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In the primate primary visual cortex (V1), the significance of
individual action potentials has been difficult to determine,
particularly in light of the considerable trial-to-trial variability of
responses to visual stimuli. We show here that the information
conveyed by an action potential depends on the duration of the
immediately preceding interspike interval (ISI). The interspike
intervals can be grouped into several different classes on the
basis of reproducible features in the interspike interval histo-
grams. Spikes in different classes bear different relationships to
the visual stimulus, both qualitatively (in terms of the average
stimulus preceding each spike) and quantitatively (in terms of
the amount of information encoded per spike and per second).
Spikes preceded by very short intervals (3 msec or less) convey

information most efficiently and contribute disproportionately to
the overall receptive-field properties of the neuron. Overall, V1
neurons can transmit between 5 and 30 bits of information per
second in response to rapidly varying, pseudorandom stimuli,
with an efficiency of ;25%. Although some (but not all) of our
results would be expected from neurons that use a firing-rate
code to transmit information, the evidence suggests that visual
neurons are well equipped to decode stimulus-related informa-
tion on the basis of relative spike timing and ISI duration.
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Cortical sensory neurons have high intrinsic temporal precision
(Mainen and Sejnowski, 1995; Nowak et al., 1997) and can encode
information on the scales of milliseconds and tens of milliseconds
(Buračas and Albright, 1999). Three questions arise immediately.
(1) What kinds of stimuli are encoded on the different time scales
in a neuron’s response? (2) How much information is encoded on
each time scale? (3) How might this information be decoded by
relatively simple components of neurons and neural circuits?

Here, we answer the first two questions experimentally by
measuring the responses of neurons in the primary visual cortex
(V1) of macaque monkeys to rapidly varying, pseudorandom
(“m-sequence”) stimuli. The interspike intervals (ISIs) of spike
trains fired by these neurons fall into three subsets, distinguished
on the basis of ISI duration, in a stereotyped manner across
neurons. We use a reverse-correlation procedure to generate
receptive field (RF) maps from the full responses as well as from
response subsets that only contain spikes that follow ISIs of
particular durations. Finally, we use information theory to quan-
tify the rate and efficiency with which full responses and response
subsets convey messages about the visual stimulus.

Our results indicate that spikes in different ISI subsets are fired
in response to different visual stimuli. In particular, spikes pre-
ceded by ISIs ,3 msec, which occur during periods of very high
firing rate, tend to be evoked by stimuli that have several subre-
gions of opposite contrast covering the neuron’s receptive field.
Each of these spikes also tends to convey more stimulus-related

information than the average spike. On the other hand, spikes
preceded by ISIs .38 msec are often fired in response to spatially
uniform stimuli that reverse contrast over time.

The third question, concerning the ways in which these differ-
ent messages are decoded, is not addressed directly by our exper-
iments. We note at the outset that this question is conceptually
independent from another much-debated question in cortical
physiology: whether cortical neurons encode information through
a rate code or a temporal code. In fact, both types of code can
generate receptive-field maps and information rates similar to
what is described here. However, the existence of stereotyped ISI
durations in V1 (described in this paper), together with recently
described synaptic and dendritic machinery (such as depression,
facilitation, and coincidence detection) that can selectively in-
crease or decrease the importance of particular spikes in shaping
a postsynaptic response, suggests that real-time decoding of neu-
ronal signals may rely on known biophysical mechanisms specif-
ically sensitive to ISI duration.

MATERIALS AND METHODS
Recording and stimuli. We recorded the responses of single V1 neurons in
opiate-anesthetized macaque monkeys (Reich et al., 1998; Victor and
Purpura, 1998). All experimental procedures complied with the guide-
lines of the National Eye Institute and our institution. We measured
spike times to the nearest 0.1 msec for 135 neurons, and to the nearest 3.7
msec (one frame of the visual display) for 36 neurons. We include in our
analysis only the 99 neurons [32 simple, 60 complex, and 7 unclassified
(Skottun et al., 1991)] that responded with firing rates higher than 3
spikes/sec and that had significantly modulated RF maps (see below).

Our stimuli look to human observers like random and rapidly flickering
checkerboards. In fact, however, the stimuli are highly structured. They
consist of a grid in which the temporal sequence of the luminance levels
(0 or 300 cd/m 2) in each of 249 pixels (typically 16 3 16 arc-min) is
determined by a pseudorandom, binary m-sequence (Sutter, 1992; Vic-
tor, 1992; Reid et al., 1997). The same 4095 step m-sequence is used in
each pixel, but the starting position in the sequence is different. Because
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the minimum offset between any pair of pixels is 237 msec, and because
an m-sequence is uncorrelated with temporal shifts of itself, there is little
danger that the same stimulus sequence would simultaneously affect
different parts of the receptive field. The sequence is advanced simulta-
neously in all pixels at a stimulus frame rate of 67.58 Hz, so that the
luminance of each stimulus pixel can potentially change once every four
frames of the 270.3 Hz visual display. This stimulus frame rate has been
shown to evoke good receptive-field maps from cortical neurons (Reid et
al., 1997). The entire m-sequence is repeated 8–16 times, as is its
contrast-inverse, which is presented to eliminate spurious effects of
residual correlations in the stimulus on our receptive field maps (Sutter,
1992).

