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ABSTRACT— Individual differences in executive functions
(EF) are heritable and predictive of academic attainment
(AA). However, little is known about genetic contributions
to EFs or their genetic relationship with AA and intelligence.
We conducted genome-wide association analyses for pro-
cessing speed (PS) and the latent EF measures of working
memory (WM) and inhibitory control (IC) in 4,611 ado-
lescents from the Avon Longitudinal Study of Parents and
Children. While no loci reached genome-wide significance,
common genetic variants explained 30% of the variance in
WM and 19% in PS. In contrast, we failed to find common
genetic contributions to IC. Finally, we examined shared
genetic effects between EFs and general intelligence, AA
and ADHD. We identified significant genetic correlations
between WM, intelligence, and AA. A more specific pat-
tern was observed for PS, with modest genetic overlap with
intelligence. Together these findings highlight diversity in
the genetic contributions to specific cognitive functions and
their genetic relationship with educational and psychiatric
outcomes.

Executive functions (EF) are cognitive processes controlling
thoughts and actions; they allow us to pay attention, resist
impulses and change our course of action. Although the
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structure of EF remains a topic of debate, including potential
developmental changes in EF structure (Friedman & Miyake,
2017; Lee, Bull, & Ho, 2013), three core EFs have been more
widely examined than others. These are: working mem-
ory (WM; holding and manipulating information in mind),
inhibitory control (IC; resisting temptations, impulses, and
interference) and cognitive flexibility or “shifting” (adapting
responses and thoughts to changing demands) (Diamond,
2013; Friedman et al., 2008).

EFs are predictive of academic achievement
(AA)—independent of IQ—when measured both using
individual tasks and latent factors (Alloway & Alloway,
2010; Cragg & Gilmore, 2014; Rhodes et al., 2016). Numer-
ous cross-sectional studies show that WM and IC account
for significant unique variance in arithmetic, beyond vari-
ance explained by IQ, age, processing speed (PS) or reading,
in a wide range of age groups (e.g., Bull & Scerif, 2001;
Monette, Bigras, & Guay, 2011; see Cragg & Gilmore,
2014 for a review). Associations with WM tend to be
larger than with IC or shifting (Cragg, Keeble, Richardson,
Roome, & Gilmore, 2017; Friso-van den Bos, van der Ven,
Kroesbergen, & van Luit, 2013), which often do not show
unique contributions beyond WM (Cragg et al., 2017; Van
der Ven, Kroesbergen, Boom, & Leseman, 2012). WM is
also reliably associated with reading, whereas evidence
for IC is more varied (Blair & Razza, 2007; Bull & Scerif,
2001; Espy et al., 2004; St Clair-Thompson & Gathercole,
2006). The finding that IC may not explain any unique
cognitive variance over and above that explained by the
common variance shared between EFs (“Common EF”)
(Friedman et al., 2008) may explain inconsistent results
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in predicting AA. The associations between EF and AA
have been replicated longitudinally (Alloway & Alloway,
2010; Dumontheil & Klingberg, 2012; Mazzocco & Kover,
2007) and across cultures (Lan, Legare, Ponitz, Li, &
Morrison, 2011).

PS, although not an EF, has been modeled by many
researchers interested in EFs as an important, but sepa-
rate, cognitive factor due to its key role in supporting and
moderating cognition (e.g., Huizinga, Dolan, & van der
Molen, 2006; Kail, 2000; see Lee et al., 2013 for discussion).
PS is highly correlated with white matter integrity (Kievit
et al., 2016) and explains significant unique variance in
English and maths attainment during adolescence (Donati,
Meaburn, & Dumontheil, 2019; Rohde & Thompson,
2007).

