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Traumatic Brain Injury Alters the Molecular Fingerprint of TUNEL-
Positive Cortical Neurons In Vivo: A Single-Cell Analysis
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The cerebral cortex is selectively vulnerable to cell death after
traumatic brain injury (TBI). We hypothesized that the ratio of
mRNAs encoding proteins important for cell survival and/or cell
death is altered in individual damaged neurons after injury that
may contribute to the cell’s fate. To investigate this possibility,
we used amplified antisense mRNA (aRNA) amplification to
examine the relative abundance of 31 selected candidate mR-
NAs in individual cortical neurons with fragmented DNA at 12 or
24 hr after lateral fluid percussion brain injury in anesthetized
rats. Only pyramidal neurons characterized by nuclear terminal
deoxynucleotidyl transferase-mediated biotinylated dUTP nick
end labeling (TUNEL) reactivity with little cytoplasmic staining
were analyzed. For controls, non-TUNEL-positive neurons from
the cortex of sham-injured animals were obtained and sub-

jected to aRNA amplification. At 12 hr after injury, injured neu-
rons exhibited a decrease in the relative abundance of specific
mRNAs including those encoding for endogenous neuroprotec-
tive proteins. By 24 hr after injury, many of the mRNAs altered
at 12 hr after injury had returned to baseline (sham-injured)
levels except for increases in caspase-2 and bax mRNAs.
These data suggest that TBI induces a temporal and selective
alteration in the gene expression profiles or “molecular finger-
prints” of TUNEL-positive neurons in the cerebral cortex. These
patterns of gene expression may provide information about the
molecular basis of cell death in this region after TBI and may
suggest multiple avenues for therapeutic intervention.
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Several neuronal populations are selectively vulnerable to cell
death after traumatic brain injury (TBI) in experimental models
and in man (Adams, et al., 1983; Cortez et al., 1989; Kotapka et
al., 1991, 1994; Lowenstein et al., 1992; Dietrich et al., 1994; Hicks
et al.,, 1996; Bramlett et al., 1997). Both necrotic and apoptotic cell
death have been described after experimental and clinical TBI
(Dietrich et al., 1994; Rink et al., 1995; Colicos and Dash, 1996;
Clark et al., 1997, 1999; Smith et al., 1997; Yakovlev et al., 1997;
Conti et al., 1998). A common feature of both necrotic and
apoptotic cell death is DNA fragmentation as determined by the
terminal deoxynucleotidyl transferase-mediated biotinylated
dUTP nick end labeling (TUNEL) method (Gavrieli et al., 1992).

Few studies have examined the molecular mechanisms under-
lying traumatically induced cell death. Increased expression of
caspase-1 and caspase-3 mRNAs has been reported in the injured
cortex 24 hr after fluid percussion (FP) injury that correlated with
apoptosis and behavioral dysfunction (Yakovlev et al., 1997).
Both caspase-1 and caspase-3 protein levels are also increased in
human brain after TBI (Clark et al., 1999). The bcl-2 family that
includes several members either promoting or inhibiting cell
death has been implicated in the molecular pathology of TBI. In
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particular, expression of bcl-2 protein has been shown to be a
survival factor for cells after TBI (Clark et al., 1997; Raghupathi
et al., 1998; Nakamura et al., 1999). In addition to the multiplicity
of caspase and bcl-2 gene families, expression of several other
classes of genes including neurotrophins, transcription factors,
immediate-early genes, and cell cycle and stress response-related
genes have been reported to be differentially expressed in the
injured brain (Lowenstein et al., 1994; Hayes et al., 1995; Raghu-
pathi et al., 1995; Yang et al., 1995, 1996; Napieralski et al., 1999).
However, the analysis of multiple genes in vivo after TBI has not
been performed.