Receptive field maps. Cross-correlation of an evoked spike train with
the m-sequence stimulus—a process also known as “spike-triggered
averaging”—yields a detailed map of the neuron’s spatiotemporal recep-
tive field (see Fig. 4). This map essentially represents the average
stimulus preceding each spike, and it is rendered as a series of contour
plots depicting spatial snapshots that are sequential in time. Each map
shows the average change in contrast in each of the stimulus pixels that
significantly modulated the response for at least two consecutive 3.7 msec
time bins ( p , 0.01 in each bin; the estimated impulse response was at
least 2.6 SEs from 0, where standard errors were determined empirically
from multiple trials), as well as in surrounding pixels. We smooth the
contour maps by cubic spline interpolation.

To the degree that the neuron is a linear system, the derived RF map
can also be considered to depict its “spatiotemporal impulse response”—
that is, its average response to an incremental flash of light at each spatial
position (Victor, 1992). Of course, V1 neurons are not linear systems, and
there are often higher-order components of the RF map that make the
impulse response interpretation imprecise. In this situation, the RF maps
are the linear functions that best fit the full response, and we retain the
spirit of the impulse–response interpretation in the normalization of our
RF maps. Contour heights represent, at each time frame, the change in
firing rate induced by a luminance step in a particular stimulus pixel
averaged over the displayed time window of 14.8 msec. To obtain
absolute firing rates for the full response, the RF map of which is
denoted by f in Equations 1 and 2 in Results, add these values to the
mean firing rates given in the legend of Figure 4. To obtain absolute
firing rates for the subset responses (s; see Results), multiply the RF map
values by the fraction of spikes in the appropriate subset and add the
product to the subset’s mean firing rate.

Information. To measure the information contained in m-sequence
responses, we use a method modified from Strong and colleagues (de
Ruyter van Steveninck et al., 1997; Strong et al., 1998). Spike trains are
divided into time bins, each of which may be occupied by zero, one, or
more than one spike. The possible spike counts in each bin can be
thought of as letters in the neuron’s response alphabet, with several
letters in a row constituting a word. Each word has a characteristic
probability, possibly stimulus dependent, of being “spoken” by the
neuron.

To measure the full information in a spike train, we would need to use
a limitless sample of infinitely long words containing infinitesimally short
letters. This is clearly impossible, so we choose our word and letter
lengths according to physiological criteria, taking into account factors
such as integration time and temporal precision, and also according to
the amount of available data, which limits the accuracy with which the
word probabilities can be estimated. We use 14.8 msec words [the
stimulus frame time, but also similar to the time constant of cortical
neurons (Ogawa et al., 1981; Shadlen and Newsome, 1998)] and 3.7 msec
letters (the frame time of the visual display, but also close to the cutoff
time between short and medium ISIs), so that each word is four letters
long. For these word and letter lengths, the 16 repeats of our 60.6 sec
stimulus provided more than adequate amounts of data to robustly
estimate the information. Other values—word lengths ranging from 3.7
to 59.2 msec and letter lengths ranging from 1.8 to 14.8 msec—gave
qualitatively similar results. In general, information values were highest
when we used the shortest words and letters.

The information that the neuron transmits about a particular stimulus
is defined as the signal entropy, or variability, minus the noise entropy.
The signal entropy is derived from the total set of words spoken by the
neuron during the course of its response. The noise entropy is derived
from the set of the words spoken at each particular time in the response,
and it is averaged across the entire response duration. The signal entropy
is calculated by constructing a probability table of all words in the
response and applying Shannon’s formula, Hs 5 (pjlog2pj (Cover and

Thomas, 1991), where pj indicates the estimated probabilities of occur-
rence of each word. Because we only have access to a limited amount of
data, this estimate of the signal entropy is subject to a downward bias, the
correction for which is estimated by (k 2 1)/2 N ln(2), in bits, where k is
the number of possible words and N is the total number of words
observed (Carlton, 1969; Panzeri and Treves, 1996). In practice, the
average correction to the signal entropy is 0.01% in our data sets, so
including it was therefore inconsequential.

It is more difficult to obtain an accurate estimate of the noise entropy
because we have access to only 16 trials, at most, for each neuron.
However, we can obtain an upper bound on the noise entropy, and a
lower bound on the transmitted information, by assuming that the letters
in a word are independent of one another, and then adding the noise
entropies letter by letter (Cover and Thomas, 1991). In this case, we do
apply the correction for limited data, both because it represents a
significant fraction of the noise entropy (;10%) and because it ensures
that we are calculating a true lower bound on the transmitted
information.

RESULTS
Interspike intervals
We report on the responses of 99 V1 neurons in anesthetized
macaque monkeys to multiple repeats of pseudorandom (m-
sequence) stimuli. These stimuli contain a wide variety of spatial
and temporal patterns, none of which dominates the stimulus but
some of which are typically effective stimuli for these neurons.
The stimuli are therefore well suited to probe a neuron’s ability to
convert spatial information into spike trains.