Little is currently known about the genetic architecture
of EFs and the extent of shared genetic influence underpin-
ning the observed relationships between EFs and academic
achievement. Twin studies have demonstrated that individ-
ual differences in EFs are highly heritable, with estimates
for latent EF factors ranging from 76% (cognitive flexibility)
to 100% (WM), with lower estimates reported for individ-
ual EF tasks (29%–76%) (Friedman et al., 2008). Common
EF latent measures have reported twin heritability estimates
of approximately 99% (Engelhardt, Briley, Mann, Harden, &
Tucker-Drob, 2015; Friedman et al., 2008; OATS Research
Team et al., 2012).

Large-scale genotyping approaches such as genome-wide
association studies (GWAS) seek to identify specific genetic
variants (typically, single nucleotide polymorphisms; SNPs)
that contribute to the heritability of cognitive abilities
in order to identify the associated biological pathways
and functions, and gain mechanistic insights (Visscher,
Brown, McCarthy, & Yang, 2012). To date, the majority of
well-powered GWASes of cognitive abilities have focused
on intelligence (or general cognitive function; g); the largest
GWAS meta-analysis of g (N = 78,308) reported 18 indepen-
dent SNPs and 30 gene-based associations (Sniekers et al.,
2017). There exist few well-powered GWASes of specific
cognitive abilities; the largest examined individual measures
of PS, verbal-numerical reasoning and short-term mem-
ory (holding information in mind) using the U.K. Biobank
sample of adults (N = 112,151). It identified two significant
SNP associations with PS, but none for short-term mem-
ory (Davies et al., 2016). A smaller study of adults using
established single measures of EF such as the trail-making
(N = 5,429–6,210) and Stroop tasks (N = 12,866) failed
to find specific SNP associations with EF, but found an
association with PS (N = 32,070) (Ibrahim-Verbaas et al.,
2016).

Recently developed statistical approaches use summary
statistics generated from GWASes to calculate heritability
estimates (h2

SNP) and correlations (rG) directly from DNA,

even when no genome-wide significant associations have
been identified (Bulik-Sullivan et al., 2015; Dudbridge, 2016).
These DNA-based methods have provided further insights
into the extent of shared genetic mechanisms between
correlated traits, and the relative contribution of common
variants to twin-based heritability estimates. DNA-based
heritability methods have been used to demonstrate that g
has a moderate h2

SNP of between 20% and 35% (Kirkpatrick,
McGue, Iacono, Miller, & Basu, 2013; Sniekers et al., 2017);
this means that between 20% and 35% of the phenotypic
variance in general cognitive ability in the measured popu-
lation can be explained by the additive effects of all common
genetic variants captured in the GWA study. The Davies
et al. (2016) GWAS of cognitive functions reported lower
estimates for memory (h2

SNP = 5%) and PS (h2
SNP = 11%),

although this might in-part be due to the relatively coarse
measures used and their low test–retest reliability. Another
(smaller) GWAS obtained higher estimates for WM using
the N-back task (h2

SNP = 24%–41%) (Vogler et al., 2014).
As expected, large genetic correlations (rG ∼.70) have been
reported between general cognitive ability and educa-
tional attainment (Hill et al., 2018), which indicates that a
high proportion of the DNA sequence variants affecting
g also have an effect on years spent in education (either
directly or by mediation). Assessing the extent of gener-
ality and specificity of shared genetic influence between
cognitive domains and educational outcomes has impor-
tant implications for understanding why some children do
better at school than others, and paves the way for stud-
ies centered on understanding causal relationships across
development.

The goal of the present study was to bridge the gap in
our current understanding of the genetic contributions to
specific cognitive abilities in adolescence—a critical devel-
opmental period—and their genetic relationship to other
educationally relevant measures. To address these aims,
three univariate GWASes were performed on latent mea-
sures obtained from a principal component analysis (PCA)
of cognitive task data collected when participants from the
Avon Longitudinal Study of Parents and Children (ALSPAC)
were between 9 and 20 years of age (N = 4,611); namely
(a) WM, (b) IC, (c) and PS (Donati et al., 2019). Linkage
disequilibrium score (LDSC) regression was applied to the
GWAS summary statistics to (a) estimate the SNP heri-
tability (h2

SNP) of each cognitive measure and (b) index
genetic correlations (rG) between the cognitive measures
and between these measures and publicly available GWAS
data sets for general intelligence, years in education, and col-
lege completion as well as attention deficit hyperactivity dis-
order (ADHD). We include ADHD due to the large body of
research linking it with EF deficits and poorer educational
outcomes (Biederman et al., 2004; Clark, Prior, & Kinsella,
2002).

