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Abstract

Aim: To explore the added value of diabetes-related genetic risk scores (GRSs) to

readily available clinical variables in the prediction of glycated haemoglobin (HbA1c)

levels after initiation of glucose-regulating drugs.

Materials and methods: We conducted a cohort study in people with type 2 diabetes

(T2DM) from the Groningen Initiative to Analyse Type 2 Diabetes Treatment

(GIANTT) database who initiated metformin (MET) or sulphonylurea derivatives (SUs)

and for whom blood samples were genotyped. The primary outcome was HbA1c

level at 6 months, adjusted for baseline HbA1c. GRSs were based on single nucleo-

tide polymorphisms linked to insulin sensitivity, β-cell activity, and T2DM risk in gen-

eral. Associations were analysed using multiple linear regression to assess whether

adding the GRSs increased the explained variance in a prediction model that included

age, gender, diabetes duration and cardio-metabolic biomarkers.

Results: We included 282 patients initiating MET and 89 patients initiating SUs. In

the MET prediction model, diabetes duration of >3 months when starting MET was

associated with 2.7-mmol/mol higher HbA1c level. For SUs, no significant clinical

predictors were identified. Addition of the GRS linked to insulin sensitivity (for MET),

β-cell activity (for SUs) and T2DM risk (for both) to the models did not improve the

explained variance significantly (22% without vs. 22% with GRS) for the MET and

(14% without vs. 14% with GRS) for the SUs model, respectively.

Conclusion: This study did not indicate a significant effect of GRS related to T2DM

in general or to the drugs' mechanism of action for prediction of inter-individual

HbA1c variability in the short term after initiation of MET or SU therapy.
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1 | INTRODUCTION

Metformin (MET) and sulphonylurea derivatives (SUs) are effective

drugs for the treatment of hyperglycaemia in people with type 2 dia-

betes mellitus (T2DM). Previous studies have shown that the inter-

individual variability in treatment response to these drugs is high.1-3

As the general aim of T2DM drug therapy is to prevent diabetes-

related complications, it is important to obtain more insight into

potential predictors of treatment response in the disease's initial

stages in order to tailor therapy optimally.

In a previous systematic review, we assessed whether clinical vari-

ables could predict the initial glycated haemoglobin (HbA1c) response

to these drugs. The review showed that diabetes duration was the only

consistent predictor of response across studies, with early treatment

initiation in people with short diabetes duration being associated with

better treatment response.4 In addition to clinical variables, the influ-

ence of a person's genetic makeup on MET and SU treatment response

has been explored and systematically reviewed with an emphasis on

OCT genes, genes for encoding additional proteins associated with

AMP-activated protein kinase-dependent inhibition of gluconeogenesis,

SLC47A1 and A2, PMAT, ATM, IRS1, NOS1AP, KCNJ11, ABCC8, CYP2C9

and TCF7L2.5-8 Unfortunately, to date, the clinical applicability of

genotyping prior to drug treatment has been limited, because the effect

of the genetic variants on treatment response has been determined for

specific variants and not in an integrated way.9,10

A previous clinical study assessed the impact of genetic constitution

on diabetes progression. This resulted in the indentification of 65 risk

genes for T2DM, with clusters associated with β-cell activity and insulin

sensitivity.11 Because these risk genes drive disease progression in the

early stage of the disease, we hypothesized that, in addition to readily

available clinical predictors, these genes might also play a role in

predicting the initial treatment response. In contrast to investigating

the impact of genetic makeup from the perspective of the drugs used,

we approached the variability in response to MET and SUs from the

perspective of the genetic makeup involved in progression of T2DM.

The aim of the present study, therefore, was to determine the

added value of (a) clusters of T2DM-related genetic risk scores (GRSs)

related to β-cell activity (specifically in the case of SUs) and insulin sen-

sitivity (specifically in the case of MET), and (b) general GRSs for T2DM

in predicting HbA1c levels after treatment initiation of MET and SUs.

