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Abstract

Phosphodiesterases (PDEs), enzymes that degrade 3’,5’-cyclic nucleotides, are being pursued as 

therapeutic targets for several diseases, including those affecting the nervous system, 

cardiovascular system, fertility, immunity, cancer, and metabolism. Clinical development 

programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus 

of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to 

therapeutically target PDE function, including enhancing catalytic activity, normalizing altered 

compartmentalization, modulating post-translational modifications, as well as the potential use of 

PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular 

mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug 

discovery efforts tractable.
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Introduction

Conventional 3’,5’-cyclic nucleotide phosphodiesterases (PDEs) are members of a highly 

conserved superfamily of enzymes that degrade the canonical cyclic nucleotides 3’,5’-cyclic 

adenosine monophosphate (cAMP) and 3’,5’-cyclic guanosine monophosphate (cGMP)1, as 

well as the non-canonical cyclic nucleotides 3’,5’-cCMP, 3’,5’-cUMP, 3’,5’-cIMP and c-di-

GMP2–4 (Figure 1). As extensively reviewed elsewhere1, there are 11 families of PDEs that 

are grouped based on the homology of their C-terminal catalytic domain, and each PDE 

family has multiple isoforms that differ in terms of the length and complexity of their N-
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terminal regulatory domains (Figure 2). PDEs do not simply control the total cellular content 

of cyclic nucleotides, but rather create individual pockets or nanodomains of cyclic 

nucleotide signaling. It is this subcellular compartmentalization of cyclic nucleotide 

signaling that enables a single cell to respond discretely to multiple extracellular and 

intracellular signals. Thus, PDEs regulate a myriad of physiological processes, and their 

dysfunction has been associated with a number of pathophysiological states including those 

affecting the nervous system, cardiovascular system, fertility, immunity, cancer, and 

metabolism (Box 1). Because the location of a PDE is just as important to its overall 

function as is its catalytic activity, how the location of a given PDE isoform can change 

based on tissue type, age, or disease status—possibly due to factors such as activation of 

receptors, alterations in calcium signaling, or elevations in cyclic nucleotides—is of 

paramount importance when considering the therapeutic potential of a given PDE isoform 

(e.g.,5–12; for full review, see Table S1).

Importantly, no two PDE isoforms share the exact same combination of substrate specificity, 

tissue expression profile and subcellular localization (Table S1). This is quite important 

because there are a number of diseases where compartment-specific defects in cyclic 

nucleotide signaling have been identified. For example, the function of soluble guanylyl 

cyclase, but not particulate guanylyl cyclase, is significantly impaired in brains of 

Alzheimer’s patients and in vitro models of Alzheimer’s disease pathology13–15, which 

would be expected to decrease cytosolic pools of cGMP. In contrast, in colon cancer, 

membrane-bound guanylyl cyclase appears to be dysregulated/suppressed16 and membrane-

enriched PDE10A appears to be overexpressed17, both of which would decrease membrane-

proximal pools of cGMP. That said, cytosolic pools of cGMP may also be decreased in 

colorectal cancer cells, as PDE5A is also overexpressed in these cells17, and—at least in 

heart and brain—PDE5 regulates pools of cGMP that are downstream of soluble guanylyl 

cyclases18, 19.

With regard to compartment-specific changes in cAMP signaling, studies examining brain 

tissue from patients with bipolar disorder show no change in membrane but increased 

signaling in the cytosol, which may be normalized by the classic mood stabilizer lithium 

(e.g.,20, 21). Other disease states where compartment-specific defects in cyclic nucleotide 

signaling have been implicated include—but are not limited to—erectile dysfunction22, 

hypertension23, cardiac hypertrophy18, 24, acrodysostosis25, 26, and Huntington’s 

disease27, 28. The unique substrate/localization profile offered by each PDE isoform offers 

multiple degrees of freedom in the context of therapeutic targeting. As such, isoform-

specific targeting could enable selective restoration of cyclic nucleotide signaling in affected 

compartments (i.e., provide efficacy) without disturbing cyclic nucleotide signaling 

elsewhere (i.e., avoid side effects).