Figure 1 shows interspike interval histograms (ISIHs) con-
structed from the response of a simple cell to both the
m-sequence stimulus (solid line) and a uniform field of the same
mean luminance (shaded gray region). The top panel is the stan-
dard ISIH, in which ISIs are collected into equal bins of 1 msec
width. For both the m-sequence and uniform-field responses, the
standard ISIH features a prominent peak at very short ISIs, which
decays rapidly. The peak is higher for the m-sequence response
than for the uniform-field response, but it has approximately the
same width. After the initial peak and rapid decay, the
m-sequence ISIH shows a secondary, slower decay that lasts from
;5 msec until 20 msec; this secondary decay is almost entirely
absent from the uniform-field response. Finally, both responses
begin a very slow decline, the “long tail” (Gerstein and Mandel-
brot, 1964; Smith and Smith, 1965), at ;20 msec.

To more prominently display the short-ISI features, we plot the
same standard ISIH on a logarithmic time scale (Fig. 1, middle
panel). The similar shape of the initial peak and the differential
secondary decay are clearly evident in this plot, as well. However,
because the binning is relatively coarse at short ISIs and relatively
fine at high ISIs, which obscures detail on both time scales, we
present the data in yet another way. In the bottom panel, the
histogram is constructed with logarithmic time bins so that the
duration of each successive bin is a fixed multiple of the previous
one. This “log-ISIH,” a new way of looking at such data, high-
lights features such as prominent peaks or shoulders that are at
best barely visible in the standard ISIH. The log-ISIH of the
m-sequence response has three distinct peaks (corresponding, in
the standard ISIH to the initial rapid peak, the secondary decay,
and the long tail), whereas the log-ISIH of the uniform-field
response has only two peaks (the initial rapid peak and the long
tail). The differences between the log-ISIHs of the m-sequence
response and the uniform-field response indicate that not all of
the log-ISIH features are attributable to m-sequence stimulation.
The similarity of the prominent short-ISI peak suggests that this
feature, in particular, is largely intrinsic to the neuron.

In Figure 2, we replot the log-ISIH of the m-sequence response
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from Figure 1 (top panel), and we add log-ISIHs from three
additional neurons. Each log-ISIH is subdivided, by eye, into its
component peaks; the number of peaks varies from neuron to
neuron. Thus, the top neuron has three peaks, the next two have
two peaks (which differ in position), and the fourth neuron has
only a single peak. Peaks are gray scale-coded according to the
relative position of the maximum: black for short, light gray for
medium, and dark gray for long ISIs. The bottom panel is a
log-histogram of the estimated boundary between ISI peaks; it
summarizes data from 66 neurons and includes 19 short /medium
boundary points and 32 medium/long boundary points. Across all
99 neurons, 34 had a single peak, 46 had evidence of two distinct
peaks, and 19 had three peaks. We found no significant difference

Figure 1. Construction of the log-interspike interval histogram (log-
ISIH). Each panel shows the ISIHs of the m-sequence response (solid
line) and the response to a uniform field at the same mean luminance
(shaded) of a simple cell (44/9t) that fired 21.0 spikes/sec, 35,581 ISIs total.
Top, Standard ISIH (1 msec bins); middle, standard ISIH plotted on a
logarithmic time axis; bottom, log-ISIH consisting of 300 bins spaced
logarithmically between 1 msec and 10 sec, which bracketed the distribu-
tion of ISIHs found in the data. Each bin is 3.1% larger than the previous
one. We obtain a relatively smooth histogram by applying a uniformly
distributed, random timing jitter to each ISI, the magnitude of which is at
most half the data collection resolution of 0.1 msec. The log-ISIH allows
us to easily distinguish three separate ISI peaks, which are not readily
visible in the standard ISIH.

Figure 2. Division of log-ISIHs into component peaks. The top four
panels are the responses of different neurons to the m-sequence stimulus.
Log-ISIHs consist of 200 bins spaced logarithmically between 0.1 msec
and 2 sec, so that each bin is 5.1% larger than the previous one. Each
log-ISIH is divided, by eye, into its component peaks, which are then
color-coded according to the position of the maximum (black for ,3
msec, light gray for 3–38 msec, and dark gray for .38 msec). Top, Same
simple cell as in Figure 1; three peaks. Second panel, Simple cell (38/6),
5.9 spikes/sec, 11,343 ISIs; two peaks (short and long). Third panel, Simple
cell (34/12t), 5.2 spikes/sec, 9,997 ISIs; two peaks (medium and long).
Fourth panel, complex cell, 29.9 spikes/sec, 57,943 ISIs; one peak (medi-
um). The boundary positions across 66 neurons are collected into a
log-ISIH (bottom panel ), which reveals a tightly clustered, bimodal
distribution.
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between simple and complex cells in terms of the number of
log-ISIH peaks (x2 test).

Two very surprising results emerge from this analysis. First, the
summary histogram is bimodal. This reflects the fact that there
are at most three log-ISIH peaks in any neuron’s response.
Moreover, neurons with only two log-ISIH peaks (the majority)
have boundary points that match either the short /medium or
medium/long boundary of the three-peak neurons, rather than
some intermediate value. The medians of the two boundary
points are 3.0 msec (90% range: 1.8–3.7 msec) and 38.1 msec
(90% range: 20.3–64.8 msec). The second surprising feature of
the summary histogram is that the two modes are quite sharp,
which indicates that log-ISIH peaks are remarkably consistent
across neurons. Because the boundary points do not correspond
to temporal features of the stimulus, which occur in multiples
of 14.8 msec, or to the frame time of the visual display, which was
3.7 msec, we suspect that they reflect some aspect of the intrinsic
biophysical hardware of cortical neurons and/or their
connections.