2 | PATIENTS AND METHODS

2.1 | Study design and population

We performed an observational inception cohort study predicting

HbA1c levels after treatment initiation among people with T2DM

included in the Groningen Initiative to Analyse Type 2 Diabetes Treat-

ment (GIANTT) project. The GIANTT database consists of prescription

data, comorbidity and clinical outcome data, routine laboratory test

results, and physical examinations extracted anonymously from elec-

tronic medical records.12 The cohort is predominantly of European

ancestry. The database includes people with a diagnosis of T2DM as

confirmed by their general practitioner. Based on the research code of

conduct in the Netherlands, ethics committee approval is not required

for research using such anonymous medical record data.

A subset of people with T2DM in the GIANTT database partici-

pated in PROVALID, an international cohort study on the incidence and

prevalence of kidney disease in primary diabetes care.13 The

PROVALID study was approved by the local Medical Ethics Committee

of the University Medical Centre of Groningen, and informed consent

was obtained from each participant for the use of genetic samples

before any study-specific procedures commenced (study approval ref-

erence number: NL35350.042.11, METC number 2011.297).

In the present study, we determined two sub-cohorts: a MET and

an SU cohort. For these cohorts, the index date was defined as the

date of the first MET or SU prescription, respectively.

In the MET cohort, the inclusion criteria were: (a) receiving MET

as first-line glucose-lowering drug; (b) registration in the GIANTT

database and receiving no glucose-lowering medication for at least

1 year before the index date; and (c) at least two prescriptions of MET

and exposure to MET at least until 30 days after the start of the sec-

ond prescription.

In the SU cohort, the inclusion criteria were receiving an SU as

first glucose-lowering drug (SU-only) or receiving add-on SU while on

a stable MET dose in the previous 6 months (SU-combi). Both SU-only

participants and SU-combi participants had to be prescribed at least

two prescriptions of an SU and exposed to an SU at least until 30 days

after the second prescription. In addition, people receiving SU-only

had to be registered in the GIANTT database and have received no

glucose-lowering drug for at least a year before the index date. This

implies that people who started on MET and reached a stable MET

dose after which an SU was added could be included in the MET

cohort for the first period and in the SU cohort for the second period.

In both the MET and SU cohorts, we excluded people with:

(a) erroneous dates of entering the practice; (b) no history of laboratory

and practice measurements or prescriptions; (c) no recorded HbA1c at

6 months; (d) high serum triglyceride level (>9.0 mmol/mol); (e) an indi-

vidual call rate of single nucleotide polymorphisms (SNPs) < 90%; and

(e) a high leverage point in the multivariate models (Figure 1).

2.2 | Study outcome and covariates

For each of the cohorts, the outcome was HbA1c level at 6 months

after MET or SU treatment. The HbA1c outcome selected was the clos-

est HbA1c measurement to the 6 months after the index date. We

adjusted this outcome by including the HbA1c level at baseline, which

was the latest HbA1c measurement 1 year before or in the first 2 weeks

after index date, as a covariate. This adjustment accounted for the

effect on HbA1c of concurrent treatment at the time of initiation.

To obtain genetic information, DNA was extracted from blood

samples and genotypes were obtained using the iPlex Gold platform

(Agena Bioscience GmbH, Hamburg, Germany) at the Department of

Genetics, University Medical Centre Groningen, the Netherlands. We

then constructed GRSs by summing the number of risk alleles each
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participant had for every SNP and calculated its effect “per GRS unit”

using the established diabetes risk variants representing an individ-

ual's genetic susceptibility risk, as described by Zhou et al.14 We did

not apply a weighted GRS, because of the large heterogeneity among

people with T2DM.

As the primary genetic determinant for the MET and SU cohorts, we

constructed GRSs consisting of SNPs known to be associated with insu-

lin sensitivity (IS-GRS) and β-cell activity (β-GRS), respectively.14 Addi-

tionally, we built another GRS comprising SNPs associated with T2DM

risk (total-GRS), in which the SNPs in the IS-GRS and the β-GRS were

696 participants selected 

377 receiving metformin  

91 receiving SU

10 participants with late intake (2014)