As reviewed in detail below, there has been and continues to be strong interest in developing 

PDE-targeted therapeutics for a number of diseases. Unfortunately, the majority of PDE-

targeted therapeutics on the market are simply competitive blockers of substrate binding at 

the catalytic site that lack the ability to selectively target a specific isozyme within a single 

PDE family or sub-family. That said, novel therapeutic strategies are currently being 

explored to increase the selectivity and specificity with which PDEs are targeted (e.g., by 
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targeting protein-protein interactions). Further, PDE activators are now being considered as 

agents for treating select diseases, as are the exploitation of PDEs as biomarkers for 

diagnosis and/or patient selection (Box 2). Here, we review the clinical successes and 

failures of PDE inhibitors to date and describe a number of ways in which the field is 

moving beyond pharmacological inhibition of PDEs for therapeutic gain. This review largely 

focuses on PDE function as it relates to the canonical cyclic nucleotide substrates, cAMP 

and cGMP, as little is known about the pathophysiology of non-canonical cyclic nucleotides 

and what is known has been recently reviewed elsewhere4.

Therapeutic PDE inhibition

Several PDE family-selective inhibitors have successfully reached the market, targeting 

diseases such as psoriasis, COPD and erectile dysfunction (Table 1). Conversely, many 

potent and selective PDE inhibitors have also failed when tested in clinical trials (Table 2). 

Below, we will summarize the main achievements and pitfalls in the development of 

marketed PDE inhibitors to consider factors that currently limit the effectiveness of such 

therapeutic agents. Given the clinical successes of some PDEi’s as discussed, traditional 

PDEi’s are still very much being pursued as potential therapeutics, particularly in the context 

of the central nervous system (CNS), cardiovascular system, reproductive system, cancer 

and metabolic disorders (Table 3).

Marketed PDE inhibitors

The non-selective PDE1 inhibitor (PDE1i) vinpocetine is not FDA approved but is available 

in over-the-counter supplements (e.g., Cavinton or Intelectol, Richter Gedeon; Cognitex, 

Life Extension) claiming to improve memory and recovery from stroke, likely due to 

increasing vasodilation29. As extensively reviewed elsewhere29, a number of clinical trials 

have examined the cognition-enhancing effects of vinpocetine—either alone or in 

combination with another compound (e.g., caffeine or Ginko Biloba)—and have generally 

found improvement in healthy volunteers, individuals with cerebral hypofusion, and possibly 

aged individuals, but no improvement in AD patients. Reports of side effects associated with 

vinpocetine have generally been minimal (Table 1,30).

Several PDE3i’s are currently marketed, with Cilostazol and Milrinone perhaps the most 

widely known. Cilostazol received FDA approval in 1999 for intermittent claudication, but 

off-label uses include secondary prevention of cerebrovascular accident, percutaneous 

coronary intervention and coronary stent stenosis (c.f.,31). Cilostazol improves function 

across a number of domains, but it is associated with serious side effects (Table 1) and so is 

contraindicated for patients with severe heart failure, hepatic impairment, or renal 

impairment32. Milrinone increases contractility of the heart and is FDA approved for short-

term management of severe congestive heart failure. It is particularly used in the context of 

end-stage heart failure for patients who prove resistant to optimal therapy and for those 

awaiting cardiac transplant33. That said, the clinical utility of milrinone has been limited by 

significant side effects (Table 1) and the fact that it is cleared through the kidneys (i.e., 

generally not used in patients with renal failure)33.
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Three so-called “second-generation” PDE4i’s are currently FDA approved, with a 4th 

compound marketed as an over-the-counter supplement. Roflumilast is an add-on therapy 

for chronic obstructive pulmonary disorder (COPD; Table 1). Although it causes 

gastrointestinal and weight loss side effects, making it a third line treatment for COPD, it 

improves sugar metabolism in obese patients and may decrease cardiovascular events in 

patients with COPD34. Apremilast is used in the treatment of moderate to severe plaque 

psoriasis and psoriatic arthritis35–37 and is also being tested in a Phase IV trial for active 

ankylosing spondylitis (see below). The most common side effects for both of these orally-

administered PDE4i’s are the same that plagued first-generation PDE4i’s (i.e, 

gastrointestinal disturbances; Table 1), albeit with much improved therapeutic windows35. 