Many of the methods used to measure gene expression changes
in the injured brain [e.g., in situ hybridization or reverse tran-
scriptase (RT)-PCR] lack the ability to detect multiple mRNAs
within the same sample (Eberwine et al., 1992). Furthermore,
assays that use tissue homogenates as starting material cannot
define the cellular localization of gene expression changes be-
cause of the heterogeneous population of cells present within the
sample. The amplified antisense mRNA (aRNA) technique cir-
cumvents these limitations by allowing the detection of multiple
mRNAs within single cells in culture (Eberwine et al., 1992) or
from fixed tissue (Crino et al., 1996), thus allowing a constellation
of genes to be analyzed in individual cells. To investigate the
multiple and temporal changes in gene expression that occur
specifically in damaged cells after experimental TBI, we adapted
the aRNA technique for use in histologically fixed TUNEL-
positive cells (O’Dell et al., 1998). As a marker of fragmented
DNA, TUNEL has been used widely to characterize damaged
cells after various brain insults including ischemia (Ferrand-
Drake and Wieloch, 1999) and seizures (Roux et al., 1999; Tuu-
nanen et al., 1999). Although TUNEL alone cannot distinguish
between apoptotic or necrotic cell death, TUNEL along with
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morphological characterization can help to distinguish necrotic
versus apoptotic cell death (Rink et al., 1995; Conti et al., 1998).
We hypothesized that the expression of select candidate genes for
cell survival or cell death may be different between injured
neurons in the cerebral cortex and cortical neurons from unin-
jured animals and that the molecular profiles of TUN EL-positive
cells may be temporally distinct. The pattern of gene expression
between these populations of cells may provide clues as to the
molecular mechanisms mediating selective neuronal cell death
after TBI.

MATERIALS AND METHODS

Lateral fluid percussion brain injury. Adult male Sprague Dawley rats (n =
12) weighing 350-400 gm were used. Animals in the injured group (n =
3 per time point) were anesthetized with sodium pentobarbital (60
mg/kg, i.p.). Rats were placed in a stereotaxic frame, the scalp and
temporalis muscle were reflected, and a 3.0 mm craniectomy was made
over the left parietal cortex midway between bregma and lambda. Rats
were subjected to lateral FP brain injury of moderate severity (2.4-2.6
atm) as originally described (MclIntosh et al., 1989). Briefly, a female
Leur-Lok fitting was attached to the craniectomy site with cyanoacrylate
adhesive. The animal is connected to the injury device that injects a rapid
bolus of saline into the closed cranial cavity producing mechanical
deformation of brain tissue (21-23 msec). Additional control (sham-
injured) rats (n = 3 per time point) were surgically prepared and
connected to the injury device but did not receive a fluid pulse.

Tissue preparation. Twelve or 24 hr after FP injury and 12 or 24 hr after
sham injury, rats were reanesthetized with sodium pentobarbital (200
mg/kg, i.p.) and transcardially perfused with heparinized saline followed
by 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.6. All brains
were post-fixed in the skull at 4°C for 3-4 hr after perfusion. Subse-
quently, brains were removed from the skull and immersed in fixative for
24 hr at 4°C. After fixation, brains were embedded in paraffin and cut into
6 pum sections on a microtome. We chose to examine gene expression in
neurons from the brains of animals killed at 12 hr after injury because
this is the earliest time point at which the cells within injured brains are
stained positive with TUNEL (Rink et al., 1995). All protocols were
approved by the Institutional Animal Care and Use Committee of the
University of Pennsylvania, and in all studies we adhered to the animal
welfare guidelines set forth in the United States Department of Health
and Human Services Guide for the Care and Use of Laboratory Animals.

TUNEL labeling. TUNEL was performed using previously described
methods (Gavrieli et al., 1992; Rink et al., 1995). Briefly, 6 um coronal
sections cut at 3.6-3.8 mm posterior to bregma were adhered to poly-L-
lysine-coated slides by brief heat treatment at 60°C for 15 min. After
deparaffinization and rehydration, the tissue was digested for 15 min in
proteinase K (20 mg/ml; Sigma, St Louis, MO). The reaction was
terminated with tap H,O, and the tissue was treated with buffer A (25
mmol/l Tris, pH 6.6, containing 200 mmol/l potassium cacodylate and
0.25 mg/ml bovine serum albumin) for at least 5 min. Sections were
incubated at 37°C with labeling solution containing Tdt (0.3 U/ml;
Boehringer Mannheim, Indianapolis, IN), biotinylated-16-dUTP (20
mmol/l; Boehringer Mannheim), and 1.5 mmol/l cobalt chloride in
buffer A for 1 hr in a humidified chamber. The reaction was terminated
with 2X SSC (300 mm sodium chloride and 30 mMm sodium citrate, pH
7.4). After vigorous washing with 0.1 M Tris, pH 7.4, the sections were
blocked with 10% goat serum in 0.1 M Tris for 15 min. The DNA was
visualized by treating the tissue with a 1:40 dilution of streptavidin-
conjugated alkaline phosphatase (BioGenex, San Ramon, CA) and stain-
ing with fast red (Sigma). Sections were stored in diethylpyrocarbonate
(DEPC)-treated distilled H,O until further processing.

