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ABSTRACT
Human exposure to trichloroethylene (TCE) is linked to kidney cancer, autoimmune diseases, and
probably non-Hodgkin lymphoma. Additionally, TCE exposed mice and cell cultures show altered
DNA methylation. To evaluate associations between TCE exposure and DNA methylation in humans,
we conducted an epigenome-wide association study (EWAS) in TCE exposed workers using the
HumanMethylation450 BeadChip. Across individual CpG probes, genomic regions, and globally (i.e.,
the 450K methylome), we investigated differences in mean DNA methylation and differences in
variability of DNA methylation between 73 control (< 0.005 ppm TCE), 30 lower exposed (< 10 ppm
TCE), and 37 higher exposed ( � 10 ppm TCE) subjects’white blood cells. We found that TCE exposure
increased methylation variation globally (Kruskal-Wallis p-value = 3.75e-3) and in 25 CpG sites at
a genome-wide significance level (Bonferroni p-value < 0.05). We identified a 609 basepair region in
the TRIM68 gene promoter that exhibited hypomethylation with increased exposure to TCE
(FWER = 1.20e-2). Also, genes that matched to differentially variable CpGs were enriched in the ‘focal
adhesion’ biological pathway (p-value = 2.80e-2). All in all, human exposure to TCE was associated with
epigenetic alterations in genes involved in cell-matrix adhesions and interferon subtype expression,
which are important in the development of autoimmune diseases; and in genes related to cancer
development. These results suggest that DNA methylation may play a role in the pathogenesis of TCE
exposure-related diseases and that TCE exposure may contribute to epigenetic drift.
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Introduction

Trichloroethylene (TCE) is a volatile organic com-
pound that was widely used in industrial settings
and is now a widespread environmental contaminant
that is present in drinking water, indoor environ-
ments, surface water, ambient air, groundwater, and
soil. Multiple lines of evidence support a link between
TCE exposure and cancer, particularly kidney cancer
and probably non-Hodgkin lymphoma (NHL), which
led the International Agency for Research on Cancer
(IARC) to classify TCE as a Group 1 carcinogen [1].
TCE also produces other toxic effects including neu-
rotoxicity, immunotoxicity, developmental cardiac
toxicity, kidney toxicity, liver toxicity, and male

reproductive toxicity [2]. The link between TCE and
autoimmune dysfunction is particularly intriguing
since it has been implicated in several diseases such
as rheumatoid arthritis (RA), systemic lupus erythe-
matosus (SLE), and Sjögren syndrome (SS) [3,4].

Despite the associations of TCE exposure with
a range of cancer and non-cancer outcomes, themole-
cular mechanism(s) of TCE-induced health effects are
unclear. A potential mechanism contributing to TCE
toxicity might be through alterations of DNA methy-
lation. This commonly studied epigenetic mark
involves the addition of a methyl group to cytosine
that is adjacent to a guanine (a CpG) site. DNA
methylation modulates transcription by altering

CONTACT Rachael V. Phillips rachaelvphillips@gmail.com School of Public Health, University of California at Berkeley, Berkeley, CA, USA
ΨThese authors co-supervised the study

Supplemental data for this article can be accessed here.

EPIGENETICS
2019, VOL. 14, NO. 11, 1112–1124
https://doi.org/10.1080/15592294.2019.1633866

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-8474-591X
http://orcid.org/0000-0002-6106-1347
http://orcid.org/0000-0003-4082-8163
http://orcid.org/0000-0003-2820-2133
http://orcid.org/0000-0002-6471-7241
http://orcid.org/0000-0001-7866-8391
https://doi.org/10.1080/15592294.2019.1633866
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/15592294.2019.1633866&domain=pdf&date_stamp=2019-08-21


accessibility of proteins to DNA and it is a key regu-
lator of a number of important processes such as
aging, disease, and development [5]. DNA methyla-
tion has also become increasingly recognized as
a mediator of toxicity of environmental chemical
exposures [6].

TCE induces epigenetic aberrations in various
model systems. For example, TCE exposure led
to dissociation of DNA methyltransferase 3a
from heterochromatin in a dose-dependent man-
ner in HeLa and HEK293 cells, which resulted in
global DNA hypomethylation [7]. In mouse
effector/memory CD4 + T cells, TCE exposure
led to DNA methylation alterations that were
enriched in polycomb protein binding sites [8],
along with hypermethylation and increased var-
iance of DNA methylation of the interferon-
gamma promoter [9]. Also, cardiac myoblast
cells and rat embryonic cardiac tissue exposed
to TCE exhibited Serca2 promoter region hyper-
methylation [10].

To our knowledge, there have been no epige-
netic studies in TCE exposed humans. The objec-
tive of this epigenome-wide association study
(EWAS) was to investigate differences of blood
DNA methylation between three comparison
groups (higher TCE exposed, lower TCE exposed,
and controls) whose exposure status to TCE and
other hazardous chemicals was well characterized
and biologically verified [11]. This EWAS utilized
the Illumina Infinium HumanMethylation450
BeadChip to quantify DNA methylation. Studies
of relationships between DNA methylation and
a particular phenotype are commonly focused on
the identification of differences of mean DNA
methylation between comparison groups.
A complementary assessment of differential mean
DNA methylation is differential variability, which
describes changes in DNA methylation value
variability across comparison groups – potentially
characterizing environmental contributors of epi-
genetic drift. Increased DNA methylation variabil-
ity has been described in cancer [12] and RA [13].
We therefore examined differential variability of
methylation in addition to differential mean
methylation in relation to the three comparison
groups of controls, lower TCE exposed, and higher
TCE exposed.

Results

We examined genome-wide DNA methylation in the
blood of 73 control (< 0.005ppm), 30 lower TCE
exposed (< 10 ppm), and 37 higher TCE exposed
( � 10 ppm) workers. A cutoff of 10ppm as an
8-hour time weighted average was used to differenti-
ate lower and higher TCE exposed subjects, as this is
the occupational standard in many countries.
Demographic characteristics were comparable
among the three groups (Table 1). Blood cell counts
varied among the three groups; most notably the
average number of lymphocytes decreased from
2,115,616 (36%) in controls to 2,065,333 (32%) in
the lower TCE exposed group, and to 1,685,946
(30%) in the higher TCE exposed group. The present
study was approved by the Institutional Review
Boards at the U.S. National Cancer Institute and the
Guangdong National Poison Control Center, China
and is described in detail elsewhere [11].