Crisaborole is a topically-applied ointment for treatment of moderate atopic dermatitis in 

patients >2 years old. Given the topical nature of the drug, gastrointestinal side effects are 

avoided and, instead, hypersensitivity reactions are the major possible side effect. Clearly, 

there is an anti-inflammatory theme shared amongst these FDA-approved PDE4i’s. Zembrin 

in a non-selective PDE4 inhibitor (also acts as a 5-HT uptake inhibitor) that is a component 

of a number of herbal supplements claiming calming or mood-stabilizing properties (e.g., 

Calm, Doctor’s Best; Mood, Procera; Nutri-calm, Nature’s Sunshine)38. fMRI imaging of 

the amygdala in humans supports an anxiolytic-like effect of Zembrin38. Further, a Phase I 

trial found Zembrin was well tolerated and improved cognitive flexibility, executive 

function, mood and sleep39. As noted below, a number of PDE4i’s are currently being 

pursued to improve cognitive functioning (see below).

There are 4 PDE5i’s currently FDA approved and marketed in the U.S., with 2 additional 

PDE5i’s marketed outside the U.S.. All 6 PDE5i’s were originally marketed for erectile 

dysfunction (Table 1), with the most recent approval for avanafil based on its much more 

rapid onset of action. Sildenafil later received a secondary approval for pulmonary 

hypertension (contraindicated for pediatric patients, veno-occlusive disease, or sickle cell 

disease), as did tadalafil. These PDE5i’s are generally considered safe and well tolerated, 

with no increase in cardiac mortality or myocardial infarction40. They share largely similar 

side effect profiles (Table 1) with headache, flushing, dyspepsia, and vision disturbances 

being the most common adverse events40. Interestingly, udenafil (Zydena, Mezzion Pharma)

—one of the PDE5i’s used to treat erectile dysfunction in Korea, Russia and 

Philippines41, 42--has also been reported to improve cognitive function in patients with 

erectile dysfunction43, 44.

The success of a number of marketed PDEi’s validates PDEs as appropriate therapeutic 

targets in many pathological conditions. However, the presence of unwanted side effects 

resulting from the inability to target individual isoforms is the major limiting factor to 

success. It is notable that of the 11 PDE families, only agents that attenuate the activity of 

PDEs 1, 3, 4 and 5 have made it to market, despite significant efforts targeting the inhibition 

of other PDE families (see next).

Failed PDEi clinical trials—Despite the successes noted above, a number of PDEi’s that 

entered the clinic failed to make it to market. The selective PDE2i PF-05180999 was 

originally considered a candidate for cognitive impairments associated with schizophrenia 

based on its preclinical profile45; however, it was brought into the clinic for migraine. 
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Despite the completion of earlier Phase 1 safety and tolerability studies, additional trials 

were terminated early due to safety concerns (Table 2). Exisulind inhibits both PDE2A and 

PDE5A (which are overexpressed in a number of precancerous and cancerous cell types) and 

triggers apoptosis in precancerous/cancerous cells with minimal effects on healthy cells (c.f.,
46, 47). Despite promising findings in multiple clinical trials, exisulind failed to secure FDA 

approval due to deficiencies in safety and efficacy (Table 2, c.f.,46, 47).

As noted above, Cilastozol has gained FDA approval for intermittent claudication; however, 

clinical trials for other indications, such as type 2 diabetes mellitus peripheral neuropathy, 

have failed48. That said, cilostazol significantly improved walking speed in these patients, 

suggesting improved peripheral blood flow as would be expected based on its current 

approved indication48.

The PDE4i cilomilast (Ariflo, GlaxoSmithKline) gained FDA approval in 2003 as a second-

line treatment for COPD in patients who are poorly responsive to salbutamol49. However, 

cilomilast never made it to market due to the severely dose-limiting nature of gastrointestinal 

side effects (e.g., nausea and vomiting, diarrhea, and abdominal pain35). The fact that 

cilomilast elicited more pronounced side effects relative to the other systemically-delivered 

PDE4i’s described above may be related to preferential inhibition of the PDE4D family 

relative to the other PDE4 subtypes49. A novel PDE4i ASP9831 was tested in Phase I and II 

trials for non-alcoholic steatohepatitis based on preclinical findings, but failed to improve 

biochemical biomarkers of the disease50. As target engagement in the organ of interest was 

not confirmed50, the reasons underlying the lack of efficacy remain unclear.