In situ transcription. After TUNEL, sections were placed in a humid-
ified chamber and incubated in 50% formamide, DEPC-treated distilled
H,0, and an oligo-dT primer coupled to a T7 RNA polymerase promoter
sequence (oligo-dT-T7) for 12-18 hr at room temperature. The cDNA
was synthesized directly on the section using the oligo-dT-T7 as a primer
for the poly(A™) tail mRNA population and the avian myeloblastosis
virus reverse transcriptase (0.5 U/ml; Seikagaku America, Falmouth,
MA) in reaction buffer [S0 mm Tris HCI, pH 8.3, 6 mm MgCl,, 120 mm
KCI, 7 mm dithiothreitol, 250 mm each dATP, dCTP, dGTP, and TTP,
and 0.12 U/ml RNAsin (Promega, Madison, WI)]. After synthesis, the
sections were washed for 8—12 hr in 0.5X SSC.

Single-cell mnRNA amplification. After TUNEL and in situ transcription
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Figure 1. A, Photomicrograph of two TUNEL-positive cells (arrows)
from the cerebral cortex of a rat after lateral FP brain injury. Note the
triangular morphology of the cell selected for aRNA amplification (fop
arrow). B, Photomicrograph of the same cells (arrows) shown in 4 after
dissection and aspiration from the section. Note that adjacent cells remain
intact. In both 4 and B, the sections were viewed without coverslips and
photographed while under water. Scale bar, 75 um.

(IST), individual TUNEL-positive neurons from the cortex (layers 4-5)
ipsilateral to the impact site of injured brains (n = 3 cells per brain) were
viewed (uncoverslipped) under 40X magnification, dissected away from
the tissue section by using an attached micromanipulator, and aspirated
gently into glass microelectrodes (Crino et al., 1996). Only pyramidal
neurons (characterized by a triangular shape and the presence of at least
one dendrite) exhibiting nuclear TUNEL staining and little cytoplasmic
staining were aspirated (see Fig. 1). Although TUNEL is a marker for
DNA damage, we chose to evaluate gene expression changes after TBI in
TUNEL-positive neurons exhibiting a nonapoptotic morphology (char-
acterized by intense nuclear staining, little or diffuse cytoplasmic stain-
ing, and retention of triangular shape, the neuronal-type morphology)
for two reasons: (1) the shrunken and condensed appearance of apoptotic
cells precludes the distinction of neuronal versus non-neuronal cells, and
(2) apoptotic cells with the classic appearance of apoptotic bodies may
indicate irreversible damage. In addition, non-TUN EL-positive pyrami-
dal neurons (n = 2 per brain) from the same cortical region used
previously for selecting TUNEL-positive neurons from injured animals
were identified by phase-contrast microscopy and aspirated. Non-
TUNEL-positive pyramidal neurons from sham-injured rats killed at 24
hr after injury (n = 3 per brain) were identified by phase-contrast
microscopy and aspirated. Additional non-TUNEL-positive pyramidal
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neurons from sham-injured rats killed at 12 hr after injury (n = 2 neurons
per brain) were identified by phase-contrast microscopy and aspirated.

The mRNA from individual neurons was amplified according to pre-
viously described methods (Eberwine et al., 1992; Crino et al., 1996).
After aspiration of the cellular contents, the single-stranded cDNA was
heat denatured at 95°C for 5 min. Single-stranded cDNA was made
double-stranded by incubation with dNTPs, T4 DNA polymerase, and
the Klenow fragment of DNA polymerase I for 12 hr at 14°C. The
hairpin loop of the cDNA was then excised with S1 nuclease at 37°C for
5 min. The ends of the double-stranded cDNA were made blunt with T4
DNA polymerase at 37°C for 15 min. To remove free dNTPs, the cDNA
was drop-dialyzed against 50 ml of RNase-free H,O for 4 hr. Approxi-
mately 20% of the dialyzed product was amplified with T7 RNA poly-
merase (Epicentre Technologies, Madison, WI) incorporating [ **P]CTP.
The aRNA (amplified antisense mRNA) served as a template for second-
round cDNA synthesis that served as a template for a second aRNA
amplification incorporating [*>P]CTP. This final radiolabeled aRNA was
used to probe reverse Northern (slot) blots.