54 participants with no GIANTT data

9 participants who started with other 

drugs 

155 participants who started with 

combination 

108 Metformin-SU derivative

14 Metformin-insulin

11 Metformin-pioglitazone

1 Metformin-rosiglitazone

1 Metformin-sitagliptin

5 Metformin-vildagliptin

1 SU derivative-acarbose

1 SU derivative-insulin

2 SU derivative-pioglitazone

11 Three combined drugs

5 participants with few prescription 

data 

20 participants with erroneous entry-

to-practice date  

14 participants with no prescriptions 

or measurement history 

49 participants with no HbA1c data at 

end of 6 month-treatment 

289 metformin starters 

70 participants with added 

SU on stable MET dose

6 participants with few prescription 

data 

10 participants with erroneous entry-

to-practice date  

9 participants with no prescriptions 

or measurement history 

1 participant with no record of 

diabetes onset date 

2 participants who started with 

other OADs in 150 days after index 

date 

41 participants with no HbA1c data at 

end of 6-month treatment

92 SU starters
282 metformin starters 

3 participants with individual call rate 

<90% 

2 participants with high leverage 

points 

2 participants with high triglyceride 

/ )

89 SU starters 

1 participant with individual call rate 

<90% 

2 participants with high leverage 

points 

2726 people with type 2 diabetes 

approached 

F IGURE 1 Flow diagram of patient selection. GIANTT, Groningen initiative to analyse type 2 diabetes treatment; HbA1c, glycated
haemoglobin; MET, metformin; OAD, oral antidiabetic drug; SU, sulphonylurea derivative
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also included.11 In the genotyping, two SNPs were not present

(rs780094 and rs516946) and no proxy SNP data were available. We

then applied the call rate threshold of 94% and excluded four SNPs.

In the present study, five SNPs from the IS-GRS and 14 from the

β-GRS were present. Both the MET and SU cohorts had a total-GRS

of 59 SNPs, albeit with different compositions (Table S1). All SNPs

included had a minor allele frequency of >0.01 and were in Hardy–

Weinberg equilibrium (P > 10−5).

As clinical covariates, we included baseline age, gender, diabetes

duration, body mass index (BMI), blood pressure and lipid levels (HDL

cholesterol, total cholesterol and triglycerides). With the exception of

BMI, baseline data collection was based on the latest measurement

24 months prior to the index date. To limit missing data, BMI was

measured either as the latest measurement ever or manually calcu-

lated from the latest length measurement and the latest before or the

first measurement of weight 90 days after index date. Age and diabe-

tes duration were calculated from the index date.

2.3 | Statistical analyses

We applied the following statistical analyses to both the MET and SU

cohorts. First, we used a multiple imputation by chained equation pro-

cedure to overcome the missing data. We generated 30 imputed

datasets, the detailed methods for which have been described

previously.15

First, we assessed whether the outcome HbA1c, adjusted for base-

line HbA1c as a covariate, was univariately associated with either the

clinical covariates or GRSs. We then included age, gender and variables

with P values <.20 from the univariate analyses into a multivariate

linear model. Model specification tests (linktest and ovtest functions

in STATA 13; Statacorp, College Station, Texas) were used to assess

whether the variables in the model were correctly defined. In the MET

cohort model, dichotomization of diabetes duration with a 3-month

cut-off point solved the non-linear correlation in the model and

resulted in a balanced number of participants in each category. We also

included a binary HbA1c control status (control being <53 mmol/mol)

at baseline in this model, because the univariate analysis with baseline

HbA1c showed a discontinued slope at 53 mmol/mol. In the SU cohort

model, we included patient status at index date (SU-only or SU-combi)

to correctly specify the model based on linktest and ovtest.

The coefficient of determinant (R2) was used to explain the percent-

age of explained variance and overall performance of the model. The

additional value of genetic covariates was determined by comparing the

explained variance (R2) of models with and without the inclusion

of GRSs.

We conducted complete case analyses for comparison. Further-

more, we determined whether effect modification by the last pre-

scribed dose was present. The last MET dose was defined as the daily

quantity of MET last prescribed in the 6 months after treatment. For

SUs, defined daily dose (DDD) was used to standardize the dose of

different drugs in the same drug class. The last dose for an SU was

thus calculated as daily quantity of SU last prescribed in the 6 months

after treatment, divided by DDD.16

3 | RESULTS

Out of 2726 people with T2DM who were approached, 903 participated

in PROVALID and 696 consented to participate in the genetic study. Of

TABLE 1 Participant characteristics, presented as mean ± SD or
count (percentage)