The consistency of the boundary points across neurons also
raises the possibility that the subsets delimited by those bound-
aries play distinct roles in information encoding. To address this
possibility, we divided the ISIs in each neuron’s response into
three subsets, applying the median boundary points across neu-
rons regardless of the number of peaks in the particular neuron’s
log-ISIH. We considered ISIs ,3 msec to be part of the short-ISI
subset, ISIs between 3 and 38 msec to be part of the medium-ISI
subset, and ISIs .38 msec to be part of the long-ISI subset.
Averaged across neurons, we found that 10% of spikes fell into
the short-ISI subset, 45% into the medium, and 45% into the
long. Box plots showing the distributions across neurons of the
percentage of spikes in each subset are drawn in Figure 5 (top).

The first step in demonstrating that the individual subsets play
important roles in information encoding is to show that they are
not epiphenomena of the firing rate modulation. To do this, we
performed an “exchange resampling” procedure (Victor and Pur-
pura, 1996), which assigns to each trial in the resampled spike
train the same number of spikes as had occurred in that trial in
the real response. The spike times themselves are drawn at
random, without replacement, from the entire set of actual spikes.
Exchange resampling exactly preserves the firing rate modulation
and the number of spikes in each response trial but randomizes
the relationship between consecutive spikes. Log-ISIHs of
exchange-resampled responses are shown as solid lines in Figure
3, superimposed on the log-ISIHs of real responses. If the ISI
structure were completely determined by fast firing rate modula-
tions and slow variations in responsiveness, the log-ISIH of real
and resampled spike trains would superimpose. In fact, this su-
perposition test succeeds for the longest ISIs but fails for short
and medium ISIs. One cause of the failure is likely to be the
presence, in real neurons, of a refractory period on the order of
1 msec. However, a refractory period alone cannot account for
features such as a sharp notch between short and medium ISI
peaks, or for amplitude differences such as the one in the top lef t
panel.

Receptive field maps
For each neuron, we calculated RF maps or spike-triggered
average stimuli (see Materials and Methods) from the full re-
sponse and from response subsets, where the spikes in each subset
were preceded by ISIs from a single ISI subset (short, medium, or
long). Figure 4 shows example RF maps from two neurons,

depicting representative examples of the changes that we saw
across ISI subsets. RF maps are shown as a series of interpolated
contour plots, each averaged over 14.8 msec of the response, at
different time lags; taken together, they depict the dynamics of the
RF. Red signifies on-subregions of the RF, in which bright stimuli
were associated with a higher firing rate than dark stimuli, and
blue signifies off-subregions. The ratio of the RF map scales of
two subsets is equal to the ratio of the numbers of spikes in the
two subsets.

In general, we found that RF maps derived from spike subsets
differed from RF maps derived from the full responses, and from
each other, in both shape and amplitude. Figure 4A shows the RF
map of a complex cell that primarily displayed both shape and
amplitude changes. This cell fired an average of 31.7 spikes/sec in
response to our stimulus, and its log-ISIH is shown in Figure 3
(asterisk). The RF map derived from all spikes (top row) is
dominated by the off-subregion, although there is evidence of a
weaker on-subregion. When only short-ISI spikes are considered
(second row), however, the on-subregion is selectively enhanced
in two ways: (1) its duration, measured with a resolution finer

Figure 3. Real versus exchange-resampled log-ISIHs. We compare the
log-ISIHs (same parameters as in Fig. 2) of real spike trains (shaded) with
those obtained from a resampling procedure that preserves the firing rate
modulation and distribution of spikes per trial from the original data
(solid lines). If the original data were consistent with a modulated Poisson
process, then the original and resampled log-ISIHs in all panels would
superimpose. Top row, lef t panel (asterisk), Complex cell (33/1), 31.7
spikes/sec, 61,556 ISIs. Top row, right panel ( plus sign), Simple cell (39/9),
34.7 spikes/sec, 67,269 ISIs. Middle row, lef t panel, Simple cell (35/1), 10.0
spikes/sec, 19,283 ISIs. The other three log-ISIHs are from Figure 2.
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than what is shown in Figure 4A, is 42 msec instead of 19 msec;
and (2) its peak amplitude, after correcting for the different
numbers of spikes, is 2.9 times greater than the corresponding
amplitude in the all-spikes RF map. The relative amplitude of the
off-subregion is also enhanced in the short-ISI RF map, but only
by a factor of 1.8 and not at all time lags. The shape of the
short-ISI RF map suggests that these spikes may selectively en-
code stimuli that are characterized by strong spatial opponency.

A second prominent RF map change in Figure 4A occurs in the
long-ISI subset (bottom row). For this subset, the single RF
subregion has a biphasic time course, changing from off to on at
;89 msec, even while the RF maps of other subsets are still
dominated by an off-subregion. The time course of the long-ISI

RF map, and the fact that it is for the most part spatially uniform
at each time lag, suggests that these spikes may primarily encode
temporal features in the stimulus and that they typically follow, by
at least 89 msec, a period during which the neuron was inhibited
by the stimulus. Ignoring the ISI structure and treating all spikes
equally obscures the effect of this inhibition.

