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Objective: To evaluate the transmit efficiency and specific absorption rate (SAR)

efficiency of a new eight‐element passively fed meander‐dipole antenna array

designed for body MRI at 7 T, and to compare these values with a conventional

directly fed meander‐dipole array.

Methods: The main radiating element of the passively fed dipole is printed on one

side of a dielectric substrate and is capacitively coupled to a shorter feeding element

(connected to the coaxial cable) printed on the opposite side of the substrate. The

transmit (B1
+) field and SAR were simulated on a phantom and on a human voxel

model for both a passively fed and a directly fed single element. Two eight‐channel

arrays containing, respectively, directly and passively fed meander dipoles were then

simulated, and experimental B1
+ maps and T2‐weighted spin echo images of the pros-

tate were obtained in vivo for four healthy volunteers.

Results: In simulations, the mean transmit efficiency (B1
+ per square root input

power) value in the prostate was ~ 12.5% lower, and the maximum 10 g average

SAR was 44% lower for the array containing passively fed dipoles, resulting in

~ 15% higher SAR efficiency for the passively fed array. In vivo RF‐shimmed turbo

spin echo images were acquired from both arrays, and showed image SNRs within

5% of one another.

Conclusion: A passive‐feeding network for meander‐dipole antennas has been

shown to be a simple method to increase the SAR efficiency of a multi‐element array

used for body imaging at high fields. We hypothesize that the main reason for the

increase in SAR efficiency is the storage of the strong conservative electric field in

the dielectric between the feeding element and the radiating element of the dipole.

The passive‐feeding approach can be generalized to other dipole geometries and

configurations.
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1 | INTRODUCTION

Human MRI at high field strengths is challenging due to significant inhomogeneities in the transmit (B1
+) fields that occur as a result of the rela-

tively short RF wavelength in tissue compared with the dimensions of the human body. This is particularly evident in body applications at field

strengths of 7 T and higher,1,2 which has led to the use of transmit arrays consisting of multiple (typically 8–32 elements) transmit antennas.3-9

This approach uses individually controlled transmit channel phases and/or magnitudes. A number of different resonators have been used for

the individual elements of these arrays, including loops and microstrips,8,10,11 but in the past few years various forms of dipole antennas have

become the predominant geometry.12-16 The intrinsic far‐field nature of a dipole is advantageous in terms of transmitting electromagnetic energy

into deep‐lying organs within the body.17 Dipoles have been shown both theoretically 18,19 and experimentally20-23 to be efficient transmit

elements for body imaging at 7 T in particular, and have also recently been used at 10.5 T.24

After the initial demonstration of the performance of a conventional straight dipole, a substantial amount of research has concentrated on opti-

mizing the dipole geometry in order to improve a combination of the transmit efficiency (B1
+ field per square root input power) and the specific

absorption rate (SAR) efficiency (B1
+ field to the square root maximum specific absorption rate [SAR10g, max]). For example, the fractionated dipole

antenna presented in21 is a straight printed dipole with several meandered structures included in each leg of the dipole, which act as inductances to

increase the electrical length of the dipole. This design produces the lowest SAR10g, max among current dipoles used for high field imaging. Dipoles

can be used as transmit‐only or transceiver elements, either alone or in combination with loop antennas as additional receive elements .25 Fraction-

ated dipoles can be combined in pairs to give independent excitation of the even and odd modes of the dipole pair.26

For all of the dipole geometries described in the literature, including the meander dipole, the element is directly fed via a partially or fully bal-

anced lumped matching element network consisting of capacitors and/or inductors. However, it is also possible to feed dipole elements passively,

ie via inductive and capacitive coupling from a passive structure that is coupled to the dipole.27,28 In this study, we evaluate experimentally and in

simulations the passive‐feeding approach for a 300 mm long meander‐dipole antenna used as an array element for prostate imaging at 7 T. The

main radiating antenna element was printed on one side of a dielectric substrate, coupled to a shorter passive feeding element printed on the oppo-

site side. Numerical and experimental comparisons were performed with a conventional array containing directly fed meander‐dipole antennas.
2 | MATERIALS AND METHODS
2.1 | Dipole fabrication