A number of clinical trials have attempted to extend therapeutic indications for PDE5i’s, but 

have failed. As reviewed extensively elsewhere29, a number of trials have tested the effects 

of sildenafil or vardenafil on various measures of cognition in healthy volunteers or patients 

with schizophrenia and have largely found no effects51–55. That said, one report from an 

Iranian clinical trial did report an improvement in negative symptoms in patients with 

chronic schizophrenia when sildenafil was administered in addition to risperidone56. Several 

studies were initiated to study sildenafil and/or tadalafil in patients with Duchenne or Becker 

Muscular dystrophy, with the hopes that the vasodilatory properties of the drugs would 

improve muscular ischemia; however, clinical trial outcomes have been mixed (Table 

2;57, 58).

Two PDE9i’s have been tested in the clinic for cognition-enhancing effects. Although 

PF-04447943 was found to be safe and well-tolerated, it failed to improve either cognition or 

dementia-related behavioral disturbances in a Phase II clinical trial59. Similarly, BI 409306 

was reported as safe and well tolerated in healthy subjects as well as patients with AD or 

schizophrenia; however, no positive effects on cognition were observed in either patient 

population (https://www.boehringer-ingelheim.com/PDE9-Inhibition-in-AD, accessed 

05/28/19;60–63). BI 409306 is still being tested in the clinic for prevention of schizophrenia 

relapse and prevention of first psychotic episode (Table 3). The failure of PDE9i’s to 

improve functioning in AD may be related to the fact that brain PDE9A is enriched in the 

nucleus and membrane5 and, thus, is not in a position to directly regulate the cytosolic pools 

of cGMP that appear to be dysregulated in Alzheimer’s disease13–15.
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A number of clinical trials have tested the PDE10i PF-02545920 in schizophrenia and 

Huntington’s disease (Table 2–3). Despite widely replicated efficacy in a number of 

preclinical assays (e.g.,64, 65), PF-02545920 failed to improve symptoms in patients with 

either exacerbated, stable, or sub-optimally treated schizophrenia (Table 2;66). Further, in at 

least 1 trial, there were reports of motoric side effects such as dystonia66. Similarly, despite 

decreased striatal expression of PDE10A being found in patients with Huntington’s disease 

(Box 2) and promising efficacy of PDE10i’s in preclinical models of the disease28, 67, 68, 

PF-02545920 failed to improve symptoms in patients with Huntington’s (https://

clinicaltrials.gov/ct2/show/results/NCT02197130?sect=X70156#outcome1, accessed 

05/28/19), and so efforts for this disease indication were terminated (https://

clinicaltrials.gov/ct2/show/NCT02342548, accessed 05/28/19). Several other PDE10i’s have 

also been pursued in the clinic for schizophrenia and/or HD, with some efforts subsequently 

suspended or terminated (Table 2) and others ongoing (Table 3—see more below).

The unsuccessful translation of these PDEi’s from promising preclinical data to human 

testing suggest that therapeutic approaches targeting PDEs need to extend beyond occlusion 

of the enzyme’s catalytic site. Of particular note are the numerous failures seen in nervous 

system disorders, even when target engagement was verified. Expression of PDEs in the 

brain is particularly complex, with PDE isoforms differentially expressed across circuits, 

cell-types, and subcellular domains5, 30, 69, 70. Thus, the challenge in evaluating the clinical 

potential for the next generation of PDE-modulating drugs is to gain novel insights about 

disease-related changes in PDE structure, function and regulation to understand how PDEs 

should be targeted in a compartment-specific manner for therapeutic gain.

PDE inhibitors in development.—Ongoing efforts in the development of novel PDEis 

include creation of new chemical entities as well as the repurposing of existing entities. 

