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Amyloid plaques are a neuropathological hallmark of Alzhei-
mer’s disease (AD), but their relationship to neurodegeneration
and dementia remains controversial. In contrast, there is a good
correlation in AD between cognitive decline and loss of
synaptophysin-immunoreactive (SYN-IR) presynaptic terminals
in specific brain regions. We used expression-matched trans-
genic mouse lines to compare the effects of different human
amyloid protein precursors (hAPP) and their products on plaque
formation and SYN-IR presynaptic terminals. Four distinct mini-
genes were generated encoding wild-type hAPP or hAPP car-
rying mutations that alter the production of amyloidogenic Ab
peptides. The platelet-derived growth factor b chain promoter
was used to express these constructs in neurons. hAPP muta-
tions associated with familial AD (FAD) increased cerebral Ab1–42

levels, whereas an experimental mutation of the b-secretase
cleavage site (671M3I) eliminated production of human Ab.

High levels of Ab1–42 resulted in age-dependent formation of
amyloid plaques in FAD-mutant hAPP mice but not in
expression-matched wild-type hAPP mice. Yet, significant de-
creases in the density of SYN-IR presynaptic terminals were
found in both groups of mice. Across mice from different trans-
genic lines, the density of SYN-IR presynaptic terminals corre-
lated inversely with Ab levels but not with hAPP levels or plaque
load. We conclude that Ab is synaptotoxic even in the absence
of plaques and that high levels of Ab1–42 are insufficient to
induce plaque formation in mice expressing wild-type hAPP.
Our results support the emerging view that plaque-independent
Ab toxicity plays an important role in the development of syn-
aptic deficits in AD and related conditions.
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Alzheimer’s disease (AD) is an age-dependent neurodegenera-
tive disorder that causes a chronically progressive decline in
cognitive functions. Because of the increasing longevity of many
populations around the world, AD is a medical problem of
mounting social and economic impact (Alloul et al., 1998). The
disease is associated with a characteristic combination of mor-
phological CNS alterations, including deposition of amyloid pro-
teins in parenchymal plaques and cerebral blood vessels, intran-
euronal formation of neurofibrillary tangles, loss of presynaptic
terminals and neuronal subpopulations, and reactive gliosis (Ter-
ry et al., 1999). The severity of these alterations varies widely and
specifically across different areas of the brain (Braak and Braak,
1998), suggesting that AD preferentially affects certain types of
neural elements or that these elements are particularly susceptible
to the disease.

Loss of synaptophysin-immunoreactive (SYN-IR) presynaptic
terminals (Terry et al., 1991; Honer et al., 1992; Masliah et al.,
1994; Dickson et al., 1995; Sze et al., 1997) and the number of
neurofibrillary tangles (Gomez-Isla et al., 1997) in specific brain
regions correlate well with cognitive decline in AD. In contrast,
the relationship between amyloid plaques and clinical manifesta-
tions or neurodegenerative changes remains controversial (Cum-
mings et al., 1996; Terry, 1996; Bartoo et al., 1997; Davis and
Chisholm, 1997; Gomez-Isla et al., 1997; Lue et al., 1999;
McLean et al., 1999). This is puzzling in light of different lines of
evidence implicating the amyloid-b protein precursor (APP) and
its metabolites in the pathogenesis of AD.

Mutations in genes encoding APP or presenilins 1 or 2 have
been linked to autosomal dominant forms of familial AD (FAD),
and these mutations increase the production of APP-derived Ab
peptides, either total Ab or Ab ending at residue 42 (Ab42) (for
review, see Younkin, 1995; Price and Sisodia, 1998; Storey and
Cappai, 1999). A variety of Ab preparations elicit neurotoxicity
in cultures of neural cells or tissue sections (Yankner et al., 1989;
Pike et al., 1993; Yankner, 1996; Lambert et al., 1998), and acute
injections of fibrillar Ab into the brain induce significant neuronal
loss in aged rhesus monkeys (Geula et al., 1998).