The passively and directly fed meander‐dipole geometries are shown in Figure 1. The length and geometry of the short feeding dipole (in the pas-

sively fed meander‐dipole design) was chosen via a parametric study (data not shown), in which the length of the feeding dipole was varied from

90 to 150 mm, in steps of 10 mm, and both a straight and meandered geometry were studied, in order to obtain the maximum SAR efficiency. The

design of the directly fed meander dipole is identical to that described previously.21 The dipoles were each 300 mm long and were fabricated on an

FR‐4 printed circuit board (PCB) substrate (ɛr = 4.3, tan δ = 0.025, substrate thickness = 1.5 mm). For a passively fed dipole (Figure 1A), one side of

the PCB (“back” side) contained a short feeding element (length = 110 mm) with a small meander at the end of each leg. The other side of the PCB

(“front” side) contained a larger radiating dipole and was oriented towards the phantom/subject. The passively fed meander dipole had a 33 nH
FIGURE 1 Designed geometry and photos
of fabricated meander‐dipole antennas with
(A) passive feed and (B) direct feed
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inductor connected between the legs of the short feeding element and two identical 3.9 pF matching capacitors (Figure 1A). The directly fed

meander dipole (Figure 1B) had two identical matching capacitors with a value of 22 pF. For the transmit/receive array eight directly fed and eight

passively fed meander antennas with the same total dimensions as described above were constructed. A 20 mm thick polymethylmethacrylate

(PMMA) spacer was attached to the face of the dipole.

S11 was measured for both the directly and passively fed meander dipoles as a function of the distance between the single antenna and the

phantom: this distance was varied from 20 to 70 mm in steps of 10 mm. The reference point for both antennas was the feed point, ie the short

feeding dipole was at the same distance from the phantom as the feed point of the directly fed dipole.
2.2 | Electromagnetic simulations and antenna measurements

Electromagnetic simulations were performed in CST Microwave Studio 2016 (CST Studio Suite, Computer Simulation Technology, Darmstadt,

Germany). Simulations were first performed with a single antenna element on a square phantom (Figure 2A). Subsequently, eight‐element arrays

containing directly or passively fed dipoles (Figure 2B) were simulated using the voxel model Gustav (CST Studio Suite, Computer SimulationTech-

nology). The voxel size in Gustav was 2 x 2 x 2 mm. The PMMA spacer placed between the antenna and phantom/voxel model was included in the

simulations. The dielectric properties of the phantom used were ɛr = 50 and σ = 0.6 S/m. To evaluate the B1
+ and SAR10g, max efficiency of the

single antenna, results were normalized to 1 W of accepted power. In the eight‐element body array simulations, B1
+ and SAR10g, max were normal-

ized to 8 W of accepted power. Simulations of the SAR and B1
+ of passively and directly fed dipole antennas were performed with open boundary

conditions in all directions. The mesh type used was hexahedral. The total number of cells for the single antenna phantom simulations was 1.5

million cells and the simulation time was around two minutes on a standard desktop computer. The total number of cells for the eight‐channel

body array with voxel model Gustav was ~ 14.5 million and the simulation time was around 30 minutes.

Simulated RF shimming was performed by adjusting the phases of the individual channels to produce the maximum constructive interference

of all channels in the prostate region. The phase of the B1
+ field produced by each channel in the prostate was estimated, and the corresponding

negative phase applied to the transmit channel was such that the phases of all channels were zero in the prostate, and that the B1
+ fields added

constructively.
2.3 | MRI measurements

All studies were approved by the medical ethics committee of the Leiden University Medical Center. In vivo experiments were performed using a

Philips (Philips Best, The Netherlands) 7 T whole body scanner equipped with an eight‐channel parallel transmit architecture (Philips Achieva).