Volume 13—Number 3 225



GWAS of Cognition in Adolescence

METHODS

Study Cohort
ALSPAC (http://www.bristol.ac.uk/alspac/) is an ongo-
ing population-based study investigating factors influencing
development and health. Initial recruitment included 14,541
mothers with 13,988 children alive at age 1. Another round
of recruitment at around age 7 left the total sample size for
data collected after this age at 15,247 (see Appendix S1 in the
online Supporting Information and Boyd et al., 2013; Fraser
et al., 2013). The sample for this study consisted of 4,611
participants (2,173 males) aged between 9 years 10 months
and 20 years 0 months at testing for whom genome-wide
SNP genotyping data was available. Ethical approval for
the study was obtained from the ALSPAC Ethics and Law
Committee and the Local Research Ethics Committee.

Measures
Cognitive Measures
The three latent cognitive measures used (WM, IC, and PS)
were previously derived from a set of 10 cognitive tasks avail-
able in the ALSPAC data set during adolescence, broadly
defined as between the ages of 10 and 17 years of age. PCA
was used as different tasks had been used at different ages,
and resulted in a three-factor solution (see Donati et al., 2019
for full details, and Table S1, Supporting Information for
PCA results). Briefly, nine cognitive tasks were included in
the three components. The Counting Span task (Case, Kur-
land, & Goldberg, 1982) performed at 10 years of age, is a
WM task which requires processing, storing, as well as an
element of updating information in WM. The Stop Signal
task (Logan & Cowan, 1984), performed at 10 and 15 years
of age, is a computerized measure of motor response inhibi-
tion. Three attention tasks from the Tests of Everyday Atten-
tion for Children (adapted from Robertson, Ward, Ridgeway,
& Nimmo-Smith, 1996) were performed at age 11: the Sky
Search task, assessing selective attention and motor control;
the Dual task, assessing divided attention; and the Oppo-
site Worlds task, which is a shifting task. At age 13 par-
ticipants were assessed on the Digit Vigilance task, which
measures sustained attention, and is part of the Cognitive
Drug Research computerized cognitive assessment system
(Simpson, Surmon, Wesnes, & Wilcock, 1991). Simple and
Choice Reaction Time (RT) measures were also taken at age
13. Finally, a visuospatial N-back task was used at 17 years
to test WM and updating. The working memory compo-
nent of the PCA comprised measures of performance on the
N-back, Digit Vigilance, Counting Span, and Dual tasks. The
inhibitory control component comprised measures of per-
formance on the Stop Signal task. Finally, the PS component
comprised RT measures of the Digit Vigilance, Simple RT,
Choice RT, Sky Search, and Stop Signal tasks. No shifting
component was identified.

LDhub Measures
LDhub (http://ldsc.broadinstitute.org/ldhub/) stores the
summary statistics from published GWASes. For the pur-
pose of the present study we selected five educationally
relevant traits of lifespan intelligence, child intelligence,
years spent in education, college completion, and ADHD.
The study on lifespan intelligence included 78,308 indi-
viduals from 13 different cohorts of European descent:
eight cohorts of children <18 years (N = 19,509), and five
cohorts of adults 18 –78 years (N = 58,799). The measure of
intelligence for these cohorts was either g or a primary mea-
sure of fluid intelligence (Sniekers et al., 2017). The study
on childhood intelligence includes a child-only subsample
(6–18 years) of 17,989 individuals (N discovery= 12,441)
also included in the Sniekers et al. study, again using a
combination of g and fluid intelligence measures (Benyamin
et al., 2014).