Figure 4B is the RF map of a simple cell that fired an average
of 34.7 spikes/sec in response to the m-sequence stimulus; the
log-ISIH of its response is shown in Figure 3 ( plus sign). The
short- and medium-ISI RF maps show evidence of large ampli-
tude changes but less evidence of large shape changes. In other
words, scaling these subset RF maps by some factor (which we call
the “efficacy”; see below) would make them look very similar to

Figure 4. Receptive-field maps. A,
Complex cell (33/1), average firing rate
31.7 spikes/sec, spatial extent 1°229 3
1°229, information rate 25.2 bits/sec or
0.79 bits/spike, efficiency 17.8%, log-
ISIH in Figure 3 (asterisk). Calibra-
tion: 24.9 to 4.9 spikes/sec. B, Simple
cell (39/9), average firing rate 34.7
spikes/sec, spatial extent 1°229 3 1°399,
information rate 31.2 bits/sec or 0.90
bits/spike, efficiency 20.5%, log-ISIH
in Figure 3 ( plus sign). Calibration:
212.9 to 12.9 spikes/sec. In each panel,
the top row is the RF map of the full
response, the second row is the RF map
of the short-ISI subset (10% of spikes
in A, 24% in B), the third row is the RF
map of the medium-ISI subset (68 and
50%), and the bottom row is the RF
map of the long-ISI subset (22 and
26%). Values on the calibration bar
refer to the RF map of the full re-
sponse only (f in Eq. 1 and 2); to obtain
values for any of the ISI subsets (s),
multiply the full-response values by the
fraction of spikes in that subset.
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the all-spikes RF map. The long-ISI RF map, however, primarily
exhibits a shape change: the off-subregion is relatively diminished
between 30 and 59 msec, and the on-subregion is relatively
enhanced between 59 and 74 msec.

Two related indices can be used to quantify these shape and
amplitude changes. To obtain these indices, we treat the RF maps
as vectors in space and time, with dimension equal to the product
of the number of stimulus pixels and the number of time bins. We
define the similarity index (DeAngelis et al., 1999) to be the
correlation coefficient between vectors derived from two different
RF maps:

similarity index 5
^s, f&
isi ifi (1)

where f is the vectorized RF map of the full spike train, s is the
vectorized RF map of the subset spike train, ,. . . ,. . . . denotes
the inner product, and i. . . i denotes the norm, or the square root
of a vector’s inner product with itself. The similarity index has a
value close to 1 for maps that have similar shapes (e.g., 0.98 for
the full- and short-ISI RF maps in Fig. 4B), 0 for maps that are
nearly orthogonal, and 21 for maps that have opposite polarities
(on-subregions become off-subregions and vice versa). The simi-
larity index is an omnibus measure that averages over both space
and time and may therefore dilute the effects of prominent but
localized RF map changes. Thus, even a qualitatively large shape
change such as occurs in the short-ISI RF map of Figure 4A has
a similarity index of 0.83, which is near the 75th percentile of
short-ISI similarity indices across neurons (Fig. 5, middle). At the
other extreme, the shape change seen in the long-ISI RF map of
Figure 4A, which is among the most dramatic in our sample, has
a similarity index of 0.60.

To measure amplitude changes, we calculate the efficacy, the
factor by which the amplitude of the subset RF map must be
scaled to best match the full RF map in a least-squares sense,
after correcting for differences in the number of spikes.
Mathematically:

efficacy 5 Snf

ns
D S ^s, f&

ifi2 D (2)

where nf is the number of spikes in the full spike train, ns is the
number of spikes in the subset spike train, and other variables are
as in Equation 1. An efficacy .1 signifies that subset spikes play
a larger role in the generation of the all-spikes RF map than
expected given the number of spikes in that subset, whereas an
efficacy ,1 signifies the opposite. An efficacy ,0 would indicate
that the RF map polarity must be flipped and then scaled to
obtain the best match. The short-ISI RF map of Figure 4B has a
particularly high efficacy of 1.77, signifying a large contribution
from those spikes to the overall RF properties of that neuron. On
the other hand, the medium-ISI RF map of Figure 4A has an
efficacy of 1.02, indicating that those spikes contribute the ex-
pected amount to the overall RF map.

Across all neurons, similarity indices are in the range 0.5-1 (Fig.
5, middle), meaning that shape changes, although present, are
only moderate. On the other hand, the efficacy distributions of the
three subsets are distinct and largely nonoverlapping (Fig. 5,
bottom), which indicates that short-ISI spikes make the largest
contribution to the all-spikes RF maps, long-ISI spikes make the
smallest contribution, and medium-ISI spikes contribute about as
much as expected given their frequency.