Several transgenic mouse models have been developed to fur-
ther elucidate the pathogenic role of APP/Ab in vivo (Price and
Sisodia, 1998). Although low-level neuronal expression of wild-
type or FAD-mutant human APP (hAPP) did not result in the
formation of typical AD-like amyloid plaques (Quon et al., 1991;
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Mucke et al., 1994), it did elicit age-related deficits in spatial
learning and memory (Moran et al., 1995; D’Hooge et al., 1996).
High-level neuronal expression of FAD-mutant hAPP resulted in
the brain region-dependent development of several AD-like CNS
alterations, including typical neuritic plaques, reactive gliosis, and
loss of SYN-IR presynaptic terminals and neuronal subpopula-
tions (Games et al., 1995; Masliah et al., 1996; Johnson-Wood et
al., 1997; Hsia et al., 1999). Many of these findings have been
confirmed and extended in independent models expressing FAD-
mutant hAPP in the absence (Hsiao et al., 1996; Sturchler-Pierrat
et al., 1997) or presence (Duff et al., 1996; Borchelt et al., 1997)
of FAD-mutant presenilins.

In some hAPP transgenic models, behavioral impairments
(Hsiao et al., 1996) (but see Routtenberg, 1997) or loss of neurons
(Calhoun et al., 1998) correlated with the extent of amyloid
deposition. In others, behavioral impairments (Holcomb et al.,
1998; Moechars et al., 1999), synaptic transmission deficits, and
loss of SYN-IR presynaptic terminals and microtubule-associated
protein 2-IR neurons (Hsia et al., 1999) clearly preceded plaque
formation, raising the possibility that hAPP or Ab can induce
structural and functional neuronal deficits independent of plaque
formation. These discrepancies underline the need for a system-
atic comparison of Ab levels, plaque formation, and neurodegen-
eration in transgenic lines expressing wild-type or FAD-mutant
forms of hAPP at comparable levels. Here, we report the results
of such an analysis.

MATERIALS AND METHODS
Animals. The platelet-derived growth factor (PDGF)-APP transgene
(Games et al., 1995; Rockenstein et al., 1995) and the generation of
PDGF-APPInd line H6 (Wyss-Coray et al., 1997) and PDGF-APPSw,Ind
line J9 (Hsia et al., 1999) have been described previously. To generate
PDGF-APPWt, the sequence of PDGF-APPInd was converted to wild
type by PCR primer modification, essentially as described previously
(Rockenstein et al., 1995). To generate PDGF-APPM-I, the EcoRI to SpeI
fragment of PDGF-APPInd containing the 717V3F mutation was sub-
cloned into analogous sites in pCMV695 M596I (Citron et al., 1995) to
form pCMV695HaM596I. The 1.4 kb XhoI to SpeI fragment from
pCMV695HaM596 was then ligated into the analogous sites of PDGF-
APPInd to create the PDGF-APPM-I transgene. The correctness of
PDGF-APPWt and PDGF-APPExp,Ind was confirmed by sequencing
across modified regions.

Microinjection of transgenes into C57BL/6 3 DBA/2 F2 one-cell
embryos, identification of transgenic founders by slot-blot analysis of
genomic DNA, and selection of lines with cerebral hAPP mRNA expres-
sion by RNase protection assay analysis were performed as described
previously (Games et al., 1995; Rockenstein et al., 1995). For each
construct, several transgenic founders (PDGF-APPWt, n 5 7; PDGF-
APPInd, n 5 12; PDGF-APPSw,Ind, n 5 7; and PDGF-APPExp,Ind, n 5 19)
were generated, and their offspring were screened for cerebral transgene
expression. Transgenic expresser lines were maintained by crossing het-
erozygous transgenic mice with nontransgenic C57BL/6 3 DBA/2 F1
breeders. All transgenic mice were heterozygous with respect to the
transgene. Nontransgenic littermates served as controls.

Mice were anesthetized with chloral hydrate and flush-perfused tran-
scardially with 0.9% saline. Brains were removed and divided sagittally.
One hemibrain was post-fixed in phosphate-buffered 4% paraformalde-
hyde, pH 7.4, at 4°C for 48 hr for vibratome sectioning; the other was
snap frozen and stored at 270°C for RNA or protein analysis.

RNA analysis. RNA extraction and mRNA quantitation by solution
hybridization RNase protection assay were performed as described pre-
viously (Rockenstein et al., 1995), using 10 mg of total RNA per sample
in combination with the following 32P-labeled antisense riboprobes [pro-
tected nucleotides (GenBank accession number)]: hAPP [nt2468–2657
(X06989) of hAPP fused via NotI linker with nt2532–2656 (M24914) of
SV40]; actin [nt480–559 (X03672) of mouse b-actin].

