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The kinetic properties of the excitatory amino acid transporter
EAAT2 were studied using rapid applications of L-glutamate to
outside-out patches excised from transfected human embry-
onic kidney 293 cells. In the presence of the highly permeant
anion SCN2, pulses of glutamate rapidly activated transient
anion channel currents mediated by the transporter. In the
presence of the impermeant anion gluconate, glutamate pulses
activated smaller currents predicted to result from stoichiomet-
ric flux of cotransported ions. Both anion and stoichiometric
currents displayed similar kinetics, suggesting that anion chan-
nel gating and stoichiometric charge movements are linked to

early transitions in the transport cycle. Transporter-mediated
anion currents were recorded with ion and glutamate gradients
favoring either unidirectional influx or exchange. Analysis of
deactivation and recovery kinetics in these two conditions sug-
gests that, after binding, translocation of substrate is more
likely than unbinding under physiological conditions. The ki-
netic properties of EAAT2, the dominant glutamate transporter
in brain astrocytes, distinguish it as an efficient sink for synap-
tically released glutamate.
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Clearance of neurotransmitter released by glutamatergic excitatory
synapses is accomplished by the activity of sodium-dependent
transporters located on glial and neuronal cell membranes. Five
distinct members [excitatory amino acid transporter EAAT1
(GLAST), EAAT2 (GLT-1), EAAT3 (EAAC1), EAAT4, and
EAAT5] of a gene family encoding glutamate (Glu) transporters
have been identified to date (Kanai and Hediger, 1992; Pines et
al., 1992; Storck et al., 1992; Fairman et al., 1995; Arriza et al.,
1997). As expected, expression of each of the resulting gene
products confers the ability to accumulate radiolabeled gluta-
mate. Expression also gives rise to an anion conductance (Fair-
man et al., 1995; Wadiche et al., 1995a) consisting of a small anion
leak in the absence of substrate and a larger anion conductance
linked to substrate binding (Bergles and Jahr, 1997; Otis and Jahr,
1998; Wadiche and Kavanaugh, 1998). For this reason, electro-
physiological measurements of transporter currents typically
monitor the sum of two currents, a relatively large anion current,
and a smaller current generated by stoichiometric movement of
cotransported ions and substrate.

The present study uses rapid solution exchange techniques
applied to outside-out patches containing EAAT2 transporters to
determine the kinetic relationship between the two components
of glutamate transporter current. Understanding the link between
gating of the anion conductance and the transport cycle is impor-
tant in several respects. Although anion currents can be readily
detected, it is difficult to measure the smaller stoichiometric
transporter currents in physiological contexts, such as in native

cells engaged in excitatory synaptic transmission (Otis et al.,
1997). To estimate parameters of glutamate transport at function-
ing synapses based on measurements of the larger anion currents,
it is important to establish the relationship between transporter
current and glutamate flux. Transport is a multistep process
involving the binding of substrate and ions, translocation, and the
unbinding of substrate and ions to the intracellular space. During
this process, net charge is moved across the membrane field; this
charge movement generates the stoichiometric current. Kinetic
analysis of these currents is necessary to establish the precise
timing of individual steps in the transport cycle, information
critical for evaluating the role of transporters in buffering and
sequestering synaptically released glutamate (Diamond and Jahr,
1997; Mennerick et al., 1999).

Our results on EAAT2 transporters identify a tight linkage
between the two components of glutamate transporter current.
Furthermore, they suggest that both currents arise from closely
connected states occupied at early steps in the transport cycle, a
proposal supported by an extremely simple mathematical model.
Recordings with ion gradients designed to compare presteady-
state kinetics of glutamate exchange with those of unidirectional
influx suggest that, after binding, glutamate is rapidly translo-
cated by EAAT2. Moreover, binding and translocation steps take
place on a much faster time scale than does a complete transport
cycle. Finally, recombinant EAAT2 shows very similar kinetics to
transporter currents evoked in patches from hippocampal astro-
cytes (Bergles and Jahr, 1997), consistent with the proposal that
EAAT2 (GLT1) is responsible for the majority of glutamate
transport across astrocyte plasma membranes (Rothstein et al.,
1996).

MATERIALS AND METHODS
Human embryonic kidney 293 cells. Human embryonic kidney HEK 293
(HEK 293) cells stably transfected with an ecdysone-inducible plasmid
(Invitrogen, Carlsbad, CA) containing the human EAAT2 cDNA were a
generous gift from Dr. John Dunlop (Wyeth-Ayerst, Princeton, NJ).
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Cells were cultured in DMEM (catalog #10569–010; Life Technologies,
Gaithersburg, MD) supplemented with 10% fetal bovine serum, 100
U/ml penicillin–streptomycin (catalog #15140–122; Life Technologies),
0.4 mg/ml G418 (Geneticin, catalog #10131–019; Life Technologies),
and 0.2 mg/ml Zeocin (catalog #45–0430; Invitrogen). EAAT2 expres-
sion was induced by exposure of the cells to 5–10 mg/ml of the ecdysone
analog ponasterone A (Sigma, St. Louis, MO) for 24–72 hr. Peak
expression, assayed by uptake of radiolabeled glutamate, occurred 24–48
hr after addition of hormone to the culture medium.