Reverse Northern blot. To detect particular mRNAs present in single
TUNEL-positive neurons and unlabeled neurons, reverse Northern blot-
ting was performed with linearized plasmid cDNAs. All cDNAs were
sequenced to confirm their identity. Nylon membranes (Hybond-N, Ar-
lington Heights, IL) were made wet with DEPC-treated distilled H,O
and 10X SSC. Each cDNA (0.5 ng) was heat denatured at 95°C for 10
min and applied by gravity to nylon membranes. The cDNAs were bound
to the membranes by UV cross-linking. We chose an array of cDNAs that
would reflect a sample of the mRNAs found in these neurons plus specific
cDNAs representing a panel of procell-death and anticell-death genes.
The ¢cDNAs included pBluescript (pBs), glial fibrillary acidic protein
(GFAP), low-molecular weight neurofilament (NF-L), calcium- and
calmodulin-dependent kinase (CamKII), GAPDH, B2 microglobulin
(B2M), cAMP response element-binding protein (CREB), c-fos, glu-
tamic acid decarboxylase (GADG65), subunits of the GABA , receptor (81
and B2), the AMPA receptor subunit (GluR2), the RNA-editing enzyme
for GluR2, double-stranded specific editasel (RED1), NMDA receptor
subunits (NR1, NR2A, and NR2C), nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), basic fibroblast growth factor
(bFGF), tyrosine kinase receptors (trkA and trkB), bcl-2, bcl-x,, bax,
caspase-2, caspase-3, cyclooxygenase-2 (Cox-2), interleukin-6 (IL-6), su-
peroxide dismutase (SOD1), tau, and redox factor (Ref-1). Blots were
first incubated in prehybridization solution containing 50% formamide,
6X standard saline, phosphate, and EDTA, 5X Denhardt’s solution, 200
png/ml salmon sperm DNA, and 0.1% SDS for 8 hr at 42°C. Blots were
then probed with [*?P]CTP-labeled aRNA from individual neurons (one
aRNA probe per blot) and hybridized at 42°C for 48 hr. Blots were then
washed for 1 hr in 2X SSC and 0.1% SDS followed by two 30 min washes
in 0.2X SSC and 0.1% SDS. Blots were dried briefly and apposed to film
for 24 hr followed by a 2 d exposure to a PhosphorImager screen.

Statistical analysis. The intensity of the autoradiographic signal corre-
sponding to each cDNA was analyzed by a PhosphorImager using IM-
AGEQUANT software (Molecular Dynamics, Sunnyvale, CA). For each
blot, pBs was used as the background value, and the expression of GFAP
was a marker of glial contamination. The signal of the probe bound to
each cDNA (minus the background value) was expressed as a percentage
of the signal for the B1 subunit of the GABA , receptor that served as an
internal reference value. This value was chosen because the expression of
B1 was present in all neurons examined. A one-way ANOVA was used to
analyze mean differences in gene expression for each gene among the
three groups. To control for the experimentwise error associated with
the multiple univariate ANOVAs performed, a Bonferroni correction
was applied to each univariate ANOVA. This adjustment lowers the p
value required for statistical significance for each ANOVA, thus making
the criterion for achieving statistical significance more stringent than if a
correction factor were not used. If a significant difference was detected
with the Bonferroni-adjusted ANOVA, individual post hoc comparisons
were made using the Newman-Keuls test. A p value of <0.05 was
considered significant.

RESULTS

The cortex ipsilateral to the impact site exhibited many TUNEL-
positive cells with varying staining intensities at both 12 and 24 hr
after injury. The molecular profiles of non-TUNEL-positive py-
ramidal neurons from the cortex of injured animals were varied
and exhibited no consistent pattern of gene expression (data not
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Figure 2. Representative expression profiles from an unlabeled cortical
neuron after sham injury (4), a TUNEL-positive neuron from the cortex
ipsilateral to the impact site 12 hr after FP injury (B), and a TUNEL-
positive neuron from the same cortical region 24 hr after injury (C). Note
the differential mRNA abundances among the three neurons. The order
of cDNAs is shown in D.

shown). Therefore, in all studies reported in this paper, we used
only TUNEL-positive pyramidal neurons from the cortex of
injured animals to identify cells with DNA fragmentation posi-
tively. Without a specific marker, non-TUNEL-positive cells
within the injured cortex may represent a population of damaged
cells that do not yet display DNA fragmentation. Alternatively,
these cells may represent a population of healthy cells present
within the injured cortex.

For comparison, we amplified the mRNA from non-TUNEL-
positive pyramidal neurons from the cortex of sham-injured ani-
mals at both 12 and 24 hr after injury. The molecular profiles of
the six non-TUNEL-positive cortical neurons taken from sham-
injured animals at 12 hr after injury did not differ from the
molecular profiles of the nine non-TUNEL-positive pyramidal
neurons taken from sham-injured brains at 24 hr after injury (data
not shown). This suggests that the long half-life of sodium pen-
tobarbital did not induce any significant changes in gene expres-
sion in sham-injured rats at either time point (12 vs 24 hr).
Consequently, only non-TUNEL-positive pyramidal neurons
from the cortex of sham-injured animals at 24 hr after sham injury
were used as control neurons for gene expression. TBI resulted in
different hybridization intensities for various mRNAs in
TUNEL-positive cortical, pyramidal neurons at 12 or 24 hr after
injury compared with non-TUNEL-positive cortical, pyramidal
neurons from the cortex of sham-injured animals at 24 hr after
injury (see Figs. 2, 3, 4).