Years in education is derived from the 2016 Social Sci-
ence Genetic Association Consortium (SSGAC) GWAS that
included adults (<30 years) of European descent (N dis-
covery= 293,723; N replication= 405,072). The measure of
educational attainment used in this study was number of
years spent in education (Okbay et al., 2016). The study on
college completion included a simpler binary phenotype of
whether an individual went to college (university) or not.
The replication study included 126,559 individuals (N dis-
covery= 101,069) from 42 different cohorts of Caucasian
ancestry <30 years (Rietveld et al., 2013). Finally, the study
on ADHD (N cases= 20,183, N controls= 35,191) included
12 cohorts from Europe, North America, and China. Cases
had a clinical diagnosis of ADHD (ADHD Working Group of
the Psychiatric Genomics Consortium (PGC) et al., 2019).

Genotyping and Quality Control
Genotyping and imputation was performed by ALSPAC.
Adolescents from ALSPAC were genotyped using the Illu-
mina HumanHap550 quad chip by 23andMe subcontracting
the Wellcome Trust (Wellcome Sanger Institute, Cambridge,
UK) and the Laboratory Corporation of America (Burling-
ton, NC, US). The raw genome-wide data was subjected
to standard quality control procedures to identify individuals
and SNPs for exclusion. Samples that passed quality control
stages were phased and imputed against the Haplotype Ref-
erence Consortium panel using Impute V3 (Delaneau, Mar-
chini, & Zagury, 2012), and post-imputation SNP and sample
quality control was repeated (for full details see Table S2 in
the online Supporting Information). The final sample con-
sisted of 4,611 unrelated individuals for whom both cognitive
and genotype data were available.
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Table 1
Estimates of SNP Heritability and Phenotypic and Genetic Corre-
lations Between the Three Cognitive Measures

Phenotypic correlations (R)
h2

SNP (SE) WM IC PS

Genetic
correlations
rG (SE)

WM .30 (.07) −.03 .13***
IC NA −.01 (.07) .21***
PS .24 (0.32) NA .19 (.07)

Note. SNP heritability estimates (h2
SNP) is shown along the diagonal in bold. Phe-

notypic correlations (R) are shown above the diagonal, and genetic correlations
(rG) below the diagonal. IC, inhibitory control; PS, processing speed; SE, stan-
dard error; SNP, single nucleotide polymorphism; WM, working memory; NA,
genotypic correlations were not calculated for inhibitory control as no SNP her-
itability was observed for this measure.
***p < .001.

Statistical Analyses
All data preparation was performed using R (R Core
Team, 2013). Prior to analysis all three measures were
quantile-normalized using SNPTEST (Marchini, Howie,
Myers, McVean, & Donnelly, 2007) and regressed on age,
sex, and the first 10 ancestry principal components. Uni-
variate linear regressions were performed for each of the
three measures using SNPTEST v.2 (Marchini et al., 2007).
Imputation probability scores were used to maximize sta-
tistical power to detect genetic associations. Gene-based
association analyses were performed using MAGMA within
the FUMA program using the summary statistics from
each GWA analysis (de Leeuw, Mooij, Heskes, & Posthuma,
2015; Watanabe, Taskesen, van Bochoven, & Posthuma,
2017). The proportion of variance attributable to common
SNPs (h2

SNP) and genetic correlations (rG) were estimated
from GWAS summary statistics using LDSC regression
and cross-trait LDSC regression as implemented in LDhub
(Zheng et al., 2017).

RESULTS

SNP Heritability
SNP heritability was 0.30 for working memory, and 0.19
for processing speed (Table 1). The inhibitory control GWAS
failed to detect SNP heritability (−0.01) and had a mean
χ2

< 1, which can be interpreted as a lack of polygenic signal.
IC was therefore excluded from further analysis.