Quantitation of Ab. Snap-frozen hippocampi were homogenized in
guanidine buffer, and human Ab peptides were quantitated by ELISA as
described previously (Johnson-Wood et al., 1997). The Ab1–42 ELISA

detects only Ab1–42, whereas the Ab1-x ELISA detects Ab1–40, Ab1–42,
and Ab1–43, as well as C-terminally truncated forms of Ab containing
amino acids 1–28.

Detection of Ab deposits. Vibratome sections were incubated overnight
at 4°C with biotinylated mouse monoclonal antibody 3D6 (diluted to 5
mg/ml), which specifically recognizes Ab1–5 (Johnson-Wood et al., 1997;
Wyss-Coray et al., 1997). Binding of primary antibody was detected with
the Elite kit from Vector Laboratories (Burlingame, CA) using diami-
nobenzidine and H2O2 for development. Sections were counterstained
with 1% hematoxylin and examined with a Vanox light microscope
(Olympus Optical, Tokyo, Japan) using a 2.53 objective. The percent
area of the hippocampus covered by 3D6-immunoreactive material
(“plaque load”) was determined with a Quantimet 570C (Leica, Deer-
field, IL). Three immunolabeled sections were analyzed per mouse, and
the average of the individual measurements was used to calculate group
means. Some sections were double-immunolabeled with a rabbit poly-
clonal antibody against Ab (R1280; courtesy of Dr. Dennis Selkoe) and
mouse monoclonal antibodies against phosphorylated neurofilaments
(SMI312; Sternberger Monoclonals, Baltimore, MD) as described pre-
viously (Masliah et al., 1996).

Density of SYN-IR presynaptic terminals. Vibratome sections were
incubated overnight with a monoclonal antibody against synaptophysin (1
mg/ml; Boehringer Mannheim, Indianapolis, IN), followed by incubation
with fluorescein isothiocyanate-conjugated horse anti-mouse IgG (1:75;
Vector Laboratories). Sections were then transferred to SuperFrost
slides (Fisher Scientific, Tustin, CA), mounted under glass coverslips
with antifading medium (Vector Laboratories), and imaged with a laser
scanning confocal microscope (MRC1024; Bio-Rad, Hercules, CA) as
described previously (Games et al., 1995; Masliah et al., 1996). For each
experiment, we first determined the linear range of the fluorescence
intensity of immunoreactive terminals in nontransgenic control sections.
This setting was then used, as described previously (Buttini et al., 1999),
to collect all images analyzed in the same experiment. For each mouse,
12 confocal images (four per section) of the molecular layer of the
dentate gyrus, each covering an area of 7282 mm 2, were obtained.
Digitized images were transferred to a Macintosh computer (Apple
Computers, Cupertino, CA) and analyzed with NIH Image software.
The area occupied by SYN-IR presynaptic terminals was quantified and
expressed as a percentage of the total image area as described previously
(Masliah et al., 1992b; Games et al., 1995).

This method of quantitating SYN-IR presynaptic terminals has been
used extensively to assess neurodegenerative alterations in diverse ex-
perimental models (Toggas et al., 1994; Games et al., 1995; Buttini et al.,
1999) and in diseased human brains (Masliah et al., 1991b, 1992a;
Knowles et al., 1998). It has also been validated previously by compari-
sons with quantitative immunoblots (Alford et al., 1994; Mucke et al.,
1994), quantitations of synaptic proteins by ELISA (Brown et al., 1998;
Buttini et al., 1999), and the optical “disector” approach (Masliah et al.,
1991a; Everall et al., 1999; Hsia et al., 1999). To ensure objective
assessments and reliability of results, brain sections from mice to be
compared in any given experiment were blind coded and processed in
parallel. Codes were broken after the analysis was complete.

Statistical analyses. Statistical analyses were performed with the Stat-
View 5.0 program (SAS Institute Inc., Cary, NC). Differences among
means were assessed by one-way ANOVA followed by, Dunnett’s or
Tukey–Kramer post hoc test. Correlation studies were performed by
simple regression analysis. The null hypothesis was rejected at the 0.05
level.