Housekeeping mRNAs

At 12 or 24 hr after injury, no significant differences were ob-
served in the relative abundance of mRNAs for GAPDH or B2
microglobulin between TUNEL-positive neurons and non-
TUNEL-positive neurons from sham-injured animals (p, NS).
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Cell survival and repair mRNAs

Neurotrophins

The relative abundance of NGF mRNA was significantly de-
creased in TUNEL-positive neurons at 12 hr after injury com-
pared with non-TUNEL-positive neurons from sham-injured
brains (Fig. 34; p < 0.05). By 24 hr after injury, the relative level
of NGF mRNA in TUNEL-positive neurons had returned to
sham-injured values (p, NS) but remained elevated compared
with that in TUNEL-positive neurons at 12 hr after injury (Fig.
34; p < 0.05). No changes were observed in the mRNA abun-
dance for trkA in TUNEL-positive neurons at any time point
compared with non-TUN EL-positive neurons from sham-injured
brains (Fig. 34; p, NS). Injury-induced decreases in both BDNF
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l bax? 1 RED1 -----

Jir62Pcox22  JRef-1 ——» DNA damage?
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/
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(p < 0.05) and trkB (p < 0.05) mRNAs were observed at 12 hr
after injury in TUNEL-positive neurons compared with the rel-
ative level of these gene transcripts in non-TUNEL-positive
neurons from sham-injured brains (Fig. 34). By 24 hr after injury,
the levels of both of these mRNAs had returned to values ob-
tained from non-TUNEL-positive neurons in sham-injured
brains (Fig. 34; p, NS). The mRNA abundance for trkB at 24 hr
after injury was increased when compared with that in TUNEL-
positive neurons at 12 hr after injury (Fig. 34; p < 0.05). Relative
levels of bFGF mRNA were comparable between TUNEL-
positive neurons of injured brains at either time point and
non-TUNEL-positive neurons from sham-injured brains (Fig.
34; p, NS).
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Reparative enzymes

Brain injury induced a significant decrease in SOD1 and Ref-1
mRNAs in TUNEL-positive neurons at 12 hr after injury com-
pared with that in non-TUNEL-positive neurons from sham-
injured brains (Fig. 34; p < 0.05) that returned to baseline
(sham-injured) levels by 24 hr after injury (Fig. 34; p, NS). Both
of these mRNAs were increased in abundance at 24 hr after
injury in TUNEL-positive neurons when compared with the
levels in TUNEL-positive neurons at 12 hr after injury (Fig. 34;
p < 0.05).

Cell death and inflammation-associated mRNAs

bcl-2 family

The relative levels of bcl-2 mRNA did not change as a result of
injury at either time point in TUNEL-positive neurons compared
with non-TUNEL-positive neurons from sham-injured brains
(Fig. 3B; p, NS). The abundance of bcl-x, mRNA was also un-
changed between TUNEL-positive neurons at 12 hr after injury
and non-TUNEL-positive neurons from sham-injured brains
(Fig. 3B; p, NS). By 24 hr after injury, however, the level of bcl-x
mRNA was significantly decreased in TUNEL-positive neurons
compared with non-TUNEL-positive neurons from sham-injured
brains (Fig. 3B; p < 0.05). Relative levels of bax mRNA were
decreased in TUNEL-positive neurons from injured brains at 12
hr after injury compared with non-TUNEL-positive neurons
from sham-injured brains (Fig. 3B; p < 0.05). Interestingly, at 24
hr after injury, bax mRNA levels were found to be increased in
TUNEL-positive neurons compared with TUNEL-positive neu-
rons at 12 hr after injury or non-TUN EL-positive neurons from
sham-injured brains (Fig. 3B; p < 0.05).

Caspase family

The relative levels of caspase-2 mRNA were not significantly
different between TUNEL-positive neurons at 12 hr after injury
and non-TUNEL-positive neurons from sham-injured brains
(Fig. 3B; p, NS). However, caspase-2 mRNA levels became sig-
nificantly increased in TUNEL-positive neurons at 24 hr after
injury compared with non-TUN EL-positive neurons from sham-
injured brains (p < 0.05) or TUNEL-positive neurons at 12 hr
after injury (Fig. 3B; p < 0.05). No significant differences were
observed in caspase-3 mRNA levels between TUNEL-positive
neurons at either time point and non-TUNEL-positive neurons
from sham-injured brains (Fig. 3B; p, NS).