TCE exposure associates with variance of global
DNA methylation

Differences in global DNA methylation across
the three comparison groups were assessed
using CpG probes on the 450K array. Thus,
this assessment is only a representative measure
of global DNA methylation of the 450K array,
and not the entire genome. The variance of

Table 1. Demographic characteristics and TCE exposure level.
TCE Exposed

Subjects
Controls
(n = 73)

Total
(n = 67)

< 10 ppm
(n = 30)

� 10
ppm

(n = 37)

Demographic
characteristics

Age, mean (SD) 27.3
(7.3)

25.5
(6.8)

23.8 (5.0) 26.8 (7.7)

Body mass index, mean
(SD)

21.3
(2.7)

21.6
(2.7)

21.3 (2.2) 21.8 (3.1)

Sex, n (%)
Female 15 (21) 24 (36) 15 (50) 9 (24)
Male 58 (79) 43 (64) 15 (50) 28 (86)
Current smoker, n (%)
Yes 30 (41) 24 (36) 10 (33) 14 (38)
No 43 (59) 43 (64) 20 (67) 23 (62)
TCE exposure
TCE air level (ppm)*,
mean (SD)

< 0.005 22.5
(38.6)

4.18 (2.5) 37.4
(47.1)

* TCE air level is the mean (±SD) of an average of two measurements
per subject collected during the month before phlebotomy.
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global DNA methylation was significantly differ-
ent across the TCE exposure groups (Kruskal-
Wallis test p-value = 0.00375) (Figure 1). The
pairs of TCE exposure groups that differed sig-
nificantly from each other in terms of this var-
iance were the higher TCE exposed subjects and
lower TCE exposed subjects (Dunn test
Benjamini-Hochberg adjusted p-value = 0.0108),
and the higher TCE exposed subjects and con-
trol subjects (Dunn test Benjamini-Hochberg
adjusted p-value = 0.0018). The lower TCE
exposed subjects and control subjects did not
differ significantly from each other in terms of
the variance of global DNA methylation. We
observed no statistically significant change in
global DNA methylation means or medians
across TCE exposure groups.

Association between TCE exposure and DNA CpG
methylation

Across the three comparison groups, we identified
differentially methylated CpG sites/probes in terms
of the mean (DMPs) and variability (DVPs). We
adjusted formeasured blood cell counts (granulocytes,
B cells, NK cells, CD4 cells, CD8 cells), body mass
index, age, smoking, and sex. No DMP achieved gen-
ome-wide significance (Bonferroni corrected p-value
< 0.05) or significance based on a Benjamini-
Hochberg (BH) adjusted p-value < 0.05. The genomic
inflation factor λGC for the DMP results was 1.039,
suggesting no inflation of the DMP p-values. For the
DVP analysis, 301 probes achieved significance based
on the BH correction, and 25 probes achieved gen-
ome-wide significance based on the Bonferroni cor-
rection (Table 2). Significant probes that matched to

Figure 1. Global effect of human exposure to TCE. Box/scatter plots of the variance of methylation (M-value) values across all
399,439 CpG probes, categorized by varying levels of occupational exposure to TCE. Each point represents one subjects’ variance of
global DNA methylation and the boxplots display the exposure-specific distribution of these points. Data was analyzed with the
Kruskal-Wallis test and with Dunn’s post-hoc test. There were statistically significant differences in the variance of global DNA
methylation between the TCE exposure groups (Kruskal-Wallis test p-value = 3.75e-3). The pairs that differed significantly from each
other were the higher and lower TCE exposed (Dunn test Benjamini-Hochberg adjusted p-value = 0.0108) and the higher TCE
exposed and controls (Dunn test Benjamini-Hochberg adjusted p-value = 0.0018).
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single nucleotide polymorphisms (SNPs) specific to
the East Asian super-population (EAS) were filtered
out. This population-specific SNP filtering resulted in
the removal of 13 of the 301 BH-significant DVPs.
None of the 25 genome-wide significant DVPs
matched to EAS SNPs (Supplementary Table S1).
Four of the five most significant DVPs are shown in
Figure 2(A-D) (CTNND2, EFNB2, CAP2, ZNF259),
and are related to immune disorders and cancer.
A Manhattan plot of the DVP results is shown in
Figure 2E. The λGC for the DVP results was 1.181,
suggesting minimal inflation of the DVP p-values.

Regions of DNA methylation associate with TCE
exposure

Examination of differential mean methylation
across genomic regions considered both small-
scale regions of CpG probes (DMRs) and large
open-sea cluster regions, or ‘blocks’, of CpG
probes (DMBs). DMR and DMB analyses adjusted
for the same measured nuisance variables as DMP
and DVP analyses. For the DMR analysis, 1,197
candidate regions were identified and 69 achieved
significance based on an unadjusted p-value < 0.05
(Supplementary Table S2). One DMR with 4 CpGs

achieved genome-wide significance based on
a family-wise error rate (FWER) < 0.05 (Table 3).
This genome-wide significant DMR spans 609
basepairs and overlaps with the TRIM68 promoter,
a CpG island, and a CCCTC-binding factor
(CTCF) region (Figure 3). For the DMB analysis,
168 candidate blocks were identified: 15 achieved
significance based on an unadjusted p-value < 0.05
(Supplementary Table S3) and no DMB achieved
genome-wide significance.

Overlap of differential methylation with genomic
features and biological pathways

The following results were mapped to genes: 288
DVPs that achieved a false discovery rate (FDR)
threshold of 0.05 and did not match to EAS SNPs
(Supplementary Table S1(N-P)); 69 DMRs that
achieved an unadjusted p-value < 0.05
(Supplementary Table S2(I-K)); and 15 DMBs
that achieved an unadjusted p-value < 0.05 and
(Supplementary Table S3(I-K)). Successful overlap
with genes occurred for 209 (73%) of the 288
DVPs, which linked to 219 genes; 58 (84%) of
the 69 DMRs, which linked to 74 genes; and 13
(87%) of the 15 DMBs, which linked to 42 genes.