Characteristics MET SU

Number of participants 282 89

Age at onset, y 59 ± 9 55 ± 9

Age at initiation, y 59 ± 9 58 ± 9

Male gender 167 (59) 56 (62)

Diabetes duration 110 ± 101

0–3 mo 142 (50) -

>3 mo 140 (50) -

Baseline HbA1c, mmol/mol 58.9 ± 14.9 58.7 ± 13.3

HbA1c at 6 mo, mmol/mol 49.2 ± 6.2 49.6 ± 6.7

HbA1c control status, n (%)

<53 mmol/mol 85 (37) -

≥53 mmol/mol 142 (63) -

SU status, n (%)

SU-only - 37 (42)

SU-combi - 52 (58)

Baseline BMI, kg/m2 30.6 ± 5.1 29.5 ± 5.4

Baseline blood pressure, mmHg

Systolic 140.6 ± 18.5 140.5 ± 18.9

Diastolic 83.0 ± 11.8 83.4 ± 11.4

Baseline lipid levels, mmol/L

HDL cholesterol 1.2 ± 0.3 1.2 ± 0.4

Total cholesterol 5.1 ± 1.1 4.7 ± 1.2

Triglycerides 2.1 ± 1.1 2.2 ± 1.3

GRSs

β-cell secretion-related (β-GRS) - 15.2 ± 2.4

Insulin sensitivity-related (IS-GRS) 6.0 ± 1.4 -

Total 71.1 ± 5.6 70.0 ± 5.1

MET dose at 6 mo, n (%)

≤500 mg 117 (41) -

750-1000 mg 95 (34) -

>1000 mg 70 (25) -

SU group, n (%)

Glibenclamide - 1 (1)

Tolbutamide - 27 (30)

Gliclazide - 53 (60)

Glimepiride - 8 (9)

SU dose at 6 mo (DDDs), n (%)

≤0.5 - 50 (56)

>0.5 - 39 (44)

Abbreviations: DDD, defined daily dose; MET, metformin; SU,

sulphonylurea derivatives.
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these 696 participants, 282 initiated MET and 89 initiated SU and met

the inclusion and exclusion criteria for the study (Figure 1). In both the

MET and SU cohorts, the average age of the participants was almost

60 years and ~60% were men. Except for a longer diabetes duration in

the SU cohort, the cohorts had similar clinical characteristics (Table 1).

Based on the univariate analyses (Table S2), diabetes duration and

HbA1c control status at baseline were included in the multivariate model

for the MET cohort. In this model, diabetes duration of >3 months when

initiating MET was associated with a 2.7-mmol/mol higher HbA1c level

after 6 months (Table 2). Not having HbA1c control at baseline was asso-

ciated with an increase of 3.1 mmol/mol in HbA1c level after 6 months,

despite adjustment of the model for baseline level of HbA1c. This multi-

variate model had an explained variance of 22%. The addition of GRSs,

either the IS-GRS or total GRS, showed no improvements in the

explained variance or changes in the β coefficients of the model. The

complete case analysis showed similar results (Table 2).

When stratified by last dose of MET at the end of 6-month treat-

ment (Table S3), the results showed slightly higher explained variance

of the models (R2 = 27%-28%). The effect of diabetes duration was

more prominent when the participants were prescribed <1000 mg

MET daily, while female gender appeared to increase the HbA1c level

in participants prescribed >1000 mg MET daily, with an increase of

4.6 mmol/mol in HbA1c level after 6 months (Table S3). Again, no sig-

nificant effect of adding the IS-GRS was seen in the stratified analysis.

For the SU cohort, no associations were seen in univariate analyses

between the outcome HbA1c and the study covariates (Table S2); thus,

the multivariate model consisted of age, gender and adjustment of SU

patient status (SU-only or SU-combi), showing insignificant associations.

The model had an explained variance of 14%. Similarly to the MET

cohort, the inclusion of either the β-GRS or total GRS in the models had

no effect on the explained variances or β coefficients (Table 3).