Single antenna B1
+ maps were measured on a phantom, and in vivo B1

+ maps were obtained using the dual refocusing echo acquisition mode

(DREAM)29 sequence with the following parameters: field of view (FoV) = 400 x 320 x 25 mm, voxel size = 5 x 5 x 5 mm, slices = 5, tip angle = 10°,

stimulated acquisition mode (STEAM) angle = 50°, TE/TR = 1.97/15 ms, one signal average. Based on the in vivo B1
+ maps, phase‐based RF

shimming was performed as described above (with a linear optimization algorithm written in MATLAB on a PC linked to the MR scanner) to obtain

the maximum B1
+ in the prostate of a healthy volunteer. Equal magnitude excitation was used on all channels.

MRI‐based thermal measurements were performed using the proton reference frequency method30 with antennas placed on the phantom. The

3DGRE sequence used for heating had the following parameters: TR/TE = 14/10 ms, flip angle (FA) = 100, scan duration = 1800 s; the final

temperature was measured after 30 minutes of scanning.

Four healthy volunteers with different body mass indices (BMIs) were imaged. The BMIs varied from 20.8 to 28.7 kg/m2. The sequence param-

eters used for in vivo imaging were as follows: a T2‐weighted turbo spin echo (TSE) sequence, TE/TR = 110/6000 ms, flip angle = 90°, TSE
FIGURE 2 Simulated setups: (A) phantom with a single antenna on top and (B) human body voxel model with eight‐channel dipole array
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factor = 20, FoV = 250 x 380 x 16 mm, voxel size = 0.8 x 0.8 mm, slice thickness = 3 mm, one signal average. A noise correlation matrix was gen-

erated by acquiring data with the RF and gradient channels turned off, with the noise correlation coefficient (ρij) defined as

ρij ¼
cov ninj

� �

σniσnj

where ni is the noise measured in coil element i. SNR maps were acquired using the method described previously .31
3 | RESULTS

Figure 3 shows simulated and measured B1
+ and SAR10g, max values, as well as the thermometry measurements from single dipole elements placed

on the phantom. For the passively fed meander‐dipole antenna, the simulated and measured B1
+ field (normalized to 1 W of accepted power) of a

single element is lower than that of the directly fed antenna (Figure 3A‐D), while the SAR10g, max is reduced by 37% (Figure 3E and 3F). Figure 3G
FIGURE 3 (A, B) Simulated and (C, D) measured B1
+ fields for the single directly and passively fed meander dipoles on a phantom. (E, F)

Simulated max SAR10g for the single directly and passively fed meander dipoles on a phantom. (G) Thermometry measurements of (left) directly
and (right) passively fed meander dipoles. (H) Simulated (left) B1

+ per square root of power and (right) B1
+ per square root of max SAR10g of both

antennas along a central line on a phantom
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shows the results of the MRI‐based thermal measurements performed for the same input power and the same heating time. The passively fed

antenna produced ~ 50% less heating (measured at the point of maximum heating, which was directly under the central point of the dipole) than

the directly fed antenna. The maximum temperature increase produced by the directly fed meander antenna was 12°C while the maximum tem-

perature increase for the passively fed meander antenna was 6°C.

Figure 3H shows a graph of the B1
+ per square root of unit power (transmit efficiency) and B1

+ per square root of SAR10g, max (SAR efficiency)

for both directly and passively fed dipoles plotted along the central line in the phantom. The figures show that the transmit efficiency is higher for

the directly fed dipole at the surface of the phantom, whereas the SAR efficiency is higher for the passively fed antenna for all depths. The ref-

erence point for the measurements was the feed point, ie the short feeding dipole was at the same distance from the phantom as the feed point of

the directly fed dipole (note that in the case where the radiating conductors are instead used as reference points, the B1
+ efficiency increased by

2.7% at the surface and by less than 0.5% at 5 cm depth for the directly fed meander antenna).