Table 2. Genome-wide significant (Bonferroni corrected p-value < 0.05) differentially variable probes (DVPs) between the higher TCE
exposed, lower TCE exposed, and control subjects.
Probe ID Variability Ratio P-value Bonferroni Adjusted P-value Chromosome Gene(s)

cg19904666 4.380 3.4E-11 1.34E-05 5 CTNND2
cg11196529 2.318 3.3E-10 1.32E-04 13 EFNB2
cg01922700 2.087 5.8E-10 2.32E-04 1 CRB1
cg26548001 2.491 1.0E-09 4.00E-04 11 ZNF259
cg26301215 1.965 1.4E-09 5.67E-04 3
cg23608212 2.297 1.6E-09 6.51E-04 6
cg16709403 2.367 2.8E-09 1.10E-03 6 CAP2
cg18625951 2.214 3.0E-09 1.20E-03 7 CNTNAP2
cg01381636 2.635 3.7E-09 1.46E-03 2
cg14116439 2.516 3.7E-09 1.48E-03 4 KCNIP4
cg06887454 1.985 3.9E-09 1.55E-03 12
cg05259094 2.687 4.8E-09 1.91E-03 16 FBXO31
cg09210956 1.638 4.9E-09 1.96E-03 2 SNTG2
cg05252062 8.075 5.2E-09 2.07E-03 7 CUX1
cg23710492 2.771 7.7E-09 3.09E-03 11 CKAP5
cg11358119 1.937 1.3E-08 5.10E-03 6 KIAA1009
cg16803678 2.473 2.5E-08 1.00E-02 3 RYK
cg19273756 2.395 4.1E-08 1.64E-02 17 SKA2, MIR301A
cg02259429 3.402 4.9E-08 1.97E-02 14 KIAA1409
cg09188595 1.933 7.6E-08 3.02E-02 1
cg04273867 1.905 8.7E-08 3.49E-02 16 RAB11FIP3
cg00617568 1.715 9.7E-08 3.86E-02 17 B4GALNT2
cg04545872 2.645 1.0E-07 4.01E-02 2
cg18689148 1.559 1.1E-07 4.51E-02 7 PTPRN2
cg14884828 2.456 1.1E-07 4.53E-02 10 FAM107B
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Genes HAT1, ANP32A, and FBXO31 were found
to be the same across the DVP and DMR genes.
One gene, SYCP2, overlapped across the DVP and
DMB genes.

The list of 219 genes that matched to the 288 BH-
significant DVPs were considered in a biological
pathway analysis using WikiPathways. This resulted
in the identification of 5 potentially altered pathways
(Table 4), but only one, ‘focal adhesion’, was

significant (p-value = 0.0208) (Figure 4). The 219
candidate genes were also compared to the
Comparative Toxicogenomics Database (CTD) and
the query included genes that have been previously
associated with TCE exposure, NHL, kidney cancer,
liver cancer, and various autoimmune diseases. 33 of
the 219 candidate DVP genes overlapped with genes
from the CTD query (Supplementary Table S1(Q)).
4 of these 33 genes overlapped with multiple entries

Figure 2. Differentially variable CpG probes (DVPs) in genes CTNND2 (a), EFNB2 (b), ZNF259 (c), and CAP2 (d) following varying levels
of exposure to TCE and Manhattan plot of DVP results (e). The three boxplots displayed for each DVP (A-D) juxtapose the distribution
of methylation values (β-values) with the levels of TCE exposure. A wide box is an indicator of increased variability of methylation,
and a compressed box is indicative of decreased variability of methylation. The Manhattan plot (e) shows the negative log10 p-value
for each CpG probe when tested for differences in variability across the three comparison groups. The red horizontal line (–log10(p)
about 7) denotes the threshold for genome-wide significance (Bonferroni corrected p-value < 0.05) and the blue horizontal line
(–log10(p) around 4.5) denotes the threshold for DVPs that achieved a Benjamini-Hochberg corrected p-value < 0.05.

Table 3. Top 10 differentially mean methylated regions (DMRs) between the higher TCE exposed, lower TCE exposed, and control
subjects.
Chromosome Start End No. CpGs β Value P-value FWER Gene(s)

11 4,628,823 4,629,432 4 −1.081 0.000 0.012 TRIM68
19 36,347,626 36,348,034 6 −0.264 0.000 0.375 NPHS1, KIRREL2
1 214,153,377 214,154,085 5 −0.260 0.001 0.653 PROX1-AS1
2 153,574,329 153,575,717 6 −0.186 0.002 0.832 PRPF40A, ARL6IP6
6 291,882 292,823 7 0.160 0.002 0.846 DUSP22
15 66,998,926 66,998,998 3 0.426 0.002 0.873 SMAD6
6 29,648,604 29,649,092 7 0.151 0.002 0.888 ZFP57
16 87,380,480 87,380,762 3 0.353 0.004 0.973 FBXO31
14 73,925,161 73,925,225 4 −0.240 0.004 0.977 NUMB
2 190,445,551 190,445,910 4 −0.238 0.005 0.978 SLC40A1
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from the CTD query: PXK has been associated with
RA and SLE; GLIPR1 with TCE exposure and kidney
cancer; IGF1R with liver cancer and autoimmune
diseases; and CD2 with RA and other autoimmune
diseases.

Discussion

This is the first EWAS in TCE-exposed humans.
The results indicate that there are global, regional,
and CpG-wide methylation alterations that are
associated with TCE exposure. Across many
CpGs and globally (i.e., the 450K methylome), we
found that increased exposure to TCE associated
with increased variability of DNA methylation. We
also identified a 609 basepair region of 4 probes
that exhibited hypomethylation with increased
TCE exposure. This region is located in the
TRIM68 gene, which is involved in interferon sub-
type expression. Differentially variable CpGs were
enriched in genes involved in cancer development
and cell-matrix adhesions. These study results sug-
gest that TCE exposure may contribute to

Figure 3. Genome-wide significant differentially methylated region (DMR) comprised of 4 CpG probes and exhibiting hypomethyla-
tion with increased exposure to TCE (a). The DMR spans 610 basepairs on chromosome 11 and is located in the TRIM68 gene
promoter (b). Also in this region is a CpG island and binding site for CTCF, an insulator protein that regulates chromatin opening and
closing (b). The TRIM68 gene is represented by 13 CpG probes on the 450K array and, for each of these CpG probes, the TCE
exposure-specific distribution of methylation values (β-values) is shown (a). The 4 probes emphasized in (a) are those that constitute
the DMR (cg01505275, cg06925387, cg03122735, and cg16469099). The DMR was annotated with Ensembl version GRCh37.p13.