Advances in our understanding of structural differences that exist between PDEs, coupled 

with extensive medicinal chemistry efforts to optimize structure-activity relationships, have 

yielded recent vast improvements in terms of selectivity and potency (e.g., see work related 

to PDE10is and PDE4is71–73). These efforts have also yielded PDEis with novel modes of 

action in some cases (i.e., acting as a negative allosteric modulator instead of direct catalytic 

inhibitor72). In addition, there are still significant efforts to repurpose older PDEi’s. Drug 

repurposing efforts can be driven by computational or experimental approaches; however, 

most drug repurposing efforts have been driven either by a better understanding of 

pharmacology or by a retrospective analysis of clinical effects that were observed during 

trials or marketed use of a drug for its original indication (c.f.,74). Indeed, the PDE5i 

sildenafil was originally brought into clinical trials for angina but—following observations 

made by clinicians in that trial—was later repurposed for erectile dysfunction. Drug 

repurposing has several advantages including reduced risk and substantially reduced 

timelines and cost due to the fact that the drug would already have passed preclinical and 

Phase I safety testing and possibly even formulation development74. That said, there are a 

number of barriers to recouping expenses incurred by drug repurposing trials, particularly 

when they are carried forward by an entity other than the patent holder or following the 

expiration of the original patent (see74 for further discussion).
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Non-selective inhibitor

The non-selective PDE3-4-10-11 inhibitor Ibudilast, which also inhibits glial cell activation, 

is approved for use in Japan as a bronchodialator and has long been of interest as a 

therapeutic approach for neuropathic pain and substance abuse/withdrawal75, 76. Recent 

clinical trials have tested Ibudilast in the context of amyotrophic lateral sclerosis, pain, as 

well as opiate, methamphetamine, and alcohol abuse (Table 3) and positive effects have been 

reported for all trials completed to date77–80.

PDE1 inhibitors

The broad PDE1 inhibitor ITI-214, which shows picomolar IC50s for PDE1A, PDE1B and 

PDE1C in enzymatic assays and >1000-fold selectivity versus its nearest neighbor 

PDE481, 82, is being explored for CNS and non-CNS indications. ITI-214 demonstrates 

cognition-enhancing effects in rodent models of long-term memory and working memory 

deficits81–83, mimicking effects of a dopamine receptor 1 (D1) agonist83 and occurring at 

doses that leave efficacy of the antipsychotic risperidone intact81. Although the target 

mediating the cognition-enhancing effects of ITI-214 remains undetermined, PDE1B may be 

the most likely candidate given its expression in D1-expressing neurons83, along with the 

fact that a PDE1B-selective inhibitor showed similar cognition-enhancing effects84. ITI-214 

was moved into the clinic, with potential applications for cognitive deficits associated with 

schizophrenia, AD, and Parkinson’s Disease82, with safety and tolerability established in 

healthy volunteers and patients with schizophrenia (Table 3). ITI-214 is also being explored 

in the clinic for heart failure () given its ability to improve cardiac function in dog and rabbit 

models of heart failure85 as a consequence of its inhibition of PDE1C85.

PDE2 inhibitors

A number of highly selective PDE2i’s have demonstrated cognition-enhancing, anxiolytic 

and anti-depressant like-effects in animal models (c.f.,86). TAK-915 entered Phase I trials to 

correlate plasma exposures with central target engagement, with the purpose of informing 

dose selection for future trials targeting cognitive impairment in schizophrenia87–89 (Table 

3). Looking beyond the brain, PDE2i’s may hold relevance for cardiovascular function since 

elevated PDE2A expression has been found in failing human hearts as well as a large 

number of animal models of heart disease (c.f.,90). Further, PDE2i’s may hold promise as an 

antifungal treatment for moderate to severe candidiasis infections, given that genetic deletion 

of Pde2a reduces virulence and biofilm integrity of the fungal pathogen (c.f.,91).

PDE3 inhibitors

Despite its existing FDA approval, the efficacy and safety of cilostazol is still very much a 

topic of investigation, with 27 active clinical trials registered on clinicaltrials.gov (accessed 

04/30/2019) and 54 more drawn to a close within just the past 10 years. Numerous recent 

Phase IV studies appear focused on broadening the therapeutic indications of cilostazol to 

include vasculature-related insults and nephropathies associated with Type 2 diabetes (Table 

3), and recent reports suggest largely positive effects31, 48, 92, 93. This PDE3i also elicited 

some improvement in chronic tinnitus94. Several prospective and retrospective studies have 

examined cilostazol as a primary or adjunctive treatment for cognitive deficits associated 
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with AD and schizophrenia; the majority of which demonstrated positive effects on 

cognition (see29 for review). The mechanism by which cilostazol elicits improved cognition 

has yet to be determined empirically. Given there is very little expression of PDE3A or 

PDE3B in the brain70, 95, it may be likely that cognition-enhancing effects of cilostazol are 

driven by increased cerebral blood flow that comes with chronic—but not acute—dosing as 

opposed to inhibition of PDE3 isoforms directly in the brain (e.g.,96).