RESULTS
Generation of transgenic mice expressing wild-type
and FAD-mutant hAPP at comparable levels
The PDGF b chain promoter was used to direct neuronal expres-
sion of alternatively spliced minigenes encoding hAPP695,
hAPP751, and hAPP770, as described previously (Games et al.,
1995; Rockenstein et al., 1995). Four types of hAPP were ex-
pressed individually in different lines of transgenic mice (Fig. 1):
wild-type hAPP (APPWt), hAPP carrying the FAD-linked (Mur-
rell et al., 1991) 717V3F mutation (APPInd), hAPP carrying the
717V3F mutation plus the FAD-linked (Mullan et al., 1992)
670/671KM3NL double mutation (APPSw,Ind), and hAPP carrying
the 717V3F mutation plus an experimental 671M3 I mutation
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(APPExp,Ind) that inhibits Ab production in cell culture (Citron et
al., 1995). Several independent lines of transgenic mice were
established for each construct: 7 for APPWt, 11 for APPInd, 7 for
APPSw,Ind, and 15 for APPExp,Ind. The generation of APPInd line
H6 (Wyss-Coray et al., 1997) and APPSw,Ind line J9 (Hsia et al.,
1999) has been described previously.

The overall level of cerebral transgene expression in each line
was determined by RNase protection assay (Fig. 2). Based on this
analysis, three groups of transgenic lines, each consisting of two
or more lines expressing different hAPP constructs at comparable
levels, were selected for further analysis (Fig. 1B). Cerebral
hAPP mRNA levels in the highest expresser lines, APPWt I63 and
APPInd H6, are similar to those in the APPInd line 109 described
previously (Games et al., 1995; Rockenstein et al., 1995). Al-
though we were able to generate lines representing a broad range
of expression levels for APPWt, APPInd, and APPSw,Ind, all
APPExp,Ind lines in which hAPP mRNA could be detected in the
brain (n 5 15) had low levels of transgene expression (Fig. 1B and
data not shown). The reasons for this remain to be determined.

In all PDGF-APP mice, cerebral expression of hAPP immu-
noreactivity was primarily neuronal and widespread across dif-
ferent brain regions, with maximal levels in the neocortex and
hippocampus (data not shown), consistent with previous obser-
vations (Games et al., 1995; Johnson-Wood et al., 1997).

Effects of hAPP mutations on human Ab levels
Neocortical and hippocampal levels of Ab1-x, approximating total
Ab (Johnson-Wood et al., 1997; Gouras et al., 1998), and Ab1–42

were determined by ELISA. Because intraparenchymal Ab de-
posits significantly increase the overall Ab burden, as measured
by ELISA (Johnson-Wood et al., 1997), the effects of hAPP
mutations on cerebral Ab production were evaluated at 2–4
months of age, when brains of transgenic mice from all lines were
devoid of 3D6-immunoreactive Ab deposits (see below).

For any given construct, levels of Ab1-x and Ab1–42 (Fig. 3)
were dependent on overall transgene expression levels (Figs. 1, 2),
with the highest Ab levels seen in the highest hAPP expresser
lines. In both the hippocampus (Fig. 3) and neocortex (data not

shown), the 717V3F mutation increased the relative proportion
of Ab1–42 without increasing Ab1-x levels, whereas the 670/
671KM3NL double mutation significantly increased Ab1-x levels,

Figure 2. Identification of wild-type and FAD-mutant hAPP mice with
matching levels of cerebral transgene expression. A, Representative au-
toradiograph showing results of an RNase protection assay. Total RNA
was extracted from entire hemibrains. The lef t lane shows signals of
undigested radiolabeled riboprobes; the other lanes contained the same
riboprobes plus brain RNA samples, digested with RNases. Each sample
lane contains RNA from a different mouse. The hAPP probe detects
human but not mouse APP; it also recognizes an SV40 segment ( S) of
transgene-derived mRNAs. Non-tg, Nontransgenic. B, Phosphorimager
quantitation of signals shown in A. Values represent group means 6 SD.