Inflammation-associated mR NAs

At 12 hr after injury, the relative abundances of IL-6 and Cox-2
mRNAs were significantly decreased in TUNEL-positive neu-
rons compared with non-TUNEL-positive neurons from sham-
injured brains (Fig. 3B; p < 0.05). By 24 hr after injury, the
relative abundances of IL-6 and Cox-2 mRNAs were not signif-
icantly different than baseline levels (p, NS), but the relative
levels of these mRNAs were significantly increased compared
with the relative level in TUNEL-positive neurons at 12 hr after
injury (Fig. 3B; p < 0.05).

Neurotransmitter synthesis, regulation, and receptor
subunit mRNAs

Neurotransmitter regulation

No alterations were observed after TBI in CamKII mRNA in
TUNEL-positive neurons at any post-injury time point (Fig. 3C;
p, NS).
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GABA

Brain injury did not alter the relative levels of GADG65 or the 82
subunit of the GABA, receptor mRNA in TUNEL-positive
neurons at any post-injury time point (Fig. 3C; p, NS).

NMDA receptor

No differences in NR1 subunit mRNA levels were observed at
any time point in TUNEL-positive neurons from injured brains
compared with non-TUN EL-positive neurons from sham-injured
brains (Fig. 3C; p, NS). However, both NR2A (p < 0.05) and
NR2C (p < 0.05) subunit mRNA levels were increased at 12 hr
after injury in TUNEL-positive neurons compared with non-
TUNEL-positive neurons from sham-injured brains (Fig. 3C; p <
0.05). By 24 hr after injury, relative mRNA levels of these recep-
tor subunits had returned to baseline levels (Fig. 3C). However,
levels of NR2C mRNA were also elevated at 12 hr after injury
compared with that at 24 hr after injury (Fig. 3C; p < 0.05).

AMPA receptor

At 12 hr after injury, a significant decrease was observed in the
relative abundance of GluR2 and RED1 mRNAs in TUNEL-
positive neurons compared with non-TUNEL-positive neurons
from sham-injured brains (Fig. 3C; p < 0.05). By 24 hr after
injury, levels of GluR2 mRNA were significantly increased in
abundance in TUNEL-positive neurons compared with the levels
in TUNEL -positive neurons at 12 hr after injury (p < 0.05) but
were not significantly different from sham-injured levels (Fig. 3C;
p, NS). Also, relative levels of RED1 mRNA in TUNEL-positive
neurons at 24 hr after injury had returned to baseline levels (Fig.
3C; p, NS).

Transcription factor, IEG, and cytoskeletal mMRNAs
Transcription factor

At 12 hr after injury, CREB mRNA levels were significantly
decreased in TUNEL-positive neurons compared with the rela-
tive levels in non-TUNEL-positive neurons from sham-injured
animals (Fig. 3D; p < 0.05). By 24 hr after injury, CREB mRNA
levels in TUN EL-positive neurons were not significantly different
from these levels in sham-injured animals (p, NS) but were
significantly increased compared with the levels in TUNEL-
positive neurons at 12 hr after injury (Fig. 3D; p < 0.05).

IEG

No differences were observed at any time point in the abundance
of c-fos mRNA between TUNEL-positive neurons from the
injured brain and non-TUNEL-positive neurons from sham-
injured brains (Fig. 3D; p, NS).

Cytoskeletal mRNAs

No changes were observed in the mRNA abundance for NF-L,
tau, or GFAP in TUNEL -positive neurons after TBI (Fig. 3D; p,
NS). The expression of GFAP was not detected in any cell.

DISCUSSION

We examined the expression of 31 selected candidate genes in
individual TUNEL-positive neurons from the cortex of brain-
injured rats and compared these expression profiles with those of
non-TUNEL-positive cortical neurons from sham-injured brains.
Because of the differential molecular profiles that we observed in
non-TUNEL-positive neurons from injured brains, TUNEL pro-
vided an unambiguous phenotypic marker of cell damage and/or
DNA fragmentation. The injury-induced temporal changes in the
molecular profiles of TUN EL-positive neurons at both 12 and 24
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hr after injury suggest that phenotypically identical cells can have
different “molecular fingerprints.” At 12 hr after injury, signifi-
cant decreases in mRNAs for specific genes (CREB, NGF,
BDNF, trkB, SOD1, IL-6, GluR2, REDI1, Ref-1, Cox-2, and bax)
were observed in injured neurons, while others (c-fos, trkA,
bFGF, bcl-2, caspase-2, caspase-3, NR1, B1, B2, CamKII,
GADG6S, tau, and NF-L) were unchanged, suggesting that de-
creases in these particular mRNAs observed in TUN EL-positive
neurons were not the result of injury-induced transcriptional
impairment.