In order to investigate the origin of the increased SAR efficiency, Figure 4A shows simulated surface current distribution on an antenna's con-

ductor facing a phantom of (left) directly and (right) passively fed meander dipole. Figure 4B shows the simulated z‐component of the E‐field (Ez)

on the surface of the dipoles. For both cases, the strongest Ez values were at the feed point, around the meanders and at the end of the dipoles.

Figure 4C shows the Ez field from a side view of the simulated setup containing a directly/passively fed meander‐dipole antenna placed on a

20 mm spacer above the phantom. Figure 4D shows the Ez field at the surface of the phantom (top view). The Ez field component was higher

for the directly than for the passively fed dipole throughout the entire phantom.
FIGURE 4 (A) Surface current density on a conductors surface of the (left) directly and (right) passively fed meander dipole. Orientation of the
conductors surface was towards a phantom. (B) Z‐component of the E‐field at the surface of the (left) directly and (right) passively fed meander
dipole. (C) Side view of the E‐field z‐component of the dipole antenna placed 20 mm away from the phantom. (D) Z‐component of the E‐field at
the surface of the phantom of the (left) directly and (right) passively fed meander dipole



6 of 9 ZIVKOVIC ET AL.
Figure 5 shows the measured S11 of both dipole antennas as a function of the distance from the phantom, varying from 20 to 70 mm in steps

of 10 mm. Both antennas were impedance‐matched for a 20 mm distance from the phantom. As the distance increased, the S11 minima of both

antennas shifted towards higher frequencies by the same amount, indicating an equal amount of inductive coupling to the sample (note that the

S11 plot of the passively fed antenna has two peaks: one from the long passive element and the other from the short feeding dipole).

Figure 6 shows the simulated B1
+ and B1

− fields and SAR10g, max values for the two different eight‐channel arrays (both passively and directly

fed antennas) on the body voxel model. The simulated B1
+ field was ~ 12.5% lower in the prostate region for the passively fed meander‐dipole

arrays while the B1
− field was ~ 6% lower for the passively than the directly fed meander. The simulated SAR10g, max produced by the passively

fed dipole array is 44% lower than that from the directly fed dipole array, giving an increase in SAR efficiency of ~ 15%.

Figure 7 shows in vivo images from one of the four healthy volunteers. The experimentally (in vivo) measured noise correlation matrices of

both arrays and for all four volunteers are shown in Figure 8. The coupling coefficients between individual channels of both arrays were below

−15 dB. The measured averaged B1
+ field in the prostate region was ~ 15% lower, while the averaged SNR in a prostate was ~ 5% lower for

the array containing passively fed dipoles.

Figure 8 shows measured noise correlation matrices of four volunteers with BMIs spanning from 20.8 to 28.7 kg/m2. In cases of both passively

and directly fed arrays, the highest coupling coefficient was −15 dB. The highest inter‐element coupling corresponded to the subject with the

highest BMI value, which can be explained by the fact that tuning and matching of antennas were performed on a homogeneous phantom, where

the antennas were placed at a 20 mm distance from the phantom, and for this particular volunteer the effective distance was much greater than

this distance.
4 | DISCUSSION

This study compares the transmit and SAR efficiencies of two identical meander‐dipole configurations, the difference being that one is passively

fed and the other is directly fed. The results show that the transmit efficiency of a passively fed dipole or dipole array is reduced by ~ 15% at

penetration depths of ~ 10–15 cm, whereas the SAR10g, max is reduced by more than 40% and the SAR efficiency is increased by ~ 15%. Because
FIGURE 5 Measured S11 of the (left) directly and (right) passively fed meander dipole when the distance from the phantom has been varied

FIGURE 6 (A) Simulated (left) B1
+ and (right) B1

− per square root of power efficiency (normalized to 8 W of accepted power) and (B) simulated
max SAR10g (normalized to 8 W of accepted power). Optimal phases of channels were determined for a maximum constructive B1