Rate versus temporal encoding
To test whether our findings about shape and amplitude changes
of RF maps are consistent with a rate code model of neuronal
firing, we compared real data with the results of an exchange-
resampling procedure. Exchange resampling exactly preserves
the firing-rate modulation inherent in the original data, as de-
scribed above. In fact, this procedure yields the only ensemble of
spike trains that match the time-varying firing rate of real data
and are rigorously consistent with a firing-rate model. We
exchange-resampled each spike train 200 times, and we calculated
the similarity indices and efficacies of the subset RF maps of those
resampled spike trains. We used the same ISI subset definitions
for resampled spike trains as we had for the real spike trains,
despite the fact that the log-ISIHs were different (Fig. 3). We then

Figure 5. Across-neuron distributions of RF map indices. Data from 66
neurons. Box plot whiskers show the 5th and 95th percentiles, and box
boundaries show the 25th and 75th percentiles. The horizontal line divides
each box at the median, and the square represents the mean. Top, Per-
centage of spikes with preceding ISIs ,3 msec (short), 3–38 msec (medi-
um), and .38 msec (long). Middle, Similarity index (or correlation coef-
ficient) between the subset and full-response RF maps; values can be
between 21 and 11. Bottom, Efficacy, or average contribution made by
spikes in each subset to the overall RF map properties. An efficacy of 1
means that the spikes in that subset contribute as much as expected, given
their number. See Results for mathematical definitions of the similarity
index and efficacy.
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compared the similarity indices and efficacies of the real re-
sponses with the means and distributions obtained from
exchange-resampled responses.

Figure 6 shows a series of scatter plots that describe the
relationship between similarity indices (lef t column) and efficacies
(right column) for real and resampled responses. Each point
represents a different neuron. The similarity index or efficacy of
that neuron’s real RF map is plotted along the horizontal axis,
and the corresponding mean value from 200 exchange resam-
plings is plotted along the vertical axis. Results from different
subsets are in different rows. In nearly all panels, the cloud of
points lies near the line of equality, where real and resampled RF
maps have the same similarity indices or efficacies. The major
exception is the top right panel, which shows that the short-ISI
efficacies tend to be higher for resampled RF maps than for real
RF maps, indicating that short-ISI spikes play an even larger role
in generating the RF properties of rate-code-generated spike
trains than of real spike trains.

On a neuron-by-neuron basis, the similarity indices and effica-
cies of the real spike trains tended to fall in the tails of the
distributions of similarity indices and efficacies of resampled
spike trains. In Figure 6, solid points represent cases in which the
real data fell within either 2.5% tail of the distribution of re-
sampled data. However, the behavior of the two indices was
qualitatively, and for the most part quantitatively, similar for real
and resampled RF maps, suggesting that the rate code model does
a reasonable job of explaining the indices (although not the ISI
statistics).

Information
In addition to comparing RF maps, we calculated the stimulus-
related information carried by spikes in the full spike train and in
each ISI subset (see Materials and Methods) (de Ruyter van
Steveninck et al., 1997; Strong et al., 1998). The results are
complementary to the ones obtained by RF map calculation,
which present, quite literally, a qualitative and quantitative pic-
ture of the stimulus-encoding characteristics of spikes in partic-
ular subsets.

The results of the information calculation are shown in Figure
7. Not surprisingly, the full spike train conveys the most stimulus-
related information on an absolute scale of bits per second (top),
more than is carried by any subset of that spike train. Short-ISI
spikes, which are rarest, convey the least information. On a
neuron-by-neuron basis, the sum of the transmitted information
across the three ISI subsets is larger than the information carried
by the full spike train. This is perplexing, because the full spike
train must contain as much information as the sum of its subsets.
However, there are at least two explanations for this finding.
First, because we calculated the information transmitted via a
code consisting of 14.8 msec words and 3.7 msec letters, and
because our method was designed to give us a lower bound on
information in the first place, it is possible that we systematically
underestimate the information in the full spike train to a greater
extent than in the subset spike trains. Second, the three subset
spike trains may contain redundant information. This is likely
because the process of selecting a particular ISI subset necessarily
places constraints on the other, nonoverlapping subsets. These
constraints and redundancies are not taken into account in the
word/ letter code.

On a bits per spike scale (Fig. 7, middle), the short-ISI spikes,
which convey the least information per second, are actually most
informative: on average, each short-ISI spike conveys 4.6 bits of
information about the stimulus, corresponding to the high efficacy
of these spikes. Medium- and long-ISI subset spikes convey sub-
stantially less information, not much more than what is conveyed
by each spike in the full spike train. This is also reflected in our
measure of efficiency (de Ruyter van Steveninck et al., 1997),
which compares the transmitted information to the total signal
entropy: the median efficiency of short-ISI spikes is 45%, whereas
the median efficiencies of the other spike subsets are near 25%.

Finally, Figure 8 shows the neuron-by-neuron comparison be-
tween real and exchange-resampled information values, for the
full spike train and for the three ISI subsets. The results are
qualitatively similar to the results for the similarity index and
efficacy, which are shown in Figure 6. In general, whether mea-
sured on a bits per second or bits per spike scale, and regardless
of the particular ISI subset, the information in a real spike train is
similar to the information in its exchange-resampled counter-
parts: most points lie along the line of equality. This means that
the qualitative differences among subsets would be expected from

Figure 6. RF map changes: real versus exchange-resampled. In each
panel, we plot the similarity index (lef t column) and efficacy (right column)
for real data on the horizontal axis, and the mean value of the same
parameter derived from 200 exchange resamplings of the real data on the
vertical axis. Data are from 66 neurons, and each point represents a
different neuron. The exchange-resampling procedure tests the hypothesis
that the observed RF map changes could have been generated by a neuron
that fires spikes according to a rate code with exactly the same firing rate
modulation as the original response. Filled squares represent subsets for
which the real data were significantly different from the resampled data,
that is, points that fell significantly ( p , 0.05, two-tailed direct compar-
ison) off the diagonal in each panel.
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neurons that use a rate code. On the other hand, nearly all points
fall significantly off the line of equality ( p , 0.05, two-tailed
direct comparison, f vs M), indicating that on a neuron-by-
neuron basis, the results are quantitatively inconsistent with the
predictions of a rate code.