Although Dash et al. (1995) observed an increase in phosphor-
ylated CREB protein in the hippocampus 5 min after cortical
impact injury that correlated with spatial memory deficits, our
results showed a decrease in CREB mRNA by 12 hr after injury.
After ischemia, vulnerable CA1l hippocampal cells lose CREB
immunoreactivity, whereas resistant cortical and dentate granule
cells upregulate CREB protein (Walton et al., 1996). Further-
more, Walton et al. (1999) have shown that upregulation of
CREB protein inhibited apoptosis in neurons, implicating in-
creased CREB protein levels as a survival factor for neurons.
Thus, the decrease in CREB mRNA in damaged neurons in the
present study may be detrimental for cell survival, and this
finding warrants further investigation.

An important consequence of the decrease in the relative
abundance of CREB mRNA in injured neurons may be decreases
observed in the expression of two target genes of CREB-BDNF
and its receptor trkB (Courtney et al., 1997). Both BDNF and
trkB have CRE elements (Shieh et al., 1998; Tao et al., 1998), and
their expression may be mediated by CREB (Nibuya et al., 1996).
Because BDNF has been shown to be neuroprotective in in vitro
and in vivo models of excitotoxicity and ischemia (Kume et al.,
1997; Schabitz et al., 1997), decreased BDNF mRNA could
represent the reduction of an endogenous neuroprotective factor
in injured cortical neurons. Our results are consistent with those
of Hicks et al. (1999) who reported decreases in BDNF and trkB
mRNAs in the contused cortex of rats after lateral FP injury.
Interestingly, the downregulation of trkB observed in TUNEL-
positive cells in the present study may explain the lack of behav-
ioral or histological protection after BDNF administration to
brain-injured rats (Blaha et al., 2000). BDNF may exert its neu-
roprotective effects, in part, via downregulation of NMDA recep-
tor function, and application of BDNF to cultured cerebellar
granule cells has been shown to result in a downregulation of
NR2A and NR2C mRNAs (Brandoli et al., 1998). The decrease
in BDNF mRNA observed at 12 hr after injury may have influ-
enced the increases in NR2A and NR2C mRNAs observed
during the same time after injury. This increased expression of
the NR2A subunit of glutamate receptors may exacerbate the
post-traumatic injury process because mice deficient in the NR2A
subunit show a reduced infarct volume after focal ischemia
(Morikawa et al., 1998). Our studies also demonstrated a decrease
in GluR2 and RED1 mRNAs at 12 hr after injury. The GluR2
subunit is subject to RNA editing by REDI1 that edits the site in
GluR2 pre-mRNA that determines the Ca®" permeability of the
channel (Melcher et al., 1996). Decreases in GluR2 mRNA have
been documented previously in the hippocampus after ischemia
(Pellegrini-Giampietro et al., 1992; Gorter et al., 1997) with no
change in GluR2 editing (Rump et al., 1996). The decrease in
both of these mRNAs in TUNEL-positive neurons in the present
study may lead to increased Ca*" influx through AMPA recep-
tors and further enhance glutamate-mediated excitotoxicity.

Decreased mRNA abundance for NGF was also observed in
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injured neurons at 12 hr after injury. A number of studies have
demonstrated the neuroprotective effects of NGF after fimbria—
fornix lesions (Whittemore et al., 1991) or TBI (Sinson et al.,
1995, 1997; Dixon et al., 1997). Thus, the decrease in NGF
mRNA in injured neurons may contribute to post-traumatic cell
death. Interestingly, trkA expression was unchanged by TBI, and
this may help to explain the success of NGF therapy after brain
trauma. Although our results do not support previous studies
describing an increase in NGF mRNA in the cortex after TBI
(DeKosky et al., 1994), these previous studies used a large cortical
region as the source of RNA that may have included astrocytes, a
major source of NGF mRNA observed after TBI (Goss et al.,
1998). Interestingly, relative levels of IL-6 mRNA were also
decreased in TUNEL-positive cortical neurons at 12 hr after
injury. Cytokines can affect the injury process by modulating the
synthesis of neurotrophins (Morganti-Kossmann et al., 1997), and
IL-6 can promote the synthesis of NGF in astrocytes (Kossmann
et al., 1996). Moreover, Loddick et al. (1998) have reported that
IL-6 administration reduces brain damage after ischemia. The
decreased IL-6 mRNA levels observed in our study may therefore
be an early event setting the stage for subsequent cell death
cascades.