+ in prostate



FIGURE 7 In vivo TSE prostate images made with eight‐channel body arrays of (upper row) directly fed and (lower row) passively fed meander
dipoles with zoomed prostate images

FIGURE 8 Noise correlation matrices of four volunteers scanned with (upper row) directly fed and (lower row) passively fed array. The body
mass indices of volunteers varied from 20.8 to 28.7 kg/m2
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most high field body imaging applications are limited by the SAR rather than the absolute power available from the multiple RF amplifiers, these

results suggest that changing from an actively fed to a passively fed architecture could have significant benefits for body imaging at high fields.

Why does a passive feed reduce the SAR and increase the SAR efficiency? In order to reduce SAR the total electric field penetrating the sample

should be minimized, ideally without significantly affecting the magnetic B1
+ field component. The SAR depends on both the conservative and

inductive (nonconservative) electric field components. The conservative electric field originates from a gradient in charge accumulation on the

antenna's conductor. From Figure 4B and 4C, we conclude that the highest Ez components (which can be attributed to the conservative electric

field) occur at the location of the meanders, at the feed point, and at the end of the antenna's legs. The Ez component is important because, based

on the boundary conditions at the surface of the phantom, the tangential component of the electric field in the air and in the phantom must be the

same. The main attribute of a passive‐feed network is that it provides partial shielding of the Ez component of an electric field in a driven device.

Figure 4C shows that the strongest Ez field of a directly fed antenna originates from the middle (feed) point of the dipole. In the case of the pas-

sively fed dipole, the middle point of the feed is “shielded” from the sample by the passive element and the induced Ez field in the phantom is

reduced. From the surface current distribution at the antenna's conductor facing the phantom (Figure 4A), the maximum current distribution

for the directly fed meander is in the central section of the antenna. The magnitude of the surface current distribution for the passively fed mean-

der is lower in value and more evenly distributed along the conductor. Therefore, the inductive electric field, related to the surface current distri-

bution on the antenna's radiating conductor, is lower for the passively fed meander. To confirm the hypothesis that the total electric field in a
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sample is a combination of both conservative and inductive components, we placed a small shielding strip below a conventional actively fed dipole.

We observed that the reductions in SAR were not as effective as those with the proposed passive‐feed concept.

The inter‐element coupling of the passively fed dipole (−15 to −18 dB) was found to be slightly less sensitive to in vivo loading conditions than

that of the directly fed dipole (−20 to −28 dB), as reflected by the noise correlation coefficients shown in Figure 7, although the absolute values

were higher. Again, these results can be explained in terms of the partial shielding effect of the passive element, which reduces slightly the cou-

pling to the sample.

The actual in vivo SAR value depends on the specific phases applied to the individual channels. In this study, we presented simulated SAR

values of directly and passively fed dipole arrays where the phases are adjusted to produce the maximum constructive interference in a prostate

region. One question to be addressed in future research is whether or not the directly fed dipole antennas would be able to reach a similar SAR

efficiency with a different phase setting if some of the superior B1
+ efficiency were to be traded against avoiding local maxima in SAR.
5 | CONCLUSIONS

This study has shown that the SAR efficiency of a dipole element used for high field MRI can be increased by using a passive‐ rather than an

active‐feeding network. Although the results shown here are specifically for a meander dipole, the passive‐feed network approach can also be

applied to different dipole geometries. For example, we have performed simulations on the SAR efficiency of a passively fed straight dipole

and found similar results to those presented here in terms of the improvement in SAR efficiency. We anticipate that similar behaviour would

be found for other types of dipole such as folded,19 snake,32 or the recently introduced dual mode.26 We also anticipate that a passive‐feeding

network would increase the SAR efficiency of electrically short dipoles, which are known to have high transmit efficiency but relatively low

SAR efficiency, and are suitable, for example, for cardiac or pancreatic imaging.
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