Novel therapeutic applications of cilostazol are also being explored in preclinical studies. 

For example, oral cilostazol (30 mg/kg) improved retinal stress, ischemia, and ganglion cell 

death in a rat model of diabetic retinopathy97. In addition, PDE3A knockout (KO) mice are 

infertile98 and chronic administration of cilostazol blocks pregnancy in naturally-cycling 

swine99, suggesting potential utility of PDE3i’s for birth control or regulating in vivo oocyte 

maturation in the context of assisted reproduction. Indeed, administration of cilostazol to 

superovulated mice improved in vitro fertilization rates of subsequently harvested oocytes, 

possibly by virtue of synchronizing the oocyte maturation100.

Due to the promise of PDE3 as a therapeutic target, coupled with concerns over side effect 

associated with cilostazol, alternative PDE3 inhibitors are currently being developed101–103.

PDE4 inhibitors

The PDE4 family is arguably the most studied of all the PDE families. A number of clinical 

trials have tested the effect of apremilast for indications beyond psoriasis and arthritis. Two 

Phase II studies are testing the efficacy of apremilast in combination with phototherapy to 

produce repigmentation in patients with Vitiligo (Table 3). Interestingly, a recent case report 

showed apremilast dramatically improved repigmentation in a woman with treatment-

resistant Vitiligo104. Multiple case reports have also described an ability of apremilast to 

improve symptoms in patients with treatment-resistant erosive oral lichen planus105–107, 

perhaps motivating the recently registered Phase II study that will test the ability of 

apremilast to improve genital erosive lichen planus (Table 3).

Additional indications are also being explored for roflumilast. Phase IV studies showed 

roflumilast reduced fat mass and, thus, body weight in obese women with polycystic ovary 

syndrome (PCOS); however, these reductions were smaller than those elicited by liraglutide 

(Table 3;108, 109). The PDE4 inhibitor TAK-648 is being tested in the clinic in patients with 

Type 2 diabetes, based on preclinical data110. Roflumilast has also been tested for its ability 

to improve cognition and information processing in healthy humans, with promising results 

observed at a dose previously indicated as being devoid of side effects111. Patients with 

stabilized schizophrenia receiving adjuvant roflumilast in a small Phase II trial showed no 

improvement in working memory but did show some improvement in verbal learning and 

memory112. Given these positive findings, roflumilast was tested in elderly subjects who 

demonstrated no change in spatial memory but improved verbal word memory with 

roflumilast treatment113. Numerous preclinical studies have supported the therapeutic 

potential of PDE4i’s in the context of schizophrenia and cognition114–117.

Cognition-enhancing effects have also been reported for the PDE4i HT-0712, which 

improved long-term memory for word-lists without serious adverse events in elderly 
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subjects experiencing cognitive decline (http://www.dartneuroscience.com/press_release/

july_22_2008.pdf). The cognition-enhancing effect of HT-0712 in humans is consistent with 

previous reports in mice118, 119. The PDE4D negative allosteric modulator BPN14770 is 

also being pursued for improving cognitive impairment and has been tested for safety and/or 

efficacy in healthy elderly subjects, healthy volunteers with scopolamine-induced cognitive 

impairment, and adult males with Fragile X Syndrome (Table 3). In a press release, 

BPN14770 was described as having good safety and oral bioavailability and an ability to 

improve working memory in healthy elderly adults (http://tetradiscovery.com/wp-content/

uploads/2016/11/FINAL-Tetra-Phase-1-121616-FINAL.pdf; accessed 05/28/19). These 

effects in humans are consistent with preclinical studies showing BPN14770 improved a 

number of behaviors in a mouse model of Fragile-X Syndrome and antagonized the 

amnestic effects of scopolamine in mice120, 121. Based on preclinical studies showing 

anxiolytic and cognition-enhancing effects122, the PDE4i GSK356278 entered Phase I safety 

trials for Huntington’s disease but adverse events limited the highest dose to that achieving 

only ~50% occupancy in brain (Table 3;122). Other nervous system disorders for which 

preclinical evidence suggests a therapeutic potential of PDE4i’s include ischemic 

stroke118, 123–126, traumatic brain injury127, axon regeneration128, and substance abuse 

disorders (both causes and consequences,129–132).

