The result was that generally longer Trec lead to a

stronger signal, independent of tsat or B1. To avoid missing a global optimum along this path, all signal strengths for each iteration were stored in a

table, and subsequently checked if the converged optimum was local or global. All reported values were global optima along this path.

The optimal parameters in GM were found to beTrec = 10 s, n = 1, tp = 0.07 s, B1 = 2 μT. Yet, for practical reasons of limited scan time, we kept

Trec = 5 s. Also, for 2 μT, the signal is high yet relatively sharp and close to water.Whenmoving to higher B1 the signal is also broader, which makes it

more stable against B0 artifacts. Thus for GM at 7 T the simulation suggests: Trec = 5 s, n = 1, tp = 0.07 s, B1 = 5 μT for 1.3% effect at 0.6 ppm.

In the more liquid environment of tissue model 2 (Figure 7), B1 = 5 μT, n = 2, Trec = 5.0 s, tp = 0.1 s are optimal and yield 5.7% effect at 0.3 ppm.

Similar plots for 9.4 and 3 T can be found in the supporting information; here, the optimal parameters slightly changed, as summarized in

Table 3. The effects strength observed varies between field strengths, as shown in Figures S1‐S4; the effects strength drops sharply when

decreasing from 7 to 3 T.

Comparing the less and more liquid tissue models reveals that there is a different optimal set of parameters for each tissue. However, the con-

trast is so much higher in the less structured tissue that we believe optimization should be performed primarily for the more structured tissue.

Optimizing for less structured tissue or CSF will lead to parameters that strongly suppress signals of structured tissues. Yet for some applications

such an optimization might make sense, and as a general rule we can state that the less structured, the longer the optimal saturation duration.

Having established the chemical exchange properties of all hydroxyl groups, we then set out to compare the signal theoretically achieved with

published glucoCEST approaches at 7 T (Figure 8A). One caveat is that we used the pulse train parameters, but simulated all methods with ideal SL

pulses. In tissue model 1, the proposed parameters lead to Zdiff = 1.3%, compared with the approach of Schuenke et al16 (Zdiff = 1.2%), followed by

Xu et al14 with Zdiff = 0.7%. In tissue model 2, the proposed parameters here achieve Zdiff = 5.7%, the approach of Xu et al14 achieves Zdiff = 3.8%

and that of Schuenke et al16 with Zdiff = 3.0%. This estimation hints that slight optimization in saturation time, recover time or evaluated offset is

possible to further optimize the glucose‐weighted contrast. A final question to be answered is translation of these findings from an ideal SL to
FIGURE 6 Results of the manual optimization process. Zdiff of in silico model of glucose in tissue model 1 for different saturation parameters at
7 T. Optimal parameters: B1 = 5.00 μT, n = 1, Trec = 5.0 s, tp = 0.07 s; these were also the unchanged standard parameters for each subplot



FIGURE 7 Results of the manual optimization process. Zdiff of in silico model of glucose in tissue model 2 for different saturation parameters at
7 T. Optimal parameters: B1 = 5.00 μT, n = 2, Trec = 5.0 s, tp = 0.10 s; these were also the unchanged standard parameters for each subplot

TABLE 3 Optimal glucoCEST/CESL parameters

Tissue
model\B0 3 T, DC = 50% 7 T, DC = 50% 9.4 T, DC = 50%

tissue model 1

(GM)

B1 = 4.00 μT, n = 1, Trec = 5.0 s, tp = 0.10 s

Maximum 0.55% at 0.8 ppm

B1 = 5.00 μT, n = 1, Trec = 5.0 s, tp = 0.07 s

Maximum 1.3% at 0.6 ppm

B1 = 5.00 μT, n = 1, Trec = 5.0 s, tp = 0.07 s

Maximum 1.7% at 0.6 ppm

tissue model 2

(tumor)

B1 = 4.00 μT, n = 2, Trec = 5.0 s, tp = 0.10 s

Maximum 1.5% at 0.4 ppm

B1 = 5.00 μT, n = 2, Trec = 5.0 s, tp = 0.1 s

Maximum 5.7% at 0.3 ppm

B1 = 5.00 μT, n = 2, Trec = 5.0 s, tp = 0.10 s

Maximum 8.3% at 0.25 ppm

n, number of saturation pulses; tp, saturation pulse duration; B1, saturation block pulse amplitude; Trec, recovery time before saturation starting from initial

magnetization; Zi, Mi/M0 = 0.1
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pulsed CEST or CESL on a whole‐body system. The on‐resonant adiabatic SL approach of Schuenke et al16 will generate strong artifacts when

used off‐resonance. Also, rectangular pulses will not be able to yield stable results for such short saturation regimes due to induced Rabi oscilla-

tions (Figure 9A). Shaped pulses will have strong flip‐angle‐like oscillations close to water, yet even at 3 T for offsets at 1 ppm these oscillations

are minor and the pulses behave adiabatically (Figure 9B). Recently proposed matched adiabatic SL pulses30,42 can be used both on‐ and off‐

resonant and are shown to perform well under the optimized conditions (Figure 9C). Thus, shaped off‐resonant pulses or adiabatic matched SL

pulses can both realize the proposed optimal parameters.