Electrophysiology. All recordings were made with an Axopatch 200B
amplifier (Axon Instruments, Foster City, CA) and at temperatures of
21–23 °C. Signals were filtered at 2–5 kHz and digitized at 10–20 kHz. In
whole-cell recordings, pipette solutions consisted of (in mM): 135 CsNO3,
10 HEPES, 10 tetraethylammonium (TEA)-Cl, 10 EGTA, and 1 MgCl2,
adjusted to pH 7.3 with CsOH.

Outside-out patch recordings and rapid solution exchange. Pipettes glass
(World Precision Instruments, Sarasota, FL) was pulled to make elec-
trodes with resistances of 1–3 MV in the bath solution. Three different
pipette solutions were used. To record transporter-associated currents
under conditions that maximized net transport of glutamate, pipettes
contained (in mM): either 135 KSCN or 135 K-gluconate. To record
transporter-associated currents under conditions that ensured homoex-
change of glutamate, pipettes contained (in mM): 130 NaSCN and 10
Na-glutamate. All pipette solutions also contained (in mM): 10 HEPES,
10 TEA-Cl, 10 EGTA, and 1 MgCl2, adjusted to pH 7.3 with either KOH
or NaOH as appropriate.

Rapid solution exchange to outside-out patches was accomplished with
a two-barreled application pipette attached to a piezoelectric bimorph.
Each barrel of this application pipette was connected to a four- or six-way
manifold allowing the application of multiple combinations of solutions
to the same patch. At the end of each experiment, the recording pipette
tip was cleared with positive pressure, and a solution of reduced ionic
strength (diluted 50%) was allowed to flow through the glutamate-
containing barrel. Jumps of the application pipette were then delivered,
and the change in holding current was recorded. The resulting “open-tip”
currents are displayed above each set of experimental traces and repre-
sent the approximate time course of solution exchange across the patch.
A more complete description of these methods has been described
previously (Otis and Jahr, 1998).

The control extracellular solution contained (in mM):135 NaCl, 5.4
KCl, 1.8 CaCl2, 1.3 MgCl2, and 5 HEPES, adjusted to pH 7.4 with
NaOH. For the current versus voltage analyses in different anion gradi-
ents, some of the patches were also exposed to (in mM): 135 NaSCN, 5.4
KSCN, 1.8 Ca gluconate2, 1.3 Mg gluconate2, and 5 HEPES, adjusted to
pH 7.4 with NaOH. All chemicals were purchased from Sigma.

Data analysis. Data analysis was performed with pClamp 6.0 (Axon
Instruments), Origin 5.0 (Microcal, Northampton, MA), and Igor (Wave-
metrics, Lake Oswego, OR). Artifacts caused by the voltage pulse applied
to the bimorph have been removed (Otis and Jahr, 1998). Error bars
represent 61 SEM. Student’s t test was used to determine confidence
intervals.

Simulations. Simulations were performed using ScoP 3.51 (Simulation
Resources Inc.; http://www.simresinc.com/menu.html).

RESULTS
Whole-cell currents
Whole-cell recordings were made from HEK 293 cells stably
transfected with a ponasterone-inducible promoter driving ex-
pression of EAAT2 (see Materials and Methods). Pipettes con-
taining CsNO3 solution were used to voltage-clamp cells, and
whole-cell currents were recorded in response to application of
250 mM L-Glu. After induction, the cells exhibited large inward
currents in response to Glu (Fig. 1A). Current–voltage ( I–V)
relationships were measured by delivering a series of voltage steps
[290 to 150 mV; DV of 10 mV; holding potential of 250 mV] in
the absence and presence of Glu. Families of subtracted re-
sponses (Glu 2 control) are shown for a cell exposed to the
inducing hormone (Fig. 1A) and for an untreated control cell
(Fig. 1B). In Figure 1C, mean I–V curves for three ponasterone-
treated cells ( filled circles) and for five untreated cells (open

circles) show that hormone treated cells develop a glutamate-
dependent conductance that is inward at all membrane potentials
tested, as expected given a high permeability to NO3 anions
(Wadiche et al., 1995a; Levy et al., 1998; Wadiche and Ka-
vanaugh, 1998). By comparison, there was no measurable conduc-
tance activated by glutamate in the untreated cells, demonstrating
that, if HEK cells have endogenously expressed glutamate trans-
porters, they are undetectable with these methods.

Currents in outside-out patches
The large whole-cell currents elicited by Glu indicated that it
might be possible to record transporter responses in cell-free
patches. To measure rapid dynamics of EAAT2 glutamate trans-
porters in response to Glu concentration jumps, patches in the
outside-out configuration were removed from cells that had been
stimulated with ponasterone A for 24–72 hr. At negative holding
potentials, patch currents evoked by a jump into 10 mM Glu
showed rapid inward transients, followed by sustained current
components (Fig. 2A). Outward current shifts were elicited by
jumps from control solution into solution containing 500 mM

kainate, an EAAT2-selective competitive antagonist (Fig. 2B).
The time constants of activation and deactivation of the outward
current evoked by kainate were 1.17 6 0.1 (n 5 5) and 6.2 6 0.4

Figure 1. Whole-cell currents recorded in HEK 293 cells stably trans-
fected with EAAT2 under the control of an inducible promoter. Appli-
cation of the hormone ponasterone A for .24 hr causes the appearance
of transporter currents activated by 250 mM Glu. A, A family of voltage
steps (290 to 150 mV; DV of 10 mV; holding potential of 250 mV)
imposed on a hormone-treated cell in the presence of Glu. Currents
recorded in the absence of Glu have been subtracted. B, A transfected cell
that has not been exposed to hormone but was subjected to the same
voltage-clamp protocol as in A. C, Mean I–V relationships for untreated
transfected cells (E; n 5 5) and for cells treated with ponasterone A (F;
n 5 4). Pipettes contained CsNO3-based solutions.
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(n 5 5) msec, respectively. Consider the two-state reaction, the
simplest mechanism by which kainate may block the leak current:

kainate 1 transporter L|;
kon

kof

kainate 2 transporter

The experimentally measured time constants predict kon to be
1.7 3 106 M/sec21, and koff equal to 161 sec21. These rate
constants yield an affinity constant of 95 mM, in line with previous
estimates (15–60 mM) of kainate affinity (Arriza et al., 1994;
Wadiche et al., 1995b).