4 | DISCUSSION

In the present observational study, we explored the added value of

diabetes-related GRSs in the prediction of HbA1c response after MET

TABLE 2 Multivariate linear regression models for glycated haemoglobin (HbA1c) at 6 mo of metformin treatment, before and after addition
of genetic risk scores (adjusted for HbA1c at baseline)

Variable

Imputed (N = 282)

Without GRS IS-GRS Total GRS

β (95% CI) P β (95% CI) P β (95% CI) P

Female gender 0.47 (−0.90; 1.85) .500 0.48 (−0.90; 1.85) .497 0.46 (−0.92; 1.84) .512

Age (y) −0.04 (−0.12; 0.04) .288 −0.04 (−0.12; 0.04) .306 −0.04 (−0.12; 0.04) .333

Diabetes duration

0-3 mo 0.00 0.00 0.00

>3 mo 2.69 (1.31; 4.07) <.001 2.69 (1.30; 4.06) <.001 2.70 (1.32; 4.08) <.001

HbA1c control status

<53 mmol/mol 0.00

≥53 mmol/mol 3.08 (1.18; 4.98) .002 3.09 (1.18; 4.99) .002 3.09 (1.19; 4.99) .002

IS-GRS/total GRS - - 0.05 (−0.45; 0.55) .849 0.04 (−0.09; 0.15) .586

R2 0.22 0.22 0.22

Variable

Complete case (N = 227)

Without GRS IS-GRS Total GRS

β (95% CI) P β (95% CI) P β (95% CI) P

Female gender 0.49 (−0.87; 1.85) .475 0.49 (−0.87; 1.86) .476 0.49 (−0.87; 1.85) .481

Age (y) −0.03 (−0.10; 0.05) .496 −0.03 (−0.11; 0.05) .490 −0.02 (−0.10; 0.05) .556

Diabetes duration

0-3 mo 0.00 0.00 0.00

>3 mo 2.59 (1.21; 3.97) <.001 2.59 (1.20; 3.97) <.001 2.60 (1.21; 3.98) <.001

HbA1c control status

<53 mmol/mol 0.00

≥53 mmol/mol 3.57 (1.85; 5.28) <.001 3.56 (1.84; 5.28) <.001 3.58 (1.86; 5.30) <.001

IS-GRS/total GRS - - −0.03 (−0.54; 0.48) .903 0.04 (−0.08; 0.16) .542

R2 0.24 0.24 0.24

Abbreviations: CI, confidence interval; GRS, genetic risk score; HbA1c, glycated haemoglobin; IS-GRS, insulin sensitivity GRS.
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and SU initiation. Diabetes duration was shown to be significantly

associated with HbA1c response in a multivariate model of clinical

predictors, which is consistent with previous findings.4,14 No signifi-

cant associations between T2DM-related risk scores and HbA1c

response were observed in univariate and multivariate analyses, either

with mechanism-specific risk genes (IS-GRS and β-GRS) or with risk

genes in general (total-GRS). Moreover, the inclusion of GRSs in the

models did not improve the explained variance.

The genetics of MET or SU treatment response have been studied

previously, and several genetic variants have been identified as being

associated with response to treatment, for instance, in the case of MET

for OCT genes, SLC47A1 and A2 (MATE1 and MATE2), PMAT and ATM,

and in the case of SUs for ABCC8, CYP2C9, KCNJ11, TCF7L2, genes

encoding additional proteins associated with AMP-activated protein

kinase-dependent inhibition of gluconeogenesis, IRS1, NOS1AP.5-8

However, translation into clinical practice of pharmacogenetics is still

lacking. We therefore approached the inter-individual differences in

response to MET and SUs not from the perspective of the genetics in

the context of the drugs, but from the perspective of the genetic varia-

tion in T2DM. We investigated whether part of the inter-individual var-

iability in treatment response to MET and SUs seen in practice could be

explained by possible inter-individual differences, as reflected by the

diabetes risk genes.11 Previously, Hivert et al17 could not detect an

interaction effect of MET on the association of a GRS with T2DM pre-

diction and regression to normal glucose regulation in patients with

impaired glucose tolerance. We investigated a possible effect on

HbA1c in people already diagnosed with T2DM initiating MET or SU

treatment and did not observe any significant associations of the

diabetes-related GRSs in the early stages of the disease. Furthermore,

apart from the total risk genes, we looked at gene clusters specifically

associated with insulin sensitivity and β-cell activity for MET and SUs,

respectively, as related to their mechanism of action, and did not find

any significant effects.