Figure 1. Summary of transgenic lines.
A, Diagram of hAPP indicating the mu-
tations expressed in transgenic mice.
FAD-linked mutations are commonly
referred to by place of discovery or res-
idence of affected kindred. The 670/
671KM3NL double mutation affects a
large pedigree in Sweden (Mullan et al.,
1992), and the 717V3F mutation was
identified in Indiana (Murrell et al.,
1991) (numbers refer to amino acids in
APP770). Mutations at position 717 are
often collectively referred to as “Lon-
don mutations” based on the first report
of the FAD-linked 717V3 I mutation
(Goate et al., 1991); however, the latter
mutation was not studied here. The se-
quence of Ab is indicated in bold in
single-letter amino acid code. KPI,
Kunitz-type protease inhibitor domain.
Elements are not drawn to scale. B, Rel-
ative levels of cerebral transgene expres-
sion (values in parentheses) were deter-
mined in different lines of PDGF-hAPP
mice as illustrated in Figure 2. The ex-
pression level in line I63 was arbitrarily
defined as 1.0.
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consistent with previous observations (Citron et al., 1992; Cai et
al., 1993; Younkin, 1995). Consequently, for a given level of
transgene expression, Ab levels were lower in APPWt mice than
in APPSw,Ind mice (Figs. 1–3). No human Ab could be detected in
brains of mice expressing hAPP carrying the experimental
671M3 I mutation, confirming in vivo the effects this mutation has
in vitro (Citron et al., 1995).

Effects of hAPP mutations on formation of
amyloid plaques
To assess plaque formation, sections from transgenic and non-
transgenic mice were immunolabeled with a monoclonal antibody
against Ab (3D6). At 5–7 months of age, amyloid deposition was
detected only in APPSw,Ind mice (Fig. 4). Diffuse amyloid immu-
noreactivity at this age was observed in a laminar pattern in the
molecular layer of the dentate gyrus, and a few dense amyloid
deposits 4–10 mm in diameter were detected in the deeper layers
of the neocortex (data not shown). Both the diffuse plaques and
the microplaques lacked a neuritic component. No plaques were
detected at 5–7 months in transgenic mice from APPWt lines I5
and I63 or APPInd lines H6 and H40 (7–17 mice per line). At 8–10
months of age, APPSw,Ind lines also had the highest proportion of

mice with plaques (Fig. 4), compared with hAPP expression-
matched APPInd mice, and the highest hippocampal plaque loads
(Fig. 5 and data not shown). In both APPInd and APPSw,Ind mice,
the onset and extent of plaque formation were influenced by
levels of human Ab, with mice expressing higher levels of Ab
showing earlier and more extensive amyloid deposition (Figs.
3–5), even among lines that were well matched for overall trans-
gene expression (Figs. 1, 2). At 21–27 months of age, the propor-
tion of APPInd mice with plaques increased to 93% in the high
expresser H6 line and to 83% in the low expresser H40 line (Fig.
4). Plaques in adult mice were typically larger and denser than
those in young mice and showed a prominent neuritic component
when double-labeled with antibodies against Ab and neurofila-
ments (Fig. 5E). No plaques were detected in nontransgenic mice
at 2–27 months of age (n 5 84).

Decreased levels of SYN-IR presynaptic terminals are
unrelated to plaque load
We showed previously that transgenic mice expressing FAD-
mutant hAPP have a decreased density of SYN-IR presynaptic
terminals in specific subfields of the hippocampus and that this
decrease precedes plaque formation (Games et al., 1995; Hsia et
al., 1999). Because diverse factors associated with aging could link
parallel processes in time, simulating cause–effect relationships
that may not exist, it is critical to compare the effects of plaque
load on neurodegeneration within relatively narrow age ranges.
To assess whether plaque formation in FAD-mutant hAPP lines
exacerbates the decrease in SYN-IR presynaptic terminals in old
mice, we compared hippocampal density of SYN-IR presynaptic
terminals and plaque load in APPInd and APPSw,Ind mice at 21–27
months of age, when most of these mice have plaques (see above).
No correlation was identified between SYN-IR presynaptic ter-
minals and plaque load (Fig. 6). At 8–10 months of age, when
some mice have plaques and others do not (Fig. 4), the density of
SYN-IR presynaptic terminals also did not correlate with plaque
load in APPInd mice from line H6 (n 5 24, r 5 0.015, p 5 0.94)
or APPSw,Ind mice from lines J9 and J20 (n 5 16, r 5 0.28,
p 5 0.29).