In the continuous presence of 500 mM kainate, responses to Glu
jumps showed blunted peaks and larger steady-state components
measured from the prejump baseline (Fig. 2C). These responses
also showed a maintained outward shift in current caused by
kainate, visible in Figure 2B as the shift of baseline current level
from the prekainate level indicated by the dotted line. Average
results for kainate application to six patches are presented in
Table 1, along with kinetic data measured from other patches
exposed only to Glu. In general, EAAT2 responses appear qual-
itatively similar to those reported previously for other native and

recombinant glutamate transporters in that (1) Glu jumps elicit a
transient followed by a smaller steady-state component and (2)
kainate or its analog dihydrokainate induces an apparent antag-
onism of a leak current (Bergles and Jahr, 1997; Otis and Jahr,
1998; Wadiche and Kavanaugh, 1998). The pharmacology and
kinetics of EAAT2 were very similar to those reported for gluta-
mate transporters present in patches from hippocampal astro-
cytes (Bergles and Jahr, 1997, 1998). Table 1 indicates that patch
data from hippocampal astrocytes and from EAAT2 are statisti-
cally indistinguishable. The comparison suggests that the gluta-
mate transporter currents described previously in CA1 astrocytes
result either from GLT1 (EAAT2) or a functionally identical
isoform.

Patch currents under conditions favoring either
transport or “exchange mode”
Glutamate transporters are powered by transmembrane gradients
of Na1, K1, H1, and substrate (Kanner and Sharon, 1978;
Stallcup et al., 1979; Erecinska et al., 1983; Zerangue and Ka-
vanaugh 1996b); therefore, changes in internal [Na1] and [Glu]
are expected to alter transporter currents (Zerangue and Ka-
vanaugh, 1996a; Levy et al., 1998). Figure 3 shows transporter
current elicited by a jump into 10 mM Glu in two different patches,
one with no internal [Na1] or [Glu] (Fig. 3A) and another with a
pipette solution containing 140 mM Na1 and 10 mM Glu substi-
tuted for K1 (Fig. 3B). On average, high [Na1] and [Glu] in the
pipette caused Glu-elicited currents to have a significantly larger
steady-state component compared with control (control Iss/Ipeak,
0.2 6 0.02; n 5 14; high Na1, 0.68 6 0.06; n 5 5; p , 0.0005).
This internal solution also converted the fast double-exponential
decay observed at the end of the Glu pulse in control into a
slower, single-exponential decay (control, t1 of 1.3 6 .11 msec; t2

of 18.7 6 2 msec; 71 6 3% fast; n 5 12; high Na1, 21.6 6 2.7
msec; n 5 5). This change in kinetics is consistent with the idea
that a complete cycle of transport is highly unfavorable because of
the high internal [Na1] and [Glu] and because of the absence of
internal K1. With these ionic gradients, it is believed that the
transporter operates as an exchanger, engaging in a futile shuttle
in which the transporter brings Glu and coupled ions in and is
forced by the high internal [Na1] and [Glu] to reverse and carry
Glu and ions out. Indeed, measurements of substrate and ion
fluxes support the idea no net Na1 or Glu flux is accomplished
under these conditions (Kanner and Sharon, 1978; Kanner and
Bendahan, 1982; Kavanaugh et al., 1997).

The differences in decay kinetics after removal of external Glu
(Fig. 3) may reflect two different fates of bound Glu. When
operating as an exchanger, the current decay is expected to
predominantly reflect rates of transition leading to Glu unbinding
to the extracellular space, whereas with 0 internal [Na1] and
[Glu], the decay can reflect an additional path: forward movement
through a complete transport cycle. To explore this hypothesis,
the voltage dependence of current decay was examined under
conditions of 0 internal Na1 and high internal Na1 and Glu. A
family of responses to 10 mM Glu jumps recorded at different
membrane potentials (2100 to 140; DV of 10 mV) are displayed
for two such patches (Fig. 4A,B). Scaling the steady-state com-
ponents for the two patches shows that, when operating with high
internal Na1 (Fig. 4B2), current decay is markedly voltage-
dependent, becoming faster at positive potentials. In contrast,
internal solutions favoring net uptake (0 internal Na1) yield
currents with little change in the decay rate over the same range
of membrane voltages (Fig. 4A2). Mean times to 1⁄2-decay after