Table 4. Biological pathways identified from genes that
matched to differentially variable probes (DVPs) which achieved
Benjamini-Hochberg adjusted p-value < 0.05 and did not match
to East Asian super-population SNPs.
WikiPathways Name P-value Genes

Focal Adhesion 0.0208 DOCK1, FLNB, FLT1, FYN, IGF1R,
PPP1R12A

Viral Acute Myocarditis 0.0627 DFFA, FYN, SGCB
Ectoderm Differentiation 0.0628 CAP2, CCDC88C, CTNND2, FYN
Regulation of Actin
Cytoskeleton

0.0798 BDKRB1, DOCK1, FGF1, PP1R12A

VEGFA-VEGFR2 Signaling
Pathway

0.1132 FLNB, FLT1, FOXO3, FYN, NCL
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epigenetic drift and that DNA methylation may
play a role in the pathogenesis of TCE exposure-
related diseases.

Consistent with previous studies, the findings of
differential variability support the links between
TCE exposure and autoimmune dysfunction, and
TCE exposure and cancer [3,4]. Furthermore,
these results suggest that increased epigenetic
variability may contribute to immunotoxicity and
cancer resulting from TCE exposure. The phe-
nomenon of increased epigenetic variability is con-
sidered to be a result of epigenetic instability or the
loss of epigenetic control of genomics [14], and it
has been described incancer [12] and RA [13]. The
most significant and biologically relevant DVPs
were found in genes CTNND2 (Catenin Delta 2),
EFNB2 (Ephrin B2), CAP2 (Cyclase Associated
Actin Cytoskeleton Regulatory Protein 2), and
ZNF259 (Zinc Finger Protein ZPR1/259), which
have all been related to cancer and autoimmune
disease [15–18]. Also, almost all of the 25 genome-
wide significant DVPs were hypermethylated
(Supplementary Table S1(J-M)) and, interestingly,
this pattern was hypothesized in [9]. Perhaps
increased variability of DNA CpG methylation
may be precursor to changes in mean DNA CpG

methylation? In this study, maybe there was
enough power to observe DVPs, but not DMPs?
These possibilities remain speculative. Additional
research is required to determine if differential
variability of methylation is connected with differ-
ential mean methylation, and if TCE-induced
health outcomes are related to TCE-induced epi-
genetic drift.

Examination of the genome-wide significant
DMR in the promoter region of TRIM68 led to the
formulation of another speculative, yet relevant,
molecular mechanism. TRIM68 (Tripartite Motif
Containing 68) is involved in immunity and cancer
and has been shown to negatively regulate an
antagonist of interferon gamma, interferon beta
[19]. A time-dependent effect of TCE on interferon
gamma gene expression and protein expression was
observed in mice [9]. Also, an increase in interferon
gamma has previously been reported as an effect of
occupational exposure to TCE [20]. Therefore, we
suspect that TCE exposure might increase interferon
gamma levels by lowering levels of interferon beta
through elevated expression of TRIM68. This postu-
lated molecular mechanism could contribute to
autoimmune disease and cancer resulting from
TCE exposure. Molecular assays are recommended

Figure 4. Focal adhesion pathway with enriched genes DOCK1, FLNB, FLT1, FYN, IGF1R, PPP1R12A.. Analysis of biological pathways
with WikiPathways considered a list of 219 candidate genes which matched to 288 significant DVPs that achieved Benjamini-
Hochberg corrected p-value < 0.05 and did not match to East Asian superpopulation SNPs. Six of the candidate genes were found to
be enriched in the focal adhesion pathway and are emphasized in the figure.

1118 R. V. PHILLIPS ET AL.



to evaluate whether TCE-induced hypomethylation
of the TRIM68 gene promoter in blood leads to
increased expression of interferon gamma via
decreased expression of interferon beta.

Biological pathway analysis identified the ‘focal
adhesion’ pathway, which may be implicated in
response to TCE exposure. Focal adhesions are multi-
protein complexes created at cell-extracellular matrix
contact points, involving actin filament bundles being
anchored to transmembrane integrin-family recep-
tors. These integrin-mediated adhesions dynamically
form and are key regulators in cell migration, cell
survival, and cell proliferation: processes that are
involved in the development and progression of can-
cer and autoimmune disease [21]. Interestingly, this
pathway is also involved in the regulation of macro-
phage migration and decreased pulmonary macro-
phage phagocytosis has been reported in mice
exposed to TCE via inhalation [22]. An inspection of
the genes in the focal adhesion pathway shows that
the following six protein coding genes may be per-
turbed by TCE: DOCK1 (Dedicator of Cytokinesis 1),
FLNB (Filamin B), FLT1 (Fms Related Tyrosine
Kinase 1), FYN (FYN Proto-Oncogene, Src Family
Tyrosine Kinase), IGF1R (Insulin Like Growth
Factor 1 Receptor), PPP1R12A (Protein Phosphatase
1 Regulatory Subunit 12A). Further experimentation
is essential to determine if the focal adhesion pathway,
rather than the genes per se, is a target of TCE
exposure.

The results of this study should be considered
alongside the study’s limitations. The sample was
from a Chinese population, which limits generaliz-
ability. Also, considering the smaller sample size and
the number of sites assayed in the 450K array, none of
the mean comparisons for individual CpG sites
(DMPs) were significant after accounting for multiple
testing. Still, there was enough statistical power in this
study to observe significant variability comparisons
for individual CpG sites (DVPs) after multiple
hypothesis correction. The WikiPathways analysis
was limited by the gene list being used as input, so
the probe bias (i.e., the bias introduced by having
a different number of CpG probes for each gene)
could not be accounted for [23]. However, since the
gene list in this study was established from DVPs
which achieved an FDR threshold of 0.05, the impact
of probe bias is likely less severe. It is well known that
differential DNA methylation in blood cells may be