When comparing on‐ and off‐resonant signals, Zdiff shows only slightly higher signals for the off‐resonant case. Thus the simpler to implement

on‐resonant SL seems a reasonable choice for glucose exchange weighting. However, the Z‐value and thus the MR image intensity is lowest for

on‐resonant SL (see again Figure 5D), as here the direct saturation is strongest. Thus frequency offsets Δω > 0 ppm are beneficial for both effect

strength and imaging SNR.

In conclusion, we can demonstrate that CEST in the SL regime with slight off‐resonance of ~ 0.3–1.0 ppm should optimize the glucose‐

weighted imaging contrast. In this regime, MTRasym is not the optimal evaluation technique, as hydroxyl CEST effects are broad and also appear

at the negative side, but a difference analysis of B0 corrected pre‐ and postglucose injection scans can be performed and yields higher contrast by

a factor of 2. More often than not, sequences are optimized in very liquid model solutions; herein we showed that it is important to take tissueT2

and ssMT contribution into account in the optimization. Direct saturation and ssMT effects dilute the effect strength by an order of magnitude

and lower saturation power and saturation time, as well as making recovery before preparation a necessity. Comparison with existing approaches

showed that the differently obtained glucoCEST signals are in the same order of magnitude, yet it is possible to gain another factor of 1.5 to 2 by

optimizing for the tissue and field strength of interest.

It should be noted that the optimal parameters will depend on the optimal offset where the data has to be acquired and evaluated, thus if larger

offsets are chosen for other reasons (eg, to have fewer B0 artifacts), then parameters can be slightly different.



FIGURE 8 Comparison of existing irradiation conditions at 7 T, all realized using ideal SL pulses, showing Zdiff at 3 T (A,D), 7 T (D,E) and 9.4 T
(C,F) for tissue model 1 (A‐C) and tissue model 2 (D‐F). *Xu et al14; **Schuenke et al16; ***Rivlin et al8

FIGURE 9 Nonideal methods (red) compared to the ideal spinlock simulation (black) for proposed 3 T saturation (B1 = 4 μT, n = 2, Trec = 5.0 s,
tp = 0.10 s): (A,D) block pulses, (B,E) Gaussian pulses, (C,F) matched‐adiabatic SL pulses
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Herein we compared only on‐and off‐resonant SL preparation, however T2 also changes upon addition of exchanging sites, as given by the

Swift‐Connick equation37 and shown experimentally in vivo by Yadav et al38 and Goldenberg et al.39 Comparing the exchange contribution in

the Swift‐Connick equation and in SL theory,36 one observes that the exchange weighting of on‐resonant T1ρ and T2 are actually very similar,

and an even higher exchange weighting is expected for T2 compared with T1ρ. We can conclude that optimal T2‐weighting for glucose detection

must be similar to our on‐resonant SL optima. While no saturation power is needed for T2‐weighting, an echo time between 70 to 200 ms, with

respect to tissue and field strength (Table 3), is expected to be optimal for a spin‐echo experiment.

At ultra‐high fields amplifier limits might tighten the range of possible parameters and it may be that slightly lower B1 values are beneficial. On

the other hand, adiabatic SL techniques require a certain B1 level to behave adiabatically. Therefore, only lower DC or lower saturation duration

can decrease the applied power further, and the possible limits have to be achieved following the guidelines provided.

As a final optimization, Trec can be shortened and traded against averages. Dietrich35 showed for repeated FID scans that choosing

0.7293·T1 < Trec < 2.0882·T1 optimizes this trade‐off between recovery and averaging. This can be translated to our findings, leading to an optimal

short Trec in GM of 1.4–1.6 seconds.

Finally, we want to discuss the assumptions made for the fitting:
• assumption 1: same chemical shift = same exchange rate.

• assumption 2: no intramolecular exchange.

• assumption 3: transverse relaxation of CEST pools can be neglected.

• assumption 4: base‐ and water‐catalyzed exchange rate relation.