McCune-Albright Syndrome is a disease affecting endocrine tissues, skin and bones and is 

caused by a mutation that results in constitutive activation of the G-protein alpha subunit 

Gαs (Gαs*). Preclinical studies show that while Gαs* triggers increased cAMP levels in 

some tissues, it actually results in decreased cAMP levels in other tissues due to a PKA-

dependent upregulation of PDE activity, particularly that of PDE1 and PDE4115, 133, 134. 

Consistent with this upregulation of PDE4 activity, the PDE4i rolipram was able to reverse 

deficits in Gαs mouse models115, 116. A clinical trial measuring PDE4 expression in the 

brain and peripheral organs of patients with McCune-Albright Syndrome is currently 

underway (Table 3).

More recent work is examining PDE4 in the context of cancer. Both preclinical and clinical 

data suggest roflumilast may exhibit anti-tumor activity for B-cell lymphomas135. The 

PDE4i rolipram, in combination with cAMP-elevating agents, has been shown to suppress 

triple negative breast cancer both in vitro and in vivo in mice136. Apremilast similarly 

induced tumor regression in mouse models of colorectal cancer137. Perhaps even more 

interesting, specific inhibition of PDE4D, either with genetic tools or the PDE4Di Gebr-7b, 

resensitized chemotherapy-resistant ER-positive breast cancer cells138. These early studies 

provide promise for the chemotherapeutic potential of PDE4is.

PDE5 inhibitors

A number of recent clinical trials have explored additional disease indications that might 

benefit from the vasodilatory properties of PDE5i’s. A cream version of sildenafil has 

recently been tested in a Phase II study examining female sexual arousal disorder (Table 3) 

as well as a study in which improved blood flow in patients with secondary Raynaud 

phenomenon was observed139. International consortiums are investigating the effects of 

sildenafil in intrauterine growth restriction, due to anticipated improvements in 
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uteroplacental perfusion140, 141. Initial results suggest sildenafil improves fetal growth and 

maternal blood pressure across species, including human, sheep, rabbit, and rodents142, 143. 

Several studies have also explored the effects of sildenafil, tadalafil, or vardenafil in the 

context of metabolic disorders such as Type 2 diabetes and obesity, assessing glucose 

tolerance and insulin signaling as well as effects on elevated body weight, nephropathy, and 

cardiomyopathy (Table 3). Tadalafil improved insulin secretion, endothelial function, and 

abdominal lean mass content in non-obese men144, and chronic sildenafil improved 

glycometabolic control, ameliorated visceral adiposity, and prevented remodeling in diabetic 

cardiomyopathy145–148. That said, vardenafil failed to reduce cardiovascular risk in men 

with type 2 diabetes149. Interestingly, the positive effects of sildenafil on adiposity and 

diabetic cardiomyopathy are suggested to be independent of sildenafil’s vasodilatory 

properties, rather being mediated by epigenetic signaling and/or a reduction of inflammatory 

chemokines145–148. It is important to note, however, that one of the studies examining the 

effect of sildenafil on glucose homeostasis was terminated early due to safety concerns 

(Table 2). With regard to other indications related to nephropathy and cardiomyopathy, 

sildenafil has also been tested against media-induced nephropathy, and tadalafil is being 

explored in the context of kidney stones and endocrine cardiomyopathy (Table 3). A meta-

analysis of older clinical studies suggest PDE5i’s could be an effective medical expulsive 

therapy for distal ureteral calculi, albeit not significantly improved relative to tamsulosin150. 

With regard to the brain, two early-stage clinical trials are testing the ability of sildenafil to 

reverse concussion-related reductions in cerebrovascular reactivity (Table 3).