Figure 3. Comparison of human Ab levels in hippocampi of mice ex-
pressing wild-type or FAD-mutant hAPP. Ab1-x and Ab1–42 were quan-
titated by ELISA in mice from different transgenic lines (n 5 6–9 mice per
line) at 2–4 months of age. Values represent group means 6 SD. No
plaques were detected in the opposite hemibrains of these mice by
immunostaining with the 3D6 antibody (data not shown).

Figure 4. Hippocampal plaque formation in different lines of FAD-
mutant hAPP mice. Ab deposits were detected by immunostaining of
brain sections (n 5 3 per mouse) with the 3D6 antibody as described in
Materials and Methods. Six to 18 mice per line were analyzed at 2–4,
8–10, and 21–25 months of age, and 1–6 (mean 5 4.3) mice per line were
analyzed at 5–7 and 11–16 months of age.
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APPWt mice with high Ab levels do not develop
plaques but have decreased levels of SYN-IR
presynaptic terminals
Although Ab1–42 levels in the APPWt line I63 were similar to
those in the plaque-bearing APPInd line H6 (Fig. 7A), no plaques

were detected in mice from APPWt line I63 between 2 and 28
months of age (Figs. 5, 7B). Mice from APPWt line I5 also had no
plaques at 8–10 (n 5 9 mice) or 24 (n 5 2) months of age (data
not shown). Despite the lack of plaque formation, mice from
APPWt line I63 showed decreases in SYN-IR presynaptic termi-
nals similar to those in mice from APPInd line H6 (Fig. 7C).
Simple regression analysis revealed a significant decline in
SYN-IR presynaptic terminals with age (age range of 2–28
months) in mice from APPInd line H6 (n 5 56, r 5 0.30, p 5
0.0243) and APPWt line I63 (n 5 23, r 5 0.53, p 5 0.0095) but not
in nontransgenic controls (n 5 87, r 5 0.07, p 5 0.53). Because
APPInd line H6 and APPWt line I63 are well matched not only for
Ab1–42 (Figs. 3, 7A) but also for overall transgene expression
(Figs. 1, 2), their comparable decrease in SYN-IR presynaptic
terminals could be attributable to neuronal overexpression of
either Ab1–42 or hAPP. To elucidate the relative importance of
hAPP and Ab in determining the density of SYN-IR presynaptic
terminals in these models, we took advantage of the fact that
hAPP expression-matched APPWt, APPInd, and APPSw,Ind mice
have different levels of Ab1–42 production. The density of
SYN-IR presynaptic terminals and levels of hAPP and its prod-
ucts were assessed in 2- to 4-month-old mice, because at this age,
decreases in SYN-IR presynaptic terminals are already detect-
able in transgenic mice (Fig. 7C), and steady-state levels of Ab
can be assessed most reliably because none of the mice have
plaques (Fig. 4). First, we examined the relationship between the
density of SYN-IR presynaptic terminals and hAPP levels. We

Figure 5. Age-related cerebral Ab depo-
sition occurs in mice expressing FAD-
mutant hAPP but not in mice expressing
wild-type hAPP. Brain sections were
immunoperoxidase-stained for Ab with
the 3D6 antibody and imaged by light mi-
croscopy (A–D) or double-labeled with
antibodies against Ab (R1280; red) and
monoclonal antibodies against phosphor-
ylated neurofilaments (SMI312; green)
and imaged by laser scanning confocal mi-
croscopy (E, F ). Hippocampal sections of
transgenic mice are shown: A, APPInd line
H6 (18 months); B, APPWt line I63 (15
months); C, APPSw, Ind line J9 (10 months);
D, APPSw,Ind line J20 (10 months); E,
APPInd line H6 (10 months). F, Midfrontal
gyrus from a human AD brain. Magnifica-
tions: A–D, 43; E, F, 9303.