Figure 2. Transporter currents in an outside-out patch in response to
agonist and antagonist concentration jumps. A, Transporter anion current
in response to a 100 msec duration, 10 mM pulse of Glu. The time course
of the concentration jump in this and all subsequent figures is displayed
directly above the response. B, A pulse of the EAAT2 antagonist kainate
(100 msec, 500 mM) elicits an outward current because of the blockade of
a persistent inward anion current observed in the absence of substrate. C,
The response to 10 mM Glu in the continuous presence of 500 mM kainate.
Note the outward shift in the current trace (dotted trace indicates the
current level before kainate application). The strong antagonism and
slowing of the transient component is expected for a competitive antag-
onist that is not transported. Holding potential (Vh ), 288 mV.
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the offset of the Glu step were measured as a function of voltage
and are displayed for comparison in Figure 4C. A simple expla-
nation for these results is that, upon removal of 10 mM Glu, the
transporter current deactivates by different routes in the two
experimental conditions. In the high internal Na1/Glu condition,
upon removal of external Glu, relaxation to steady state occurs as
transporters reverse and Glu dissociates into the extracellular
space. However, with 0 internal Na1, complete forward cycles of
transport occur. In this situation, transporters rarely reverse and
allow Glu to unbind to the outside. The sign of the voltage
dependence when the transporters are operating as exchangers
(faster deactivation at positive potentials) suggests that net posi-
tive charge is being expelled from the cell during deactivation.

This is the opposite of the voltage dependence of normal uptake
(slower forward rates at positive potentials) and is consistent with
reversal of the transporter and movement of the positively
charged Na1 ions outward through the membrane voltage field.

Table 1. Kinetic and pharmacological parameters of patch currents from EAAT2 and hippocampal astrocytes

Peak of
transient (pA)

1⁄2-Decay time of
transient (msec)

1⁄2-Decay time
of offset (msec)

Recovery time
constant (msec) Isteady state/Ipeak Ikainate/Icontrol

EAAT2 2200 6 59 (14) 1.07 6 0.06 (14) 1.3 6 0.2 (6) 18.4 6 2.8 (9) 0.2 6 0.02 (14) 0.38 6 0.02 (6)
*

Bergles and Jahr
(1997, 1998) 255.2 6 1.6 (32) 1.35 6 0.09 (8) 2.91 6 0.17 (8) 23.7 6 0.5 (4) 0.16 6 0.01 (30) N.D.

For EAAT2 measurements, 1⁄2-decay times were measured from the peak of the transient to the steady-state current level (transient) or from the steady-state current level to
the baseline (offset). The recovery time constant represents the mean of single-exponential fits to the recovery from depression assessed as in Figure 5. Ikainate/Icontrol denotes
the ratio of peak amplitudes, relative to the baseline before the Glu application, measured in the continuous presence of 500 mM kainate or control. Values obtained with
comparable experimental conditions (KSCN in pipette, 10 mM L-Glu steps at 23–25°C) were taken from previously published work (Bergles and Jahr, 1997, 1998). All values
are expressed as mean 6 SEM (number of observations). The * indicates a significant difference at a level of p # 0.01. ND, Not determined.

Figure 3. The kinetics of the transporter anion current are altered by
high [Na 1]in and [Glu]in. A, B, Responses in two different outside-out
patches to a 100 msec pulse of 10 mM Glu. In A, the pipette contained 140
mM KSCN and in B, 130 mM NaSCN plus 10 mM NaGlu. Vh , 287 mV for
both patches. Figure 4. The voltage dependence of the decay after the end of the Glu

pulse depends on the pipette solution. A1, A family of transporter currents
elicited with 10 mM Glu steps recorded at different membrane potentials
(298 to 132 mV; DV, 10 mV). A KSCN solution was in the pipette. A2
shows the normalized decays at the end of the Glu pulse. B1, A similar
voltage-clamp protocol (297 to 133 mV; DV, 10 mV) applied to a
different patch recorded with 140 mM Na 1 and 10 mM Glu in the pipette.
B2, Normalized decay phases. C, Mean 1⁄2-decay times as a function of
membrane potential for patches recorded with pipette solutions contain-
ing 140 mM KSCN (F; n 5 14) or 140 mM Na 1 and 10 mM Glu (E; n 5
5). Note the lack of voltage dependence to the decay with high [K 1] and
the marked voltage dependence with high [Na 1] and [Glu] in the pipette.
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Under 0 internal Na1 conditions, if most transporters success-
fully complete cycles, then the average time required for a single
cycle of transport will dictate the rate of recovery from the
steady-state current level (Otis and Jahr, 1998). On the other
hand, under exchange conditions, rates of reversal and/or unbind-
ing will set the recovery time course. Figure 5 compares recovery
time courses with 0 internal Na1 and high internal Na1/Glu by
delivering pairs of pulses of Glu separated by various intervals.
As is evident from the single patches (Fig. 5A,B) and from the
group data (Fig. 5C), recovery is slower with high Na1/Glu
pipette solutions. Average single-exponential fits to recovery data

from individual patches with 0 internal Na1 (18.4 6 2.8 msec;
n 5 9) and with high internal Na1/Glu (38.7 6 10.3 msec; n 5 5)
are superimposed on the data in Figure 5C. Interestingly, under
exchange conditions, the rate of decay upon Glu removal and the
rate of recovery are more similar (21.6 and 38.7 msec, respec-
tively) than the same rates with 0 internal Na1 (1.3 and 18.4
msec, respectively). This can be explained as follows: with high
internal Na1/Glu, the anion current deactivates and recovers by
the same route (unbinding to the outside), but with 0 internal
Na1, anion current deactivates by forward movement into non-
conducting states further along in the cycle (a fast process) and
recovers only upon completion of an entire cycle (a slower
process).