confounded by blood cell composition variations [24].
It has also been shown that occupational exposure to
TCE is associated with alterations of lymphocyte sub-
set counts [11], and in this study lymphocytes
decreased with increased exposure to TCE. Thus, it
was particularly crucial to account for differences in
cell counts in this study. CBC and lymphocyte subsets
were measured on the same day that the PBMCs were
collected from the subjects, so we were able to adjust
for the measured counts of granulocytes, B cells, NK
cells, CD4 cells, and CD8 cells when linear models
were fit to methylation probes. We also adjusted for
body mass index, age, smoking, and sex. Due to the
bio specimen and statistical protocols utilized in this
study, the DNAmethylation differences we identified
are probably not due to confounding by blood cell
composition variations. Nevertheless, to extend these
findings, it is important to replicate them in larger
studies and in other exposed populations. Also, it is
unknown how human exposure over time might
influence epigenetic changes, or if the observed altera-
tions are reversible. Inferences regarding TCE-
induced exposure effects over time cannot be made
from this study, a limitation of all cross-sectional
designs. Contrastingly, we would be remiss to not
mention the strengths of this study which include (1)
a rigorous design that incorporated technical repli-
cates of DNA and measured (not estimated) cell
count and phenotypic information for each subject,
which is described in detail elsewhere [11]; (2)
a conservative methodology aimed at minimizing
false discoveries, which included denotation of gen-
ome-wide significance only for results that achieved
an FWER threshold of 0.05 (i.e., Bonferroni corrected
p-values < 0.05) and stabilized t-statistics which have
been shown to increase statistical power and perform
better compared to ordinary t-statistics [25]; and (3)
assessment of differential DNA methylation in
a variety of spatial (individual CpGs, genomic regions,
and global/methylome) and statistical contexts (mean
and variability).

In conclusion, this EWAS provided new insights
on potential genes and pathways that may be involved
in the human response to TCE exposure. These find-
ings provide additional evidence that DNA methyla-
tion plays a role in the pathogenesis of TCE-related
diseases. The results implicate several genes and the
focal adhesion pathway. Further examination of the
downstream effects of these TCE-induced
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methylation patterns on gene and protein expression
are warranted; especially in the context of TRIM68
promoter hypomethylation and interferon subtype
expression since these results suggest a mechanism
that could explain the increase in interferon gamma
from occupational exposure to TCE.

Methods

Study design

This cross-sectional study of TCE exposed workers
and controls was performed in Guangdong Province,
China [11]. Exposed subjects were sampled from six
factories that used TCE in manufacturing processes;
had no detectable benzene, styrene, ethylene oxide,
formaldehyde, or epichlorohydrin levels; and had low
to negligible levels of other chlorinated solvents.
Unexposed control subjects were sampled from four
factories that were in the same geographical region as
the factories that used TCE and controls were fre-
quency-matched by sex and age (± 5 years) to exposed
workers. Participation was voluntary and all subjects
provided written informed consent. Any participant
with a history of cancer, radiotherapy, chemotherapy,
or a previous occupation with notable exposure to
benzene, styrene, butadiene, and/or ionizing radiation
was removed from the study. The study was approved
by the Institutional Review Boards at the U.S.
National Cancer Institute and the Guangdong
National Poison Control Center, China. Subjects
were categorized into three groups based on TCE
exposure levels (controls, < 10 ppm, and ≥ 10 ppm
as an 8-hour time-weighted average).

Exposure measurement and sample collection

Using 3M organic vapor monitoring (OVM) badges,
full-shift personal air exposure measurements were
taken over a three-week time-period, before blood
collection. All samples were analyzed for TCE.
A subset of 48 TCE exposed workers was analyzed
for a panel of organic hydrocarbons including ben-
zene, methylene chloride, perchloroethylene and
epichlorohydrin. A subset of control workers was
analyzed for TCE with the OVM badges. After expo-
sure measurement, subject interviews were con-
ducted in the form of a questionnaire that
requested demographic, lifestyle, and occupational
information. Subjects were asked to provide a 29 ml

peripheral blood sample and undergo a physical
examination.

DNA methylation assay

Within six hours of being collected, peripheral blood
samples were delivered to the laboratory. On the
same day that a peripheral blood sample was col-
lected, the complete blood count (CBC) and lympho-
cyte subsets were analyzed. 155 samples (82 controls
and 73 exposed workers) were selected for DNA
methylation assay. DNA was extracted from blood
cells by the phenol-chloroform extraction method.
14 technical replicates were selected at random from
study samples in the control group (if available, other-
wise cases were used) with the highest available DNA
mass. 1000ng of sample DNA, according to Quant-iT
PicoGreen dsDNA quantitation (Life Technologies,
Grand Island, NY), was treated with sodium bisulfite
using the EZ-96 DNA Methylation MagPrep Kit
(Zymo Research, Irvine, CA) according to manufac-
turer-provided protocol. Bisulfite converted DNA
samples were hybridized to the 12 sample Illumina
HumanMethylation450 BeadChips using the
Infinium HD Methylation protocol (Document
15,019,519 v01). The proportion of DNAmethylation
at each CpG site (also called the methylation β-value)
is obtained as a ratio of the intensities of fluorescent
signals. A β-value of 0 represents a completely
unmethylated CpG site and a β-value of 1 represents
a fully methylated CpG site. The logit2 transform of
the β-value, the M-value, is utilized in downstream
statistical analyses that incorporate parametric
techniques.

DNA methylation data preprocessing

To reliably assess DNA methylation from the 450K
array, data preprocessing is essential and com-
monly considers quality control, probe and sample
filtering, normalization, and batch effect correc-
tion [26]. The quality of the data and the experi-
ment was investigated with the quality control
report provided by the minfi software package
[27] on Bioconductor [28]. No abnormalities,
such as bisulfite conversion outliers, were detected
from the strip plots of all internal control probes.
No sample exhibited an irregular distribution of
methylation values according to the density plots.
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However, additional sample-specific quality con-
trol led to the identification of 23 samples with
greater than 1% of failed probes and 6 samples
with low raw signal intensities (> 10 average log
median signal in the methylated and unmethylated
channels). Based on the quality control, the follow-
ing filtering approaches were considered: (1)
removing samples with a high proportion (> 1%)
of failed probes; (2) removing samples with a high
proportion (> 1%) of failed probes and removing
probes; and (3) removing samples with a high
proportion (> 1%) of failed probes, removing
probes, and removing samples with low raw signal
intensities. Probe filtering consisted of omitting
probes that failed to hybridize to the array (detec-
tion p-value > .01), non-CpG probes, SNP-related
probes according to Zhou [29], multi-hit/cross-
reactive probes, and probes located on sex chro-
mosomes (Supplementary Table S4) [26]. Among
the three filtering approaches, the most conserva-
tive filtering approach (3) led to the highest corre-
lation between technical replicates (Supplementary
Table S5), measured with the limma [30]
duplicateCorrelation algorithm [31] on
Bioconductor. After this filtering (filtering samples
with a high proportion of failed probes, filtering
probes, and filtering samples with low signal
intensities), 399,439 probes and 140 samples
remained. Multiple normalizations from minfi
and ENmix [32] software were considered. The
normalizations addressed various combinations
of background correction, dye-bias correction,
and probe-type bias correction [26]. Minfi’s
Illumina normalization resulted in the highest cor-
relation between technical replicates, so it was
retained for downstream analysis (Supplementary
Table S6). The Illumina normalization implements
the same normalization used in Genome Studio,
the software provided by Illumina. After normal-
ization, batch effects remained in the data due to
the sample plate (Supplementary Figure S1). These
batch effects were detected and visualized with the
singular value decomposition (SVD) method [33],
provided by ChAMP [34] software on
Bioconductor. The SVD method assesses the sig-
nificant components of variation in the data and,
in an ideal scenario, the significant components of
variation in the data would correlate with biologi-
cal factor(s). However, after normalization, there