Figure 6. Density of SYN-IR presynaptic terminals does not correlate
with plaque load in mice from different FAD-mutant hAPP lines. Plaque
load and density of SYN-IR presynaptic terminals in the hippocampus
were determined in 31 transgenic mice from APPInd lines H6, H9, and
H40 and APPSw, Ind line J9 at 21–27 months of age. No correlation was
found between the two variables.
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found no correlation between these variables across different lines
of transgenic mice (Fig. 8). Next, we examined whether there was
evidence for dose-dependent synaptotoxicity of Ab. A significant
inverse correlation was identified between the density of SYN-IR
presynaptic terminals and the levels of Ab1-x or Ab1–42 (Fig. 9).

DISCUSSION
High-level neuronal production of Ab1–42 in mice expressing
wild-type hAPP did not result in the formation of amyloid
plaques but was associated with decreased levels of SYN-IR
presynaptic terminals in the molecular layer of the dentate gyrus.
Across different wild-type and FAD-mutant hAPP transgenic
lines, decreases in SYN-IR presynaptic terminals correlated with
Ab levels but not with hAPP levels or plaque load. These results
support a plaque-independent role for Ab in AD-related synaptic
toxicity.

Plaque formation depends on both absolute levels of
Ab1–42 and Ab1–42/Ab1–40 ratio
In transgenic lines carrying FAD mutations, the onset and pro-
gression of plaque formation were closely related to levels of
Ab1–42 expression measured before the development of plaque
pathology. In hAPP expression-matched lines containing the
717V3F mutation, plaque formation was accelerated and inten-
sified by the 670/671KM3NL double mutation, which increases Ab
production (Citron et al., 1992; Cai et al., 1993; Younkin, 1995).
These findings suggest that critical levels of Ab1–42 in vulnerable
brain regions are necessary for the development of plaques.
However, the absence of plaques in line I63 demonstrates that
high levels of Ab1–42 are not sufficient for plaque formation. Line
I63 is, to our knowledge, the first APPWt transgenic line that
produces Ab1–42 levels comparable with those in FAD-mutant
hAPP mice that develop plaques. The close match in hAPP and
Ab1–42 levels in APPWt line I63 and APPInd line H6 was fortu-
itous but exceptional, because in other APPInd lines the 717V3F

mutation increased Ab1–42 levels over those identified in APPWt

lines. We cannot exclude the possibility that the difference in
plaque formation between wild-type and FAD-mutant hAPP
lines involves Ab-independent factors. However, for the following
reasons, we favor the hypothesis that differences in Ab1–42/Ab1-x

ratios play a key role. For unknown reasons, Ab1-x levels were
higher in APPWt line I63 than in APPInd line H6, resulting in a
lower Ab1–42/Ab1-x ratio in line I63 (Figs. 3, 7). Compared with
APPWt line I63, APPInd line H40 had lower Ab1-x levels but
comparable Ab1–42 levels (Fig. 3). The higher Ab1–42/Ab1-x ratio
in line H40 was associated with plaque formation, whereas the
lower Ab1–42/Ab1-x ratio in line I63 was not. Ab1–40 accounts for
most of the Ab1-x that does not end at Ab residue 42 (Gouras et
al., 1998). It is conceivable that Ab1–40 interferes with Ab1–42

aggregation in vivo, as it does in vitro (Snyder et al., 1994), and
that the lack of plaque formation in line I63 reflects an antiamy-
loidogenic effect of Ab1–40. If confirmed in future studies, this
effect could be exploited therapeutically.

Synaptotoxicity depends on Ab levels but not hAPP
levels, plaque load, or presence of FAD mutations
Decreases in synaptophysin immunoreactivity in specific brain
regions correlate well with the severity of cognitive deficits in AD

Figure 7. Comparison of hippocampal Ab levels, plaque formation, and
density of SYN-IR presynaptic terminals in the high expresser lines
APPWt I63 and APPInd H6. Note that the cerebral hAPP mRNA levels in
these lines are very well matched (Figs. 1, 2). A, Levels of human Ab were
determined at 2–4 months of age in 8–9 mice per line by ELISA. Circles
represent values in individual mice; horizontal lines indicate group means.
B, Proportion of mice in which 3D6-immunoreactive plaques were iden-
tified (black) at the ages indicated (n 5 4–18 mice per line and age range).
C, The density of SYN-IR presynaptic terminals was determined in 4–41
mice per genotype and age range. Data represent group means 6 SD.
*p , 0.05, **p , 0.01 versus nontransgenic controls (Tukey–Kramer post
hoc test).