In our observational cohort study we developed a prediction model

for HbA1c levels at 6-month follow-up, adjusted for baseline HbA1c. In

the MET prediction model, a longer diabetes duration and absence of

HbA1c control at the time of treatment initiation resulted in higher

HbA1c levels after 6 months. Neither the total GRS nor the IS-GRS

improved the explained variance of the model. In the SU cohort no sig-

nificant clinical predictors were identified and neither the total GRS nor

the β-GRS improved the explained variance of the model; therefore, in

contrast to the findings of at least some associations between the

genetic makeup and drug response from the perspective of the drug

itself, the T2DM-related GRSs do not seem to be associated with the

variability in HbA1c response in people with T2DM. Risk prediction for

T2DM seems not to coincide with treatment response prediction for

MET and SUs. A more profound analysis of both the pathways of the

drug action and the activity of the molecular pathways within the indi-

vidual patient may lead to better response prediction models.

To our knowledge, this is the first study determining the associa-

tion between diabetes-related GRSs and HbA1c response in people

with T2DM initiating oral glucose-lowering treatment. This observa-

tional study involved a primary care T2DM population, whose medica-

tion data and HbA1c test results were automatically extracted from

medical records through validated procedures. We looked at HbA1c

response after 6 months, which was sufficient to differentiate glucose-

TABLE 3 Multivariate linear regression models for glycated haemoglobin (HbA1c) at 6 mo of sulphonylurea treatment, before and after
addition of genetic risk scores (adjusted for HbA1c at baseline)

Variable

Imputed (N = 89)

Without GRS β-GRS Total GRS

β (95% CI) P β (95% CI) P β (95% CI) P

Female gender 2.45 (−0.40; 5.29) .091 2.35 (−0.58; 5.29) .115 2.47 (−0.38; 5.33) .088

Age (y) −0.01 (−0.17; 0.15) .921 −0.01 (−0.17; 0.16) .925 −0.01 (−0.17; 0.15) .894

SU-combi 2.17 (−0.78; 5.11) .147 2.19 (−0.78; 5.17) .146 2.24 (−0.72; 5.21) .136

β-GRS/GRS - - −0.09 (−0.70; 0.52) .759 −0.10 (−0.37; 0.17) .465

R2 0.14 0.14 0.14

Variable

Complete case (N = 82)

Without GRS β-GRS Total GRS

β (95% CI) P β (95% CI) P β (95% CI) P

Female gender 2.42 (−0.07; 4.90) .056 1.85 (−0.87; 4.58) .180 2.40 (−0.21; 5.01) .071

Age (y) 0.001 (−0.14; 0.14) .988 −0.01 (−0.15; 0.14) .903 −0.02 (−0.16; 0.13) .805

SU-combi 2.85 (0.20; 5.51) .036 3.05 (0.39; 5.71) .025 3.00 (−0.33; 5.66) .028

β-GRS/GRS - - −0.37 (−0.92; 0.18) .181 −0.13 (−0.37; 0.10) .266

R2 0.14 0.16 0.15

Abbreviations: β-GRS, β-cell activity genetic risk score; CI, confidence interval; GRS, genetic risk score; SU-combi, sulphonylurea derivative and metformin

treatment combined.
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regulating responses.15 For this study, 59 SNPs for the total GRS, of

which five were included in the IS-GRS and 14 included in the β-GRS

were studied. We used multiple imputation to overcome missing data

for the covariates. We consider this the optimal approach, but also

conducted complete case analyses, the results of which did not differ

significantly. We were able to include 282 participants in the MET

cohort but only 89 in the SU cohort; therefore, the power to detect

small effects, in particular those related to the SUs, was low. This may

have limited our ability to detect a real effect, particularly if the effect

was small, which is often the case for a disease with a complex under-

lying pathophysiology such as T2DM. We note, however, that we did

not observe a large variance around the GRS which may be the result

of using a GRS instead of individual SNPs.

In conclusion, T2DM-related GRSs in general or specific to the mech-

anism of action of MET and SUs appear not to be predictive for inter-

individual HbA1c variability after initiation of MET and SUs. This study

can be seen as initial indication that the genes implicated in the risk to

T2DM are different from genes associated with response to T2DM

treatment with MET and SUs. Larger studies including more genes are

needed to explain treatment response variability in people with T2DM.
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