DISCUSSION
Our results provide new evidence that different spikes within a
single response can convey messages about different stimulus
features, a finding that is consistent with earlier reports (McClur-
kin et al., 1991; Victor and Purpura, 1996). Our results advance
this work in three ways. (1) They identify, through the log-ISIH
peaks and in the form of ISI subsets, the time scales that are
relevant for V1 neurons responding to rapidly varying stimuli.
(2) They provide, through the RF maps, a direct picture of the
receptive field properties of the different spikes. (3) They suggest

that the information encoded by individual spikes can be decoded
by classifying it on the basis of the duration of the immediately
preceding ISI.

In a pioneering study of the H1 neuron of the blowfly (de
Ruyter van Steveninck and Bialek, 1988), a Gaussian white noise
stimulus was used to evaluate the probability distributions of
stimuli that typically preceded arbitrary temporal response pat-
terns consisting of up to three spikes and two ISIs. The authors
showed that the mean stimulus changed gradually with the dura-
tion of the ISI before each spike. In our experiments, we did not

Figure 7. Across-neuron distributions of transmitted information values.
Data are from 98 neurons. As in Figure 5, box plot whiskers show the 5th
and 95th percentiles, and box boundaries show the 25th and 75th percen-
tiles. The horizontal line divides each box at the median, and the square
represents the mean. The full response (leftmost distribution in each
panel) is compared with each of the three ISI subset responses. Top,
Transmitted information, measured in units of bits per second (bits/s).
Middle, Transmitted information, bits per spike (bits/spike). Bottom, Effi-
ciency, or percentage of the total signal entropy (see Materials and
Methods) that is used to transmit stimulus-related information.

Figure 8. Information: real versus exchange-resampled. In each panel,
we plot the information in bits per second (bits/s) (lef t column) and bits
per spike (bits/spike) (right column) for real data on the horizontal axis,
and the mean value of the same parameter derived from 40 exchange
resamplings of the real data on the vertical axis. Data are from 98
neurons, and each point represents a different neuron. The exchange
resampling procedure tests the hypothesis that the observed RF map
changes could have been generated by a neuron that fires spikes according
to a rate code with exactly the same firing rate modulation as the original
response. Filled symbols represent subsets for which the real data were
significantly different from the resampled data, that is, points that fell
significantly ( p , 0.05, two-tailed direct comparison) off the diagonal in
each panel.

Reich et al. • Information Encoding in V1 J. Neurosci., March 1, 2000, 20(5):1964–1974 1971



obtain enough data from each neuron to be able to perform an
identical analysis. Although it is likely that the same result holds
in monkey V1, that small changes in ISI boundary points yield
small changes in RF maps, the existence and consistency across
neurons of the three ISI subsets appear novel and lead us to
hypothesize that the grouping of ISIs into subsets similar to the
ones we have described reflects natural modes of information
processing. It is tempting to relate the ISI subsets to phenomena
such as oscillatory responses (Gray et al., 1989)—the typical
interval in the medium-ISI subset corresponds to a frequency of
around 40 Hz—but we have no evidence to indicate that the two
findings are related.

Bursts
Our results suggest that short-ISI spikes are especially important
for the transmission of visual information. These short-ISI spikes
likely correspond to the class of spikes known as “bursts” (Con-
nors and Gutnick, 1990), although the correspondence cannot be
conclusively established from extracellular recordings alone. In
the thalamus, the mechanisms of burst production are well known
(Jahnsen and Llinás, 1984; Sherman, 1996), and the relevance of
bursts for information encoding and transmission in the lateral
geniculate nucleus, in particular, has been studied (Mukherjee
and Kaplan, 1995; Reinagel et al., 1999; Usrey and Reid, 1999).
Reinagel et al. (1999) found that burst spikes convey 1.5 to 3 times
as much information as tonic spikes, a finding that is similar to our
own finding about short-ISI spikes.

In the visual cortex, where the mechanisms of burst production
are less well understood, several lines of evidence suggest that
short-ISI spikes are particularly important for information trans-
mission. Compared with other spikes, short-ISI spikes are differ-
ently tuned to certain stimulus attributes (Cattaneo et al., 1981;
Legéndy and Salcman, 1985; Livingstone et al., 1996; DeBusk et
al., 1997) and tend to be more likely to evoke a postsynaptic
response (Alonso et al., 1996; Lisman, 1997; Snider et al., 1998).
In earlier work, we demonstrated that short-ISI spikes tend to be
reliable (Victor et al., 1998) in that they are fired at the same time
on multiple repeats of a stimulus. Here, we have shown that
short-ISI spikes are effective, too, in that they make a larger than
expected contribution to a neuron’s RF properties. We have also
demonstrated that the RF maps of short-ISI spikes tend to have
regions of stark spatial opponency, suggesting that these spikes
may preferentially extract features such as bars and lines from
visual stimuli. Finally, we have shown that short-ISI spikes, in part
because of their relative paucity, convey more information per
spike than spikes in the other ISI subsets and that they do so with
higher efficiency.