Figure 8. Density of SYN-IR presynaptic terminals does not correlate
with hAPP levels across hAPP mice from different lines. Levels of full-
length plus a-secreted hAPP and density of SYN-IR presynaptic termi-
nals in the hippocampus were determined in 36 transgenic mice from
APPWt lines I5, I7, and I63, APPInd lines H6 and H40, and APPSw, Ind line
J9 at 2–4 months of age. No correlation was identified between the two
variables. No plaques were detected in the opposite hemibrains of these
mice by immunostaining with the 3D6 antibody (data not shown).
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(Terry et al., 1991; Honer et al., 1992; Masliah et al., 1994;
Dickson et al., 1995; Sze et al., 1997), highlighting the clinical
relevance of this marker. Compared with the decreases in
SYN-IR presynaptic terminals in late stages of AD (40%)
(Masliah et al., 1994), the decreases we found in hAPP transgenic
mice (10–30%) may seem relatively subtle. However, the de-
creases in SYN-IR presynaptic terminals in hAPP mice were not
only statistically significant but were also associated with major
synaptic transmission deficits (Hsia et al., 1999), supporting their
pathophysiological relevance.

In all transgenic models in which Ab is expressed from the
full-length precursor molecule, overexpression of Ab is insepa-

rably linked to overexpression of hAPP itself. Because hAPP
could affect neuronal function through a number of mechanisms
(Milward et al., 1992; Mattson et al., 1993; Greenberg et al., 1994;
Multhaup et al., 1996; Okamoto et al., 1996; Masliah et al., 1998),
it is important to determine whether hAPP per se is responsible
for the neuropathological alterations in these models. In trans-
genic mice expressing hAPP from the relatively weak neuron-
specific enolase promoter, levels of SYN-IR presynaptic termi-
nals were increased in mice with lower levels of hAPP expression
but not in mice with higher levels of hAPP expression (Mucke et
al., 1994). Those results led us to postulate a bell-shaped dose–
response curve for synaptotrophic effects of hAPP at near-
physiological levels of hAPP expression (Mucke et al., 1994). The
relatively high density of SYN-IR presynaptic terminals in the
low expresser APPWt line I7 (Fig. 9) may be consistent with this
hypothesis. At higher levels of hAPP expression, the density of
SYN-IR presynaptic terminals did not correlate with hAPP lev-
els, suggesting that hAPP overexpression per se is not responsible
for the decreased density of these structures in hAPP mice.

Although the high expresser APPWt line I63 did not develop
plaques, it showed significant decreases in SYN-IR presynaptic
terminals that worsened with age. Thus, FAD mutations are not
required for the decrease in SYN-IR presynaptic terminals in
hAPP mice, consistent with the loss of these structures in humans
with sporadic AD, who also lack FAD mutations. The decreased
levels of SYN-IR presynaptic terminals in line I63 also demon-
strate that plaques are not required for this deficit to occur.
Moreover, across different lines of aged plaque-bearing mice,
plaque load did not correlate with the density of SYN-IR pre-
synaptic terminals. If not extracellular deposits of fibrillar Ab,
what is causing the synaptic deficits? Possibilities include neuro-
toxic effects induced by the intraneuronal accumulation of Ab or
by diffusible forms of extracellular Ab (Masliah et al., 1996;
Turner et al., 1996; Lambert et al., 1998; Lee et al., 1998; Hartley
et al., 1999; Hsia et al., 1999; Wilson et al., 1999). Consistent with
either of these possibilities and with recent findings in AD (Lue
et al., 1999; McLean et al., 1999), decreases in SYN-IR presyn-
aptic terminals in transgenic lines expressing wild-type or FAD-
mutant hAPP correlated inversely and plaque-independently with
levels of Ab1-x and Ab1–42.

In conclusion, our findings suggest that plaque formation is
influenced not only by absolute but also by relative levels of
Ab1–42 and Ab1–40, with relatively high concentrations of Ab1–40

being potentially antiamyloidogenic. Decreases in SYN-IR pre-
synaptic terminals were critically dependent on Ab levels but not
on hAPP levels, plaque formation, or presence of FAD mutations,
suggesting that plaque-independent Ab toxicity could play a key
role in the pathogenesis of AD-related neurodegeneration.
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