Different anion gradients isolate the stoichiometric and
anion current components
The conditions used to record currents in the previous experi-
ments (140 mM SCN2 in the pipette) cause the anion current
component to dominate the total transporter current. Many of the
interpretations in this study are based on the premise that the
anion current is tightly linked to the transport cycle and that
conducting states are accessible only from limited regions of that
cycle. This premise predicts that the kinetics of the two compo-
nents of transporter current should be correlated.

To isolate the different components of transporter current, I–V
relationships in response to 10 mM Glu jumps were measured
using four different anion gradients: SCN2

in/Cl2
out, SCN2

in/
SCN2

out, gluconate2
in/SCN2

out, and gluconate2
in/Cl2

out in
which the indicated anion is present at a concentration of 135–150
mM. Previous estimates of permeability have established that
SCN2 is ; 70 times more permeable than Cl2 and that glu-
conate2 is impermeable (Wadiche and Kavanaugh, 1998). Figure
6A1–D1 displays families of superimposed responses recorded at
different membrane potentials (2100 to 150 mV; DV of 10 mV).
These traces were recorded from three different patches (C1 and
D1 are from the same patch) exposed to the anion gradients listed
above. Mean I–V relationships are shown to the right. As ex-
pected, the reversal potentials (Erev values) shift with changes
in the anion gradient. With an SCN2

in/Cl2
out gradient, Erev

was more than 140 mV (n 5 11) and thus not determinable;
with SCN2

in/SCN2
out, Erev was 13 6 2 mV (n 5 4); with

gluconate 2
in/SCN 2

out, Erev was 259 6 2 mV (n 5 8); and with
gluconate 2

in/C l 2
out, Erev was more than 150 mV and not

measurable (n 5 7). How do responses dominated by anion
current (Fig. 6A) compare in size with responses dominated by
stoichiometric current (Fig. 6D)? Tested in two different groups
of patches, the mean peak current at 2100 mV was 2255 6 84 pA
(n 5 11) for the SCN2

in/Cl2
out condition and 218 6 4 pA (n 5

7) for the gluconate2
in/Cl2

out gradient. This is consistent with
previous estimates of the contribution of anion current to trans-
porter currents from hippocampal astrocytes in physiological
chloride gradients (Table 1).

To more closely examine the relationship between coupled
charge flux and the anion conductance, the kinetics of responses
dominated by anion current (SCN2

in/Cl2
out gradient) and by

stoichiometric current (gluconate2
in/Cl2

out gradient) were com-
pared. On average, the 1⁄2-decay time in gluconate2

in/Cl2
out

measured between 280 and 2100 mV was 0.82 6 0.11 msec (n 5
7), whereas in the SCN2

in/Cl2
out gradient, it was 1.07 6 0.06

msec (n 5 14). This suggests that stoichiometric current develops
and subsides slightly faster than anion conductance (although not
significantly; p . 0.025). Moreover, anion and stoichiometric

Figure 5. The rate of recovery from depression of the transporter current
depends on the pipette solution. A, B, Responses to pairs of 10 msec steps
into 10 mM Glu with the indicated pipette solutions. Intervals of 5, 10, 15,
20, 30, 40, 50, 60, 80, 100, and 150 msec are displayed. A response to a
single pulse of Glu has been subtracted from each displayed response. The
dotted trace indicates the mean peak current of the response to a single
pulse. Vh , 288 mV in A and 2101 mV in B. C, Mean amount of recovery
(peak of the 2nd response/peak of the 1st) plotted against the interval
between pulses (note the log scale). F indicates 140 mM [KSCN]in (n 5 9),
and E indicates 140 mM [Na 1]in and 10 mM [Glu] (n 5 5). Lines display
the means of single-exponential fits to the individual patches with t values
of 18.4 and 38.7 msec for the K 1 and high Na 1 solutions, respectively.
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components slowed in parallel at positive potentials (Fig.
6A1,D1), perhaps reflecting voltage dependence of the early
events in the transport cycle. These results can be generally
interpreted to reflect fast charge translocation steps (giving rise to
the stoichiometric current) and slightly slower anion conducting
steps, which are confined to a region at the beginning of a
multistep cycle. This region of the cycle is rapidly and transiently
occupied by most of the transporters after nearly synchronous
binding. Thereafter, transporters “desynchronize” and equili-
brate throughout the cycle, their desynchronous cycling giving
rise to steady-state current (Bergles et al., 1997; Otis et al., 1997).

We designed a more sensitive protocol to compare the kinetics
of the anion and stoichiometric currents. Each patch was exposed
to two different anion gradients. In gluconate2

in/SCN2
out (Fig.

7A), both current components are apparent; inward currents
represent stoichiometric current, whereas outward currents rep-
resent SCN2 currents. Replacing SCN2

out with Cl2
out (Fig. 7B)

causes the outward anion currents to disappear, leaving inward
currents at all potentials. These responses are dominated by the
stoichiometric component of the transporter current. Net out-
ward current is minimal in this condition because of the relatively
small contribution of anion current in physiological chloride (Ar-
riza et al., 1994; Wadiche et al., 1995a; Levy et al., 1998). Figure
7C shows a subtraction of the stoichiometric currents (Fig. 7B)
from the mixed currents (Fig. 7A) yielding pure SCN2 currents.
From these comparisons, it is apparent that the stoichiometric
current activates and deactivates slightly faster than the anion
conductance. When both components are present, the slight mis-
match in time course gives rise to an inward transient, followed by
a delayed trough in the responses recorded at negative potentials
(Fig. 7A, arrow).