still appeared to be a high amount of variation in
the data due to the sample plate (Supplementary
Figure S1). Hence, after normalization,
methylation M-values were adjusted for sample
plate using the sva ComBat algorithm [35] on
Bioconductor.

Association of DNA CpG methylation with TCE
exposure

Genome-wide differential methylation analysis
across comparison groups (37 higher exposed,
� 10 ppm TCE exposure; 30 lower exposed, <
10 ppm TCE exposure; and 73 controls, < 0.005
ppm TCE exposure) was performed with limma
[30] and missMethyl [36] functionality, both
available on Bioconductor [28]. To measure dif-
ferential mean DNA methylation (DMPs), linear
models were fit to each of the 399,439 residua-
lized (corrected for measured granulocytes,
B cells, NK cells, CD4 cells, CD8 cells, BMI,
age, smoking, and sex) methylation
probe M-values by generalized least squares. To
measure differentially variable DNA methylation
(DVPs), linear models were fit to the absolute
deviations from the group specific mean for each
CpG probe [37]. The same group of variables
were controlled for in the DVP linear model as
those included in the DMP linear model. It is
well known that a simple t-test can result in
many false discoveries in high-dimensional
data, so after fitting the linear models we
employed an empirical Bayes modelling frame-
work to stabilize the t-statistics, which results in
increased statistical power and better perfor-
mance compared to ordinary t-statistics [25].
The statistical significance was p-value < 0.05
for individual CpGs. To compare the genome-
wide distribution of the p-values with the
expected null distribution (DMP and DVP), we
calculated the genomic inflation factor λGC [38]
from the results returned by the DMP and DVP
analyses. Genome-wide significance was based
on a family-wise error rate (FWER) threshold
of 0.05 for p-values adjusted with the
Bonferroni correction. CpGs that met a false
discovery rate (FDR) threshold of 0.05 for
p-values adjusted with the Benjamini-Hochberg
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method were filtered for population-specific
genetic polymorphisms and then matched to
genomic features and considered in pathway
analysis. The filtering of genetic polymorphisms
removed CpG probes annotated to East Asian
super-population (EAS) SNPs. EAS was selected
as the population because the Guangdong
Province of China is large and inhabited by
many Chinese ethnicities. The population-
specific SNP annotation is provided by the
omicsPrint software [39] on Bioconductor.

Identification of differentially methylated regions
and blocks associated with TCE exposure

We used the minfi software [27] implementation of
the bumphunter algorithm [40] to examine differ-
ences in mean DNA methylation (M-values) across
small scale regions of CpG probes (DMRs) and large,
open-sea cluster regions of CpG probes, or blocks
(DMBs), for the three comparison groups: 37 higher
exposed ( � 10 ppm TCE exposure), 30 lower
exposed (< 10 ppm TCE exposure), and 73 controls
(< 0.005 ppm TCE exposure). For the DMR analysis,
clusters of probes were defined with a maximum
separation of 1,000 base pairs and 1,000 bootstrap
samples were drawn to generate a null distribution.
Loess smoothed regression coefficients above (in
absolute value) the 99th quantile of the bootstrap
sampled null distribution defined the cutoff to select
candidate regions. For the DMB analysis, loess
smoothed regression coefficients above 0.1 defined
the cutoff to select candidate blocks and 1,000 boot-
strap samples generated the null distribution to test
for statistical significance of the blocks. For both the
DMR and the DMB analysis, regressions adjusted for
the same covariates included in the DVP/DMP ana-
lyses (measured granulocytes, B cells, NK cells, CD4
cells, CD8 cells, BMI, age, smoking, and sex) and
regions/blocks comprised of less than 3 CpG probes
were filtered out. The bootstrap-based family-wise
error rate (FWER) < 0.05 was defined as the thresh-
old to denote genome-wide statistical significance of
regions and blocks. DMRs and DMBs that achieved
p-value < 0.05 and FWER � 0.05 were considered
individually (not genome-wide) statistically
significant.

Association of global DNA methylation with TCE
exposure

Global DNA methylation analysis considered the
399,439 CpG probes that remained after filtering
and is therefore only a representative measure of
a global DNA methylation for the 450K probes. For
each subject, the mean, median, and variance of
DNA methylation M-values was calculated using all
399,439 probes. Next, subjects were grouped
together based on their TCE exposure status: higher
exposed ( � 10 ppm TCE exposure); lower exposed
(< 10 ppm TCE exposure); and controls (< 0.005
ppm TCE exposure). We utilized ANOVA (or
a similar alternative) to compare the means, med-
ians, and variances of global DNA methylation
across the TCE exposure groups. If any significant
difference was detected, we examined which pair of
groups showed a difference.