Genome-Wide Association Analyses
Univariate genome-wide association analyses on the latent
measures of working memory, inhibitory control, and pro-
cessing speed failed to identify any genome-wide significant
SNP associations (p < 5 × 10−8; Figures 1 and 2). Notably,
many of the suggestive SNPs (p < 1 × 10−6) were located in
or close to genes previously reported to be associated with

Fig. 1. Manhattan plots for GWASes of working memory,
inhibitory control, and processing speed. The red dotted line
represents genome-wide significance (p < 5× 10−8) and the blue
dotted line represents genome-wide suggestive significance
(p < 10−6).

neurocognitive decline, psychiatric disorders, and/or educa-
tional attainment (Table S3, online Supporting Information).

Genetic Correlations Between Cognitive and Related
Phenotypes
Genetic correlations were estimated between WM and PS,
and with five education-related phenotypes using the LDhub
database (Table 2). Genetic correlations assess the extent
to which the same allele (of a bi-allelic SNP) influences
both trait 1 and trait 2. An allele can be associated with a
higher or lower score on a measure; thus the direction of
the genetic correlation indicates whether alleles act on both
traits in the same (positive correlation) or opposite (neg-
ative correlation) directions. Therefore, both positive and
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Fig. 2. Quantile-quantile plots (Q-Q plots) for working memory, inhibitory control, and processing speed GWASes. Q-Q plots show the
distribution of p-values against the expected p values. (a) Working memory, (b) Processing speed, (c) Inhibitory control.

negative correlations indicate shared genetic etiology. WM
was significantly (p < .001) genetically correlated with all
five phenotypes, with the lowest overlap found for ADHD
(rG =−.54) which was also the only negative correlation.
Genetic correlations for PS were 20%–55% lower than that
seen for WM, with nominally significant (p < .05) corre-
lations found only for lifespan intelligence (rG = .53) and
ADHD (rG =−.30).

Gene-Based Analyses
Gene-based analysis using MAGMA identified two
genome-wide significant associations on chromosome 11:
FAM181B was associated with WM (p = 1.99 × 10−6) and
TNNI2 was associated with PS (p = 2.74 × 10−6; Table 3).
FAM181B is widely expressed in the brain, and TNNI2 in
the musculoskeletal system.

DISCUSSION

We performed the first GWASes for latent measures of EF
in an adolescent sample. The goal of the present study

was to further our current understanding of the genetic
contributions to specific cognitive measures in adolescence,
and the extent of genetic correlations with educationally
relevant outcomes.

SNP Heritability Findings
The highest heritability was found for WM (h2

SNP = .30),
which is similar to other estimates that used well-replicated
tasks (h2

SNP = .24–.41; N-back task; Vogler et al., 2014),
but higher than tasks with lower validity (h2

SNP = .05;
card memory task; Davies et al., 2016). In line with other
complex traits and behaviors, our h2

SNP estimate is lower
than those obtained from twin estimates (h2

TWIN = .56–1;
Friedman et al., 2008). The likely origin of the discrepancy
between twin and DNA-based estimates (often referred to
as “still-missing” heritability) has been extensively debated
(e.g., see Manolio et al., 2009), but is likely to be the effects
of rare(r) variants not typically captured in a GWAS, along
with nonadditive effects. Thus, to consider the full spec-
trum of genetic influence on WM, further empirical work
using very large samples and next generation sequencing
approaches will be required.
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Table 2
Genetic Correlations (rG) With Educationally Relevant Measures Estimated Using GWAS Summary Statistics and LDSC Regression in
LD Hub

Working memory Processing speed
rG (SE) p Value rG (SE) p Value

Lifespan intelligence 1.15 (0.22) 1.36 × 10−7 0.53 (0.27) 0.050
Childhood intelligence 0.80 (0.16) 2.50 × 10−7 0.45 (0.36) 0.211
Years of schooling 2016 0.70 (0.15) 4.20 × 10−6 0.16 (0.16) 0.293
College completion 0.65 (0.13) 5.96 × 10–7 0.19 (0.22) 0.385
Attention deficit hyperactivity disorder −0.54 (0.12) 1.1 × 10–5 −0.30 (0.15) 0.042

Note. SNP, single nucleotide polymorphism. Bolded figures represent a significant (p ≤ .05) correlation. However, Bonferroni correction for multiple testing requires
p < .001. The genetic correlations can exceed 1 as LD score regression is not a bounded estimator and so can produce correlations larger than 1 or smaller than −1.