Information
We found that most V1 neurons convey between 5 and 30 bits/sec,
or between 1 and 3 bits/spike. This range is consistent with
information rates calculated from responses to similar stimuli in
other systems, ranging from fly to primate (Buračas and Albright,
1999). It is, however, at least an order of magnitude higher than
the information rate in V1 responses to flashed stimuli, which
ranges from 0.1 to 0.5 bits/sec (Richmond and Optican, 1990;
Victor and Purpura, 1996; Gershon et al., 1998). A primary cause
of this discrepancy may be that V1 neurons very efficiently convey
information about stimulus transients, which occur 64 times/sec in
the m-sequence stimulus but only once in the flashed stimuli.
However, this does not rule out the possibility that these neurons
are intrinsically more efficient in conveying information about

elementary stimulus features such as contrast and orientation
when the stimulus is rapidly varying than when it is constant.

Another reason that the information rates are so different for
the two kinds of stimuli is methodological: the “direct method” of
calculating information used here makes no assumptions about
the stimuli, but rather compares the response variability over time
with the response variability across trials. Methods that typically
yield lower information rates, on the other hand, evaluate a
neuron’s ability to discriminate between N particular stimuli,
which limits the total amount of information that can be encoded
to log2N. In this regard, it is important to realize that our stimuli
are not optimized to drive V1 neurons to convey information at
a rate close to their channel capacity.

Encoding and decoding
The processes of encoding and decoding information are logi-
cally distinct. It is possible, for example, that V1 neurons
encode information into their rapidly modulated firing rates by
means of a Poisson spike generator, consistent with a rate-
coding model, even while they decode information by measur-
ing presynaptic ISI durations. In this paper, we compare real
responses with exchange-resampled responses, which we con-
sider to be rate-coded because the spike times are determined
only from the firing rate. Because exchange-resampling exactly
preserves spike times, the firing rate fluctuations occur at the
same rate as they do in real data.

According to one definition (Borst and Théunissen, 1999),
simply demonstrating that information is carried on time scales
more rapid than the time scale of stimulus fluctuations, as we do
here in our information calculations with short word and letter
lengths, constitutes a demonstration that information is tempo-
rally encoded. By this criterion, even exchange-resampled spike
trains, not to mention real ones, are temporally encoded (Fig. 8).
It is not surprising, therefore, that the RF maps and information
values of exchange-resampled spike trains are similar to, albeit
significantly different from, the ones derived from real neurons. It
is more surprising that their log-ISIHs are so different (Fig. 3),
although they share some features such as multiple peaks and
sometimes even peak positions. Moreover, another study that
used different stimuli and different analysis methodology has
shown that real V1 spike trains are not fully consistent with the
predictions of rate-coding models (Reich et al., 1998).

In our view, the consistent presence of distinct ISI subsets
across neurons, and the different types of visual information that
can be extracted by examining spikes from the various subsets in
isolation, suggest that ISI decoding may be an important feature
of V1 neurons, just as it has been shown to be in much simpler
systems such as the visceral ganglia of Aplysia (Segundo et al.,
1963). To accomplish this type of decoding, neurons need not do
anything more sophisticated than be sensitive to the durations of
individual ISIs. This sensitivity can be embodied in a single
synapse and does not require averaging across stimulus repeats,
stretches of time that may be long compared with the time scale
of firing rate modulation, or a large population of neurons that
carry similar information.

Although our results provide support for the hypothesis that
ISI decoding plays a role in information transfer in the visual
cortex, they are also consistent with other types of decoding
schemes that do not make use of ISIs. Such a scheme includes, for
example, the estimation of firing rates through averaging across
many neurons that convey similar information (Shadlen and New-
some, 1998). Cortical microstimulation (Salzman et al., 1992)
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influences both rate and ISI structure and is thus consistent with
both views of neural coding. A direct experimental resolution of
the roles of these different kinds of decoding schemes would
require manipulation of the ISI structure of neural activity with-
out changing the average firing rate, and observation of the effect
of this manipulation on an animal’s behavior. In mammalian
cortex, the design and execution of such experiments are chal-
lenges to current techniques, but it is interesting to note that such
manipulations do indeed affect olfactory discrimination in the
locust (Stopfer et al., 1997) and gustatory perception in the rat
(Di Lorenzo and Hecht, 1993).

Real synapses may accomplish ISI decoding by means of pro-
cesses such as short-term, real-time synaptic modification, includ-
ing synaptic depression and facilitation (Gerstner et al., 1997;
Markram et al., 1998; Goldman et al., 1999), and dendritic non-
linearities, including coincidence detection (Abeles, 1982; Mel,
1994; Margulis and Tang, 1998; Yuste et al., 1999). These pro-
cesses can selectively weight individual spikes based on the du-
rations of single ISIs (Maass and Zador, 1999), and their partic-
ular form can depend on the types of neurons that are connected
by each synapse (Thomson, 1997; Reyes et al., 1998). Synaptic
facilitation tends to enhance the synaptic efficacy of short-ISI
spikes, whereas synaptic depression tends to diminish it, thereby
increasing the relative efficacy of medium- and long-ISI spikes
(Gerstner et al., 1997). Thus, we suggest that a primary role of
short-term synaptic modification is to aid in the decoding of
information about multiple stimulus features that would be
missed if all spikes were treated equally.
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