Overlap of significant findings with genomic
features and biological pathways

Individually significant, p-value < 0.05, DMRs and
DMBs were mapped to gene identifiers with
BioMart – Ensembl (version GRCh37.p13) [41].
DMPs and DVPs that met an FDR threshold of 0.05
and were not annotated as EAS SNPs were matched
with gene information in the 450K array annotation
file provided by Illumina (HumanMethylation450
v1.2 Annotation File), and this gene information
established a list of candidate genes for downstream
analyses. Using the publicly available Comparative
Toxicogenomics Database (CTD) [42], we compared
our list of candidate genes to the CTD list of genes
that have previously been shown to be associated with
TCE exposure and its related diseases. Gene set
enrichment analysis (GSEA) was performed using
the Cytoscape [43] ClueGO app [44] and the
WikiPathways repository (wikipathways.org), an
open-source database of biological pathways [45].
The candidate gene list that corresponded to signifi-
cant results was used as input for GSEA. GSEA
grouped genes together based on their involvement
in the same biological pathway. The selection criteria
for pathways were based on the candidate gene list: at
least 3 genes and at least 2% of the total number of
genes involved in a pathway. Pathway statistical infer-
ence was calculated using Fisher’s Exact Test, which
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considers the total number of genes present in path-
ways in relation to the candidate genes used as input
for GSEA. An important limitation of this
WikiPathways analysis is that the list of genes (not
probes) were used as input for GSEA. Thus, the probe
bias introduced by the design of the array, where there
are varying numbers of probes per gene, could not be
accounted for. The severity of this probe bias has been
reported in GSEA where gene lists are established
from probes which achieve significance based on
a p-value < 0.05, but not in GSEA where gene lists
are established from probes which achieve a threshold
based on amultiple testing correction [23]. Therefore,
in this GSEA, the impact of unaccounted for probe
bias is likely less severe.

Acknowledgments

We thank Professor Andres Cardenas for critical reading and
useful comments on the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This project was supported by the National Institute of
Environmental Health Sciences [P42ES004705] Superfund
Research Program at UC Berkeley, and Intramural funds
from the National Cancer Institute.

ORCID

Rachael V. Phillips http://orcid.org/0000-0002-8474-591X
Linda Rieswijk http://orcid.org/0000-0002-6106-1347
Roel Vermeulen http://orcid.org/0000-0003-4082-8163
Jason Y.Y. Wong http://orcid.org/0000-0003-2820-2133
Boris Reiss http://orcid.org/0000-0002-6471-7241
Luoping Zhang http://orcid.org/0000-0001-7866-8391

References

[1] International Agency for Research on C. IARC
Monographs on the Evaluation of Carcinogenic Risks
to Humans, Trichloroethylene, Tetrachloroethylene
and Some Other Chlorinated Agents. Lyon:
International Agency for Research on Cancer; 2014.

[2] Agency for Toxic S, Disease R. Toxicological Profile for
Trichloroethylene (TCE). Atlanta, GA: U.S.

Department of Health and Human Services, Public
Health Service; 2014.

[3] Parks CG, De Roos AJ. Pesticides, chemical and indus-
trial exposures in relation to systemic lupus
erythematosus. Lupus. 2014 May;23(6):527–536. eng

[4] Huang Y, Xia L, Wu Q, et al. Trichloroethylene
Hypersensitivity Syndrome Is Potentially Mediated
through Its Metabolite Chloral Hydrate. PloS One.
2015;10(5):e0127101. eng.

[5] Jin Z, Liu Y. DNA methylation in human diseases.
Genes Dis. 2018 Mar;5(1):1–8. eng

[6] Baccarelli A, Bollati V. Epigenetics and environmental
chemicals. Curr Opin Pediatr. 2009 Apr;21(2):243–251.
PubMed PMID: 19663042; PubMed Central PMCID:
PMCPMC3035853.

[7] Cui Y, Choudhury SR, Irudayaraj J. Epigenetic Toxicity
of Trichloroethylene: A Single-Molecule Perspective.
Toxicol Res (Camb). 2016;5(2):641–650. eng

[8] Gilbert KM, Blossom SJ, Reisfeld B, et al.
Trichloroethylene-induced alterations in DNA methy-
lation were enriched in polycomb protein binding sites
in effector/memory CD4+ T cells. Environ Epigenet.
2017 Jul;3(3). DOI:10.1093/eep/dvx013. eng.

[9] Gilbert KM, Blossom SJ, Erickson SW, et al. Chronic
exposure to trichloroethylene increases DNA methyla-
tion of the Ifng promoter in CD4+ T cells. Toxicol Lett.
2016 Oct 17;260:1–7. eng.

[10] Palbykin B, Borg J, Caldwell PT, et al.
Trichloroethylene induces methylation of the Serca2
promoter in H9c2 cells and embryonic heart.
Cardiovasc Toxicol. 2011 Sept;11(3):204–214. eng.

[11] Lan Q, Zhang L, Tang X, et al. Occupational exposure to
trichloroethylene is associated with a decline in lympho-
cyte subsets and soluble CD27 and CD30 markers.
Carcinogenesis. 2010 Sept;31(9):1592–1596. eng.

[12] Teschendorff AE,Widschwendter M. Differential variabil-
ity improves the identification of cancer risk markers in
DNA methylation studies profiling precursor cancer
lesions. Bioinformatics. 2012 Jun 01;28(11):1487–1494.
eng.

[13] Webster AP, Plant D, Ecker S, et al. Increased DNA
methylation variability in rheumatoid arthritis-discordant
monozygotic twins. Genome Med. 2018 Sept 04;10(1):64.
eng.

[14] Hansen KD, TimpW, Bravo HC, et al. Increased methyla-
tion variation in epigenetic domains across cancer types.
Nat Genet. 2011 Jun 26;43(8):768–775. eng.

[15] Ghose S, Min Y, Lin PC. δ-Catenin activates Rho
GTPase, promotes lymphangiogenesis and growth of
tumor metastases. PloS One. 2015;10(1):e0116338. eng

[16] Luo H, Broux B, Wang X, et al. EphrinB1 and
EphrinB2 regulate T cell chemotaxis and migration in
experimental autoimmune encephalomyelitis and mul-
tiple sclerosis. Neurobiol Dis. 2016 Jul;91:292–306. eng.

[17] Shibata R, Mori T, Du W, et al. Overexpression of
cyclase-associated protein 2 in multistage

EPIGENETICS 1123

https://doi.org/10.1093/eep/dvx013


hepatocarcinogenesis. Clin Cancer Res. 2006 Nov 15;12
(18):5363–5368. eng.

[18] Gangwani L. Deficiency of the zinc finger protein ZPR1
causes defects in transcription and cell cycle progression.
J Biol Chem. 2006 Dec 29;281(52):40330–40340. eng.

[19] Wynne C, Lazzari E, Smith S, et al. TRIM68 negatively
regulates IFN-β production by degrading TRK fused
gene, a novel driver of IFN-β downstream of anti-viral
detection systems. PloS One. 2014;9(7):e101503. eng.