Table 3
Significant Gene-Based Associations

Phenotype Chromosome Gene Gene name p Value z Statistic

Working memory 11q14.1 ENSG00000182103 FAM181B 1.99 x 10−6 4.6124
Processing speed 11p15.5 ENSG00000130598 TNNI2 2.74 x 10−6 4.5453

Note. Genome-wide threshold for gene analysis= p (.05) /number of genes (18,192)= 2.75 × 10−6.

A more moderate SNP heritability estimate was found
for PS (h2

SNP = .19). Again, as expected this is smaller than
twin estimates (h2

TWIN ∼ 40%–60%; Wright et al., 2001),
but larger than that reported in a previous GWAS study
(h2SNP= .11; Davies et al., 2016). In contrast, common
genetic variation failed to account for individual differences
in IC (h2

SNP =−.01). Several explanations could account for
this finding. It is possible that individual differences in IC
are explained by environmental factors and DNA sequence
variants not captured in the GWAS. However, it is also
possible that inconsistencies in the parameter settings of
the Stop Signal task at age 15 may have complicated the
detection of common genetic effects. We attempted to
correct for this by regressing out parameter differences from
the scores, but this may have resulted in a less reliable mea-
sure. Alternatively, our finding could reflect other research
showing that IC is not distinguishable from a common EF
factor (Friedman & Miyake, 2017; Lee et al., 2013). Although
our PCA allowed for components to be correlated (and IC
explained the same amount of variance in the cognitive
data as WM and PS), the IC component may represent
noncognitive or nonheritable variance (Friedman & Miyake,
2017). There has only been one other GWAS (N = 12,866)
of inhibitory control, and while this study did not estimate
SNP heritability it failed to detect any significant genetic
associations with the Stroop task (Ibrahim-Verbaas et al.,
2016). Twin study estimates of the Stop Signal task report
heritabilities ranging between 26% and 50% (Crosbie et al.,
2013; Schachar, Forget-Dubois, Dionne, Boivin, & Robaey,
2011). Other studies have found moderate twin heritabil-
ity with little to no SNP heritability in the same sample
(Cheesman et al., 2017), with the discrepancy explained by

the differences in broad versus narrow sense heritability. It is
plausible that non-cognitive noise present in the individual
measures of IC used in twin studies may be contributing to
the heritability estimates found (Friedman & Miyake, 2017),
or that these estimates are picking up common cognitive
variance which is otherwise explained by working memory
in this study (Friedman et al., 2008). However, IC has been
shown to predict academic achievement in the early years
after controlling for other cognitive abilities (Blair & Razza,
2007; Espy et al., 2004). If IC is a distinct cognitive construct,
this study suggests that individual differences in adolescence
are not explained by common genetic variation. However,
our results can also be interpreted as adding to available
evidence that IC does not explain unique variance beyond
other executive functions.

GWAS Findings
We failed to identify any robust genetic associations at a
genome-wide threshold with any of the three cognitive latent
measures examined. This is not unexpected given the highly
polygenic nature of higher-level cognitive measures and the
modest sample size. However, both WM and PS showed a
number of suggestive hits (p ≤ 1 × 10–6) in or near genes
that have previously been reported in genetic studies of psy-
chiatric disorders such as schizophrenia and major depres-
sion, sleep disorder, and Alzheimer’s disease. Interestingly,
several of these SNPs have also been associated with cog-
nitive or neurological measures, including performance on
the anti-saccade task and brain volume measures (cingulate
and parietal cortex), as well as educational achievement (see
Table S3, online Supporting Information). We also found
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suggestive associations in regions previously associated with
subjective well-being and Parkinson’s disease.