• assumption 5: endogenous CEST effects are negligible for optimization.
Assumption 1 seems to hold relatively well, as the B1 dispersion is described well; still, some deviations, especially around the 1.3 ppm peak,

are observed, which might originate from the artificial fusion of these pools. This is unlikely to have a huge influence on our optimization, but could

be investigated in greater detail at lower temperatures. Assumption 2 is plausible, as we did not see large deviations in the B1 dispersions, thus the

first order Bloch‐McConnell system appears to also be accurate for multiple proton pools nearby. Assumption 3 might only alter the obtained

exchange rates in the range of the R2 of the individual pools, thus we can assume that deviations due to this assumption are smaller than ~

50 Hz. Assumption 4 is questionable, especially around pH 7, where an acid catalysis can begin. But as the individual fits showed a similar

exchange rate behavior, we believe that this assumption is sufficient and helps substantially in improving the fit stability. We tested the depen-

dency of the 0.66 ppm pool as a function of pH, as it has been shown to be potentially partially acid‐catalyzed below pH = 7,41 yet any addition

of an acid‐catalyzed component to the equation did not improve the fit and resulted in a lower adjusted R2. Assumption 5, consisting of neglecting

endogenous CEST effects, might alter the optimal parameters slightly, yet direct water saturation outweighs typical CEST effects by at least an

order of magnitude. In an actual glucose injection experiment, in addition to changes due to glucose, a small ΔR1ρ will be introduced due to osmo-

lality changes. According to Jin et al,12 this contribution is rather small for glucose. Still, it would increase the apparent glucose effect size if mea-

sured by Zdiff, as both osmotic effects and glucose concentration would lower the Z‐value after injection. How this would affect the optimal

saturation parameters can only be estimated by making assumptions regarding the underlying rate constants of the osmotic effects. For now,

we can only estimate that the change of the optimal parameters would also be rather small.

This numerical study is based on several plausible assumptions investigating the theoretical signal of glucose in tissue. It does not take into

account the fact that glucose alters osmolality, gets metabolized, and creates CEST active metabolite products that might also contribute to

the signal after glucose injection. Also, altered tissue pH values in pathologies are not considered. The present parameters reflect estimations

of the actual in vivo signal assuming all the glucose injected is delivered and stored in the tissue. Thus it can only be used as guidance and a starting

point for in vivo optimization as described in the following.

To validate our findings in vivo, three mice bearing mammary adenocarcinoma tumors were examined with an off‐resonant SL protocol

including glucose injection at a field strength of 7 T. Figure 10 shows images and ROI evaluations of the calculated Zdiff contrast; to be able

to compare other CEST approaches Zdiff was evaluated at 1.2 ppm. In a first experiment we could demonstrate that, as predicted by the simu-

lation, when going from a long saturation of 5 s to a shorter saturation of 0.5 s, the glucose weighting increased (Figure 10A). Also in agreement

with the simulation, it was found that the CEST effect further increased when the power was increased from 3 to 5 μT (Figure 10A). The higher

effect strength compared with our simulations is probably due to the higher dose of glucose used in the animal experiments. In a second exper-

iment we observed reproducible results for two repeated settings, but also a decrease in signal when reaching lower saturation times or power

levels (Figure 10B). In contrast to our predictions, the optimal saturation time was not found to be 200 ms, but was visible at ~ 500 ms in the

third experiment (Figure 10C). This disagreement could have several origins, the most probable being that the larger offset leads to more effect

for longer saturation, but also the different tissue type with other relaxation and ssMT parameters compared with the simulation can alter this

optimum. Still, the outcome for the optimum is fairly close and supports the fact that our simulations provide a good starting point for the opti-

mization, and that higher saturation B1 and shorter saturation duration improve the glucose weighting. Herein, just three in vivo samples were



FIGURE 10 In vivo glucose injection experiments in three mice bearing TS/A tumor xenografts using adiabatic SL prepared acquisition at 7 T.
Data acquired at different saturation pulse power levels and durations were compared and evaluated using Zdiff at 1.2 ppm (Zdiff = Zpost‐Zpre).
Bar plots of the average Zdiff calculated in ROI encompassing the whole tumor region for the experiments in (A) mouse 1, (B) mouse 2 and
(C) mouse 3; (D) Zdiff images overlaid onto the T2w anatomical image for mouse 1 showing the effect of different saturation power levels and
duration times on the calculated glucoCEST contrast upon CESL acquisition. CESL acquisition with B1 = 5 μT and tsat = 0.5 s yielded an average
Zdiff of 13.7 ± 0.98% in the three investigated mice. Error bars in (A‐C) show this determined standard deviation
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shown and more in vivo experiments are needed to further verify the optimal parameters. Recently, a study in human brain tumor patients at 3T

showed glucose uptake signals using similar SL preparation.42 Finally, certain saturation parameter regions need to be sampled more densely to

find the global optimum, although this probably has to be repeated for each and every tissue or disease of interest.
4 | CONCLUSIONS

With glucose exchange rates determined at physiological conditions at 14.1 T, an in silico tissue model including glucose pools was generated. This

allowed quasi in‐vivo optimization of presaturation parameters and comparison of existing approaches at 7 T, as well as predictions for optimum glu-

cose weighting at 3 and 9.4 T. Glucose weighting was strongest in the SL regime with long recovery before a short and strong saturation. This optimum

predicted by simulation could be experimentally verified. For the intermediate exchange system, the optimal frequency offset of highest contrast is not

governed by the exact hydroxyl chemical shift, but by the interplay of direct saturation and labeling, and is found between 0.5 and 1.0 ppm from water.
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