Many of the measurements and conclusions in this study de-
pend on achieving a high level of expression of the EAAT2
protein. The density of expression can be estimated from re-
sponses using gluconate2 as the internal anion. The number of
transporters per patch can be estimated by integrating currents
over 3 msec intervals, beginning at the Glu pulse onset, and then
applying the equation n 5 Q/z eo, where Q is the charge; z 5 3, the

Figure 6. Different anion gradients can be used to discriminate the
stoichiometric and the anion components of transporter current. A1–D1
display families of traces recorded at different membrane potentials
(2100 to 150; DV, 10 mV) using the following gradients of major anions
SCNin /Clout , SCNin /SCNout , gluconatein /SCNout , and gluconatein /Clout
for A –D, respectively. C1 and D1 show the same patch. A2–D2 represent
mean I–V relationships for these same combinations of solutions. The
data were taken from n 5 11, 4, 8, and 7 patches for A–D. For comparison,
responses in A are dominated by the anion current, and responses in D are
dominated by stoichiometric component of the transporter current.

Figure 7. Stoichiometric current activates slightly faster than anion cur-
rent. A, Patch currents at a series of membrane potentials (2100 to 120;
DV, 30 mV) in response to 10 mM Glu steps with gluconatein /SCNout.
Under these conditions, stoichiometric current is inward and anion cur-
rent is outward. B, In the same patch and at the same holding potentials,
responses with Clout. Inward stoichiometric current dominates the small
outward anion current. C, Subtraction of traces in B from those in A,
yielding pure anion currents carried by SCN 2. Note that the outward
currents are slightly slower than the inward currents. With both current
components present, this is evident as an overshoot occurring after the
fast inward transient (arrow in A).
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number of charges translocated in the first part of the transport
cycle; and eo is the charge per elementary particle, 1.6 3 10219 C
(Bergles and Jahr, 1997). Average charge transfer measured in
this way was 29.4 6 6.9 fC (n 5 7), yielding an estimate of
61,000 6 14,000 transporters per patch. Assuming the same mean
surface area for the patches as was measured in a previous study
(; 7 mm2; Bergles and Jahr, 1997), the density of transporters in
our experiments is high (;9000/mm2). Although this estimate is
higher than the density estimated for CA1 astrocytes (;2000/
mm2; Bergles and Jahr, 1997), it is similar to the density estimate
of 8500/mm2 based on quantitative immunoblotting in hippocam-
pus (Lehre and Danbolt, 1998). The estimate is also comparable
with the density estimates for EAAT1 transporters expressed in
Xenopus oocytes (17,000/mm2; Wadiche and Kavanaugh, 1998).

DISCUSSION
Recombinant EAAT2 transporter currents are similar to
transporter currents in hippocampal astrocytes
EAAT2 (GLT1) is the predominant glial cell transporter in the
CNS, accounting for most of the glutamate clearance in the brain
(Rothstein et al., 1994, 1996; Tanaka et al., 1997). However, many
astrocytic glia, such as those located in the CA1 region of the
hippocampus, also express EAAT1 (GLAST) at lower levels
(Rothstein et al., 1994; Lehre et al., 1995). Comparing the results
in this study with those of EAAT1 (GLAST) (Wadiche and
Kavanaugh, 1998) and to transporter currents from rat hippocam-
pal astrocytes (Bergles and Jahr, 1997, 1998) supports the pro-
posal that glutamate transport by astrocytes is dominated by
EAAT2 (GLT1). Moreover, if functional transporters have a
multimeric structure (Haugeto et al., 1996; Dehnes et al., 1998),
these results also imply that EAAT2 operates as a homomultimer.
Lastly, the data argue that the high degree of homology observed
between rodent and human EAAT2 sequences (Arriza et al.,
1994) dictates similar functional properties. However, these pre-
liminary conclusions must be strengthened by studies that further
examine the properties of individual transporters and combina-
tions of coexpressed transporters.

To date, rapid solution exchange techniques have uncovered
distinct kinetic properties for different transporter isoforms. Re-
combinant EAAT1 shows a much larger Iss/Ipeak ratio (0.64) and
a much more slowly decaying transient (t of 14 msec) than those
measured in this study (Wadiche and Kavanaugh, 1998). On
Bergmann glial cells, a native transporter that is insensitive to
dihydrokainate (and thus is not EAAT2/GLT1), also shows a
larger Iss/Ipeak ratio and slower transients (Bergles et al., 1997).
Finally, Purkinje neuron glutamate transporters exhibit a smaller
Iss/Ipeak ratio (0.14) and a more slowly decaying transient (t of 8
msec) (Otis and Jahr, 1998).

A simple kinetic model can explain both components
of the transporter current
All glutamate transporters tested to date show a transient fol-
lowed by a steady-state current in response to rapid applications
of Glu. Although previous measurements concentrated on anion
currents, in CA1 astrocytes, small stoichiometric currents were
described (Bergles and Jahr, 1997). The high level of expression
in this study allows a direct comparison of both components of
the transporter current. To test hypotheses about how charge
translocation is related to the anion conductance, we used a
simple model of the transport cycle. The cycle was divided into
three collections of states as shown in Figure 8: nonconducting
states with substrate binding sites facing the extracellular space,

designated [nonconductingout]; anion conducting states, desig-
nated [conducting]; and nonconducting states with substrate bind-
ing sites facing the intracellular space, designated [nonconduct-
ingin]. In the model, conducting transporters are formed after the
binding of substrate and cotransported ions (Na1 and H1). The
small conductance seen in the absence of substrate (shown in Fig.
2B,C) has been omitted for simplicity. As an additional simplifi-
cation, individual binding steps are not explicit in the model
(none of the rate constants are concentration-dependent). For-
ward rate constants (i.e., those leading to Glu uptake) are denoted
by positive subscripts, whereas backward rate constants have
negative subscripts.