[20] Iavicoli I, Marinaccio A, Carelli G. Effects of occupational
trichloroethylene exposure on cytokine levels in workers.
J Occup Environ Med. 2005 May;47(5):453–457. eng

[21] Zhao X, Guan J-L. Focal adhesion kinase and its sig-
naling pathways in cell migration and angiogenesis.
Adv Drug Deliv Rev. 2011 Jul 18;63(8):610–615. eng.

[22] SelgradeMK,GilmourMI. Suppression of pulmonary host
defenses and enhanced susceptibility to respiratory bacter-
ial infection in mice following inhalation exposure to tri-
chloroethylene and chloroform. J Immunotoxicol. 2010
Oct- undefined 12;7(4):350–356. eng.

[23] Geeleher P, Hartnett L, Egan LJ, et al. Gene-set analysis
is severely biased when applied to genome-wide
methylation data. Bioinformatics. 2013 Aug 1;29
(15):1851–1857. PubMed PMID: 23732277.

[24] Jacoby M, Gohrbandt S, Clausse V, et al.
Interindividual variability and co-regulation of DNA
methylation differ among blood cell populations.
Epigenetics. 2012 Dec 01;7(12):1421–1434. eng.

[25] Phipson B, Lee S, Majewski IJ, et al. Robust
Hyperparameter Estimation Protects Against
Hypervariable Genes and Improves Power to Detect
Differential Expression. Ann Appl Stat. 2016;10
(2):946–963. eng.

[26] Morris TJ, Beck S. Analysis pipelines and packages for
Infinium HumanMethylation450 BeadChip (450k)
data. Methods. 2015 Jan 15;72:3–8. eng.

[27] Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi:
a flexible and comprehensive Bioconductor package for
the analysis of Infinium DNA methylation microarrays.
Bioinformatics. 2014 May 15;30(10):1363–1369. eng.

[28] Gentleman RC, Carey VJ, Bates DM, et al.
Bioconductor: open software development for compu-
tational biology and bioinformatics. Genome Biol.
2004;5(10):R80. eng.

[29] Zhou W, Laird PW, Shen H. Comprehensive charac-
terization, annotation and innovative use of Infinium
DNA methylation BeadChip probes. Nucleic Acids Res.
2017 Feb 28;45(4):e22. PubMed PMID: 27924034;
PubMed Central PMCID: PMCPMC5389466.

[30] Ritchie ME, Phipson B, Wu D, et al. limma powers differ-
ential expression analyses for RNA-sequencing andmicro-
array studies. Nucleic Acids Res. 2015 Apr 20;43(7):e47.
eng.

[31] Smyth GK, Michaud J, Scott HS. Use of within-array
replicate spots for assessing differential expression in

microarray experiments. Bioinformatics. 2005 May
01;21(9):2067–2075. eng.

[32] Xu Z, Niu L, Li L, et al. ENmix: a novel background
correction method for Illumina HumanMethylation450
BeadChip. Nucleic Acids Res. 2016 Feb 18;44(3):e20.
PubMed PMID: 26384415; PubMed Central PMCID:
PMCPMC4756845.

[33] Teschendorff AE, Menon U, Gentry-Maharaj A, et al. An
epigenetic signature in peripheral blood predicts active
ovarian cancer. PloS One. 2009 Dec 18;4(12):e8274. eng.

[34] Tian Y, Morris TJ, Webster AP, et al. ChAMP: updated
methylation analysis pipeline for Illumina BeadChips.
Bioinformatics. 2017 Dec 15;33(24):3982–3984. eng.

[35] Leek JT, Johnson WE, Parker HS, et al. The sva package
for removing batch effects and other unwanted variation
in high-throughput experiments. Bioinformatics. 2012
Mar 15;28(6):882–883. eng.

[36] Phipson B, Maksimovic J, Oshlack A. missMethyl: an
R package for analyzing data from Illumina’s
HumanMethylation450 platform. Bioinformatics. 2016
Jan 15;32(2):286–288. eng.

[37] Phipson B, Oshlack A. DiffVar: a new method for
detecting differential variability with application to
methylation in cancer and aging. Genome Biol. 2014
Sept 23;15(9):465. eng.

[38] Devlin B, Roeder K. Genomic control for association
studies. Biometrics. 1999 Dec;55(4):997–1004. PubMed
PMID: 11315092.

[39] van Iterson M, Cats D, Hop P, et al. omicsPrint: detec-
tion of data linkage errors in multiple omics studies.
Bioinformatics. 2018 Jun 15;34(12):2142–2143.
PubMed PMID: 29420690.

[40] Jaffe AE, Murakami P, Lee H, et al. Bump hunting to
identify differentially methylated regions in epigenetic epi-
demiology studies. Int J Epidemiol. 2012 Feb;41
(1):200–209. eng.

[41] Zerbino DR, Achuthan P, Akanni W, et al. Ensembl
2018. Nucleic Acids Res. 2018 Jan 04;46(D1):D754–
D761. eng.

[42] Davis AP, Grondin CJ, Johnson RJ, et al. The Comparative
Toxicogenomics Database: update 2017. Nucleic Acids
Res. 2017 Jan 04;45(D1):D972–D978. eng.

[43] Shannon P, Markiel A, Ozier O, et al. Cytoscape:
a software environment for integrated models of bio-
molecular interaction networks. Genome Res. 2003
Nov;13(11):2498–2504. eng.

[44] Bindea G, Mlecnik B, Hackl H, et al. ClueGO:
a Cytoscape plug-in to decipher functionally grouped
gene ontology and pathway annotation networks.
Bioinformatics. 2009 Apr 15;25(8):1091–1093. eng.

[45] Slenter DN, Kutmon M, Hanspers K, et al.
WikiPathways: a multifaceted pathway database
bridging metabolomics to other omics research.
Nucleic Acids Res. 2018 Jan 04;46(D1):D661–D667.
eng.

1124 R. V. PHILLIPS ET AL.


	Abstract
	Introduction
	Results
	TCE exposure associates with variance of global DNA methylation
	Association between TCE exposure and DNA CpG methylation
	Regions of DNA methylation associate with TCE exposure
	Overlap of differential methylation with genomic features and biological pathways

	Discussion
	Methods
	Study design
	Exposure measurement and sample collection
	DNA methylation assay
	DNA methylation data preprocessing
	Association of DNA CpG methylation with TCE exposure
	Identification of differentially methylated regions and blocks associated with TCE exposure
	Association of global DNA methylation with TCE exposure
	Overlap of significant findings with genomic features and biological pathways

	Acknowledgments
	Disclosure statement
	Funding
	References