Genetic Correlations
As expected, based on previous findings (e.g., Cragg et al.,
2017; Hill et al., 2018; Van der Ven et al., 2012), WM was
strongly positively genetically correlated with other cog-
nitive abilities and academic attainment in independent
samples. The correlations with intelligence measured
in childhood (rG = .80± .16) and years in education
(rG = .70± .15) were lowest, although the standard errors
were large and overlapped with the estimated genetic corre-
lation with lifespan intelligence. These results suggest that
genetic variants captured in GWAS studies that affect WM
are pleiotropic, and the measures share common underlying
biological mechanisms. Further advances in this research
will require the identification of genome-wide significant
associations and further dissection (e.g., using Mendelian
randomization approaches) to gain insight into the nature
and direction of causal relationships between WM, intel-
ligence, g, and academic outcomes across development.
There was also a significant negative correlation between
WM and ADHD (rG =−.54), which replicates previous
genetic and phenotypic study findings (Martin, Hamshere,
Stergiakouli, O’Donovan, & Thapar, 2014; Martinussen,
Hayden, Hogg-Johnson, & Tannock, 2005).

In comparison, the genetic variation in PS in our ado-
lescent sample was found to be more distinct. Genetic
correlations with both lifespan and childhood intelligence
were half the size of correlations found for WM indicating
that genetic causes of individual differences in PS are some-
what independent of those influencing general intelligence
and years spent in education (at least when considering the
influence of common genetic variants). This is an intriguing
result given that PS is thought to be integral to EF and
academic achievement (Dodonova & Dodonov, 2012; Gor-
don, Smith-Spark, Newton, & Henry, 2018; Kail, 2000).
Given that our measure of PS was heritable, it suggests that
distinct biological pathways contribute to individual differ-
ences in PS compared to those influencing general cognitive
function and educational attainment. The correlation with
ADHD is moderate, reflecting behavioral research (Walg,
Hapfelmeier, El-Wahsch, & Prior, 2017).

Gene-Based Findings
Gene-based analyses potentially have greater statistical
power to detect causal loci because they aggregate corre-
lated SNP effects across a gene, and reduce the multiple
testing burden (Kang, Jiang, & Cui, 2013). A gene-level
significant association between WM and Fam181b (Homo
sapiens family with sequence similarity 181 member B)
was found. Fam181b codes for an intracellular protein and

is widely and almost exclusively expressed in the brain,
showing enrichment in the caudate, cerebellum, cortex,
hippocampus, and hypothalamus (https://gtexportal.org/
home/), and has been associated with Alzheimer’s dis-
ease (Herold et al., 2016). In mice, Fam181b transcripts
have been detected early in embryonic brain development
(Marks et al., 2016).

A gene-based association was also found between PS and
TNNI2. TNNI2 (Homo sapiens troponin I2, fast skeletal
type), is part of a collection of genes involved in governing
muscle function, and mutations in this gene are associated
with digestive system disease (Jostins et al., 2012) and mus-
cle contractures (Sung et al., 2003; Toydemir & Bamshad,
2009). Speculatively, there could be a plausible physiological
relationship between muscle function and physical speed of
response, which would not necessarily reflect individual dif-
ferences in cognition.

CONCLUSION

In conclusion, although individual and common EF compo-
nents and PS have been found to be closely related (Gordon
et al., 2018), the contribution of common genetic variation
to individual differences in working memory, inhibitory
control, and processing speed were found to differ. No SNPs
were significantly associated with any of the cognitive mea-
sures, but two genes were found to be associated with WM
and PS, respectively. Thirty percent of the variance in WM
was explained by common SNPs. The same genetic variation
also contributes to individual differences in intelligence.
SNP heritability for variance in PS was 19%, with approx-
imately 50% of this heritability shared with intelligence.
Inhibitory control in contrast appeared to have very low
SNP heritability. This might reflect the measure failing to
explain (heritable) cognitive variance in the sample, or that
individual differences in performance on IC tasks are largely
environmentally driven.
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