Figure 8. A simple kinetic model that accounts for the two components
of transporter current. A, The model consists of three sets of states
connected by the following rate constants: k1 5 0 or 2000/sec; k21 5 4/sec;
k2 5 480/sec * exp[(2VF )/(2RT )]; k22 5 400/sec * exp[(VF )/(2RT )];
k3 5 10/sec * exp[(2VF )/(2RT )]; and k23 5 1/sec * exp[(VF )/(2RT )]. V
of 290 mV for simulations in B and C and 2100 mV in D. B, Simulated
stoichiometric current (the sum of the net fluxes for the two voltage-
dependent transitions [conducting] 3 [nonconductingin] and [noncon-
ductingin]3 [nonconductingout]) in response to a 100 msec duration jump
in the value of k1 from 0 to 2000/sec (to simulate the Glu pulse). C,
Simulated anion current (the occupancy of [conducting]) in response to
the Glu pulse. D, Anion current in response to the Glu pulse with the
effects of high [Na]in and [Glu]in simulated by increasing the rate constant
factor in k22 from 400/sec to 6000/sec.
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Two forward and two backward rate constants have voltage
dependence of the form

kforward 5 kf0 exp@2~ zVF!/~2 RT!# and kbackward

5 kb0 exp@~ zVF!/~2 RT!#,

where kf0 and kb0 are the forward and backward rate constants at
0 mV; z 5 1, the valence of the charge movement; V is the
membrane potential; T 5 298 2 K; and F and R are Faraday’s
constant and the gas constant, respectively. Charge movements
were assumed to traverse symmetric energy barriers and to cross
the entire field (Läuger, 1991). Reflecting the established stoichi-
ometry for the transport cycle (1 Glu2/3 Na1/1 H1 cotrans-
ported and 1 K1 counter-transported) (Zerangue and Ka-
vanaugh, 1996a; Levy et al., 1998), the total charge movement per
cycle (i.e., the sum of z values for a complete cycle) was con-
strained to two. Stoichiometric current was simulated by summing
the net charge flux that occurs as a result of the two voltage-
dependent steps, [conducting]3 [nonconductingin] and [noncon-
ductingin] 3 [nonconductingout].

Simulations of the anion current and stoichiometric charge flux
in response to a [Glu] jump are shown in Figure 8. Many features
of both components of transporter current are captured by the
model. These include a rapid rise-to-peak, a quickly decaying
transient (1⁄2-decay times for stoichiometric and anion currents is
0.8 msec), a double-exponential deactivation, and a steady-state
level of ;15% of the peak. Simulated effects of high [Na1]in and
[Glu]in (Iss/Ipeak, 0.72 at 2100 mV) (Fig. 8D) are similar to the
data. Although not shown, the model also reproduces other
behaviors of the transporter such as the rate of recovery (t of 17.4
msec) and the slowing of the transient at positive membrane
potentials.

Several general insights can be drawn from this simple model.
First, the model provides an explanation for why large transient
and smaller steady-state responses are observed for both the
anion and stoichiometric components of the transporter current.
This results from movement through a multistate cycle in which
only a subset of states are experimentally detectable (the [con-
ducting] states). To generate the transient, movement through
these states must be rapid and synchronous. This is accomplished
by trapping transporters in the absence of Glu in the [noncon-
ductingout] states. Glu binding can then trigger nearly synchro-
nous entry into the [conducting] collection of states. Transporters
eventually become desynchronized relative to one another be-
cause, in the presence of Glu, they have access to all states in the
cycle.

A second prediction is that the steps generating stoichiometric
and anion components of the current occur at very similar points
in the transport cycle. This provides support for physical models
in which the transporter protein adopts a configuration that is
leaky to anions during the translocation of glutamate and cotrans-
ported ions (Wadiche et al., 1995a).

Last, the model explains why the relative contribution of the
steady-state anion current is larger under exchange conditions
(Billups et al., 1996; Otis and Jahr, 1998). Simulations of high
[Glu] and [Na1] on both sides of the membrane confines trans-
porters to the [conducting] collection of states, making it unlikely
that transporters remain unbound or enter other states in the
cycle.

This is a simplified version of previous models that we and
others have developed (Billups et al., 1996; Larsson et al., 1996;
Otis and Jahr, 1998; Wadiche and Kavanaugh, 1998). Although

the present model fails to describe all aspects of the data, includ-
ing the conductance observed in the absence of substrate (Fig. 2)
and the concentration dependencies of transitions, the simplifica-
tions introduced result in fewer free parameters and more easily
understood dynamic behavior. More detailed models that explic-
itly incorporate substrate and ion binding are essential for a
complete description of the transporter.