Decreased gene expression for reparative proteins including
Ref-1 and SOD1 was also observed in TUNEL-positive neurons
at 12 hr after injury. Ref-1 is a nuclear enzyme involved in DNA
repair and activation of transcription factors (Xanthoudakis et al.,
1994). After hypoxic ischemia, a decrease in Ref-1 protein was
found to precede DNA fragmentation in hippocampal neurons
(Walton et al., 1997). The decrease in SOD1 mRNA in these
neurons early after the injury may also represent the loss of an
important enzyme known to protect the brain from the lethal
effects of superoxide anions released after brain trauma. Al-
though no changes were observed in bcl-2 or bel-x; mRNAs at 12
hr after injury, a decrease in bax mRNA was observed in injured
neurons. The decreased expression of bax, a proapoptotic mole-
cule, and the change in the bcl-2/bax ratio may suggest a neuro-
protective response by these neurons.

The expression profiles for many genes were observed to return
to baseline levels by 24 hr after injury. Gene expression for bcl-x,,
however, was significantly decreased. This member of the bcl-2
family has been shown to have antiapoptotic functions (Parsada-
nian et al., 1998), and a decrease in bcl-x, mRNA may promote
apoptosis in injured neurons. In addition, expression of the pro-
apoptotic member bax increased in these same neurons. Previ-
ously, Raghupathi et al. (1997) reported an increase in bax
mRNA in the cortex 3 d after lateral FP injury. Because there is
a marked increase in the number of apoptotic cells in the con-
tused cortex at 24 hr after injury (Conti et al., 1998), the decrease
in bcl-x; combined with an increase in bax mRNA may act as a
trigger for apoptosis in injured cortical neurons after TBI.

No differences in the expression of caspase-3 were observed
although increased caspase-3 mRNA has been shown in cytosolic
extracts from injured brain regions 24 hr after TBI using RT-PCR
(Yakovlev et al., 1997). The relative abundance of caspase-2,
which is homologous to caspase-3, was found to be increased in
TUNEL-positive cortical neurons at 24 hr after injury. Caspase-2
has been shown to induce apoptosis in several cell lines (Kumar
et al., 1994), and upregulation of caspase-2 mRNA has been
reported after ischemia (Kinoshita et al., 1997). In contrast to
caspase-3, caspase-2 has been shown to be an initiator rather than
an executor of apoptosis. For example, in response to apoptotic
stimuli, caspase-2 expression precedes the expression of caspase-3
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(Harvey et al., 1997). Furthermore, because caspase-2 is localized
in the nucleus, it is likely responsive to nuclear damage such as
DNA fragmentation. The upregulation of caspase-2 mRNA cou-
pled with the downregulation of bcl-x;, in TUNEL-positive neu-
rons exhibiting a nonapoptotic morphology suggests that these
events may occur early in apoptosis.

The differential patterns of gene expression in TUNEL-
positive cortical neurons at 12 versus 24 hr after injury provide a
molecular fingerprint of events associated with cell death after
TBI. The decrease in mRNAs at 12 hr after injury for many genes
subserving a potential neuroprotective function may contribute
to cell death by depriving the cell of endogenous neuroprotective
factors. The increases in caspase-2 and bax mRNAs coupled with
a downregulation of bcl-x; at 24 hr after injury suggest the
initiation of a possible apoptotic program. Whether these differ-
ential gene expression patterns reflect (1) a temporal sequence of
an ongoing cell death process or (2) the existence of two separate
populations of phenotypically identical cells with different cell
death processes is not known. Nevertheless, the molecular pro-
files of TUNEL-positive neurons at both of these time points
suggest that therapeutic targets for pharmacological intervention
should be designed with these patterns in mind. Although “cock-
tail” therapy for treatment of TBI is not a new concept, our data
empirically support this notion and provide several putative tar-
gets for therapeutic intervention. Such use of expression profiling
from a biological system to guide the selection or development of
therapeutic interventions is called transcript-aided drug design
(Eberwine et al., 1995). Our results suggest that it may be bene-
ficial to intervene early after TBI to prevent or compensate for
the downregulation in mRNAs encoding endogenous neuropro-
tective factors in addition to supplying antiapoptotic therapies.
The interrelationships among many of the mRNAs examined
underscore the importance of investigating multiple, rather than
single, transcripts in damaged neurons after TBI. The informa-
tion gained from molecular fingerprints of damaged neurons can
provide a more accurate account of molecular events in TBI
pathology and may suggest multiple and novel avenues for
therapy.
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