Different deactivation pathways suggest that
transporters have high efficiency
Efficient glutamate transport requires Glu binding in the extra-
cellular space, dissociation into the intracellular compartment,
and recycling of the empty binding site. In contrast, in ionic
gradients favoring exchange, complete cycles of transport are
believed to be extremely rare. In the exchange mode, transporters
bind Glu, activate an anion conducting state, and deactivate by
unbinding Glu into the extracellular space. Independent experi-
mental evidence supporting the existence of exchange modes of
operation has been provided by biochemical measurements of
substrate and ion flux (Kanner and Sharon, 1978; Kanner and
Bendahan, 1982; Kavanaugh et al., 1997; Zhang et al., 1998).

Different fates for Glu under conditions of high internal Na1/
Glu (exchange) or 0 internal Na1/Glu are reflected in different
time courses of deactivation and recovery of the anion conduc-
tance (Figs. 4, 5). Under exchange conditions, both deactivation
and recovery must occur by reversal and unbinding to the extra-
cellular space. Glu pulses with 0 internal Na1 elicit faster,
voltage-independent deactivation kinetics, suggesting that for-
ward transitions away from anion conducting states rapidly se-
quester transmitter and thereby prevent the voltage-dependent
route of reversal and unbinding. This dichotomy in deactivation
behavior supports the proposal that EAAT2 efficiently translo-
cates Glu under physiological conditions. This may not be the
case for all transporter subtypes; significantly different kinetics
have been observed in concentration jump experiments on other
glutamate transporter subtypes (Wadiche and Kavanaugh, 1998;
A. Tzingounis and M. P. Kavanaugh, unpublished observations).
In contrast to EAAT2, kinetic modeling of EAAT1/GLAST
suggests that it is more probable for glutamate to unbind to the
outside than to be transported (Wadiche and Kavanaugh, 1998).

The importance of translocation efficiency is highlighted by
recent experiments on hippocampal neurons cocultured with glia
(Mennerick et al., 1999). Glial cell depolarization was shown to
slow excitatory synaptic currents. However, depolarization did
not affect glutamate affinity for the transporter, implying that
depolarization prolongs the lifetime of glutamate without reduc-
ing binding but by slowing the translocation of glutamate after
binding. These results argue that key steps after binding, perhaps
encompassing translocation of substrate and ions, are critical for
determining the functional properties of glutamate transporters.
The present data are consistent with rapid and efficient seques-
tration of glutamate by EAAT2 during synaptic transmission.
Furthermore, the data provide strong confirmation that anion
conductance is tightly associated with the transport cycle and that
it can be used to estimate glutamate transport in situ.

REFERENCES
Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP,

Amara SG (1994) Functional comparisons of three glutamate trans-
porter subtypes cloned from human motor cortex. J Neurosci
14:5559–5569.

Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory
amino acid transporter 5, a retinal glutamate transporter coupled to a
chloride conductance. Proc Natl Acad Sci USA 94:4155–4160.

2756 J. Neurosci., April 15, 2000, 20(8):2749–2757 Otis and Kavanaugh • Kinetics of the Glial Glutamate Transporter EAAT2



Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transport-
ers in hippocampal astrocytes. Neuron 19:1297–1308.

Bergles DE, Jahr CE (1998) Glial contribution to glutamate uptake at
Schaffer collateral–commissural synapses in the hippocampus. J Neu-
rosci 18:7709–7716.

Bergles DE, Dzubay JA, Jahr CE (1997) Glutamate transporter currents
in Bergmann glial cells follow the time course of extrasynaptic gluta-
mate. Proc Natl Acad Sci USA 94:14821–14825.

Billups B, Rossi D, Attwell D (1996) Anion conductance behavior of the
glutamate uptake carrier in salamander retinal glial cells. J Neurosci
16:6722–6731.

Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J,
Danbolt NC (1998) The glutamate transporter EAAT4 in rat cerebel-
lar Purkinje cells: a glutamate-gated chloride channel concentrated
near the synapse in parts of the dendritic membrane facing astroglia.
J Neurosci 18:3606–3619.

Diamond JD, Jahr CE (1997) Transporters buffer synaptically released
glutamate on a millisecond time scale. J Neurosci 17:4672–4687.

Erecinska M, Wantorsky D, Wilson DF (1983) Aspartate transport in
synaptosomes from rat brain. J Biol Chem 258:9069–9077.

Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG
(1995) An excitatory amino-acid transporter with properties of a
ligand-gated chloride channel. Nature 375:599–603.

Haugeto O, Ullensvang K, Levy LM, Chaudhry FA, Honore T, Nielsen
M, Lehre KP, Danbolt NC (1996) Brain glutamate transporter pro-
teins form homomultimers. J Biol Chem 271:27715–27722.

Kanai Y, Hediger MA (1992) Primary structure and functional charac-
terization of a high-affinity glutamate transporter. Nature 360:467–471.

Kanner BI, Bendahan A (1982) Binding order of substrates to the so-
dium and potassium ion coupled L-glutamic acid transporter from rat
brain. Biochemistry 21:6327–6330.

Kanner BI, Sharon I (1978) Active transport of L-glutamate by mem-
brane vesicles isolated from rat brain. Biochemistry 17:3949–3953.

Kavanaugh MP, Bendahan A, Zerangue N, Zhang Y, Kanner BI (1997)
Mutation of an amino acid residue influencing potassium coupling in
the glutamate transporter GLT-1 induces obligate exchange. J Biol
Chem 272:1703–1708.

Larsson HP, Picaud SA, Werblin FS, Lecar H (1996) Noise analysis of
the glutamate-activated current in photoreceptors. Biophys J
70:733–742.
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