As described for PDE4i’s, a number of trials are exploring the therapeutic potential of 

PDE5i’s as chemopreventives for solid tumors, multiple myeloma, and head and neck 

squamous cell carcinoma. Early reports suggest combining sildenafil with the 

chemotherapeutic regorafenib is safe in patients with solid tumors151. Further, a number of 

in vitro and animal models of colorectal cancer suggest that PDE5i’s, either alone or as part 

of a multi-chemotherapeutic regimen, demonstrate an ability to prevent tumor growth (e.g.,
17, 151, 152). Similarly, reports suggest tadalafil promotes tumor immunity in patients with 

head and neck squamous cell carcinoma (Table 3,153, 154). However, particularly with regard 

to colorectal cancer, PDE5is do not produce complete anti-tumorigenic effects16. This lack 

of complete efficacy may be related to the fact that membrane GCs are inhibited in 

colorectal cancer16, and PDE5 may be primarily regulating cytosolic rather than membrane 

GCs18, 19. Alternatively, the overexpression of both PDE5 and PDE10A in colorectal cancer 

cells—the latter a membrane-enriched PDE69, 155—may be involved17. Indeed, PDE10i’s 

also inhibit growth of colorectal cancer cells156, 157; however, when both PDE5 and PDE10 

are inhibited, anti-tumor efficacy is improved in preclinical models17. Although enthusiasm 

for PDE5i’s as chemopreventives is growing158, it should be noted that PDE5i’s similarly 

prevented prostate carcinogenesis in preclinical models but did not appear to reduce risk or 

recurrence in clinical studies159. Perhaps even more concerning, PDE5A appears to suppress 

melanoma cell invasion in mice160 yet a recent systematic review and meta-analysis showed 

that PDE5i’s actually increase risk for melanoma and basal cell carcinoma in humans161.
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PDE9 inhibitors

Although PDE9i’s thus far have failed in the clinic for brain diseases, they may hold 

therapeutic potential for cardiovascular diseases. In a mouse model of sickle cell disease, the 

PDE9i BAY73–6691 exerted immediate benefits on acute vaso-occlusive events162, and a 

Phase 1 clinical trial looking at safety, tolerability and PK/PD of the PDE9i PF-04447943 in 

patients with sickle cell anemia has recently been completed (Table 3). PDE9i’s may also 

hold therapeutic potential for cardiovascular indications as PDE9A expression is upregulated 

by cardiac hypertrophy and cardiac failure. Indeed, the PDE9i PF-04449613 reverses heart 

disease in animal models by controlling pools of cGMP downstream of pGCs18.

PDE10i inhibitors

Despite the PDE10i clinical failures described above, TAK-063 was tested in healthy 

controls and patients with schizophrenia. In healthy controls, TAK-063 was reported to be 

safe and well tolerated163, altering the effects of ketamine on brain activity in healthy 

controls, particularly in the striatum, substantia nigra, and ventrolateral prefrontal cortex 

(https://clinicaltrials.gov/ct2/show/results/NCT01892189?sect=X70156#outcome1, accessed 

05/28/19). In patients with schizophrenia, although TAK-063 failed to demonstrate a 

significant effect on the total PANSS score, there was a trend that mirrored effects sizes 

normally seen with risperidone164. Furthermore, TAK-063 did significantly improve a 

number of secondary endpoints relative to placebo164. It is not entirely clear why TAK-063 

was able to succeed where PF-2545920 failed. While one study suggested that TAK-063 

activates the striatal direct and indirect pathways in a balanced manner and PF-254920 

activates the direct pathway more so than TAK-063165, other studies have reported that 

PF-254920 activates these pathways equally64, 166. It is notable that TAK-063—but not 

PF-254920—increased sensorimotor gating in rodents as measured by prepulse inhibition of 

acoustic startle (PPI)165, suggesting PPI may more accurately predict antipsychotic-like 

effects of novel compounds. Preclinical studies are also exploring the therapeutic potential 

of PDE10i’s in the context of L-DOPA-induced dyskinesias167 and alcohol abuse 

disorders130.

Inhibition of PDE7, PDE8 or PDE11

Studies describing the physiological function of the PDE7, PDE8, and PDE11 families are 

now emerging; however, inhibitors have not yet reached the clinic. Like many of the PDE 

families discussed above, early research suggests that PDE7i’s and PDE8i’s may have 

positive effects in diseases where cognition, neuroprotection, neuroinflammation, and/or 

motor function are impaired (e.g., multiple sclerosis and/or Parkinson’s disease;168–172). 

Similarly, PDE11i’s may hold potential for treating age-related cognitive decline70, 173 or as 

an adjunctive treatment to improve lithium responsiveness in patients with bipolar 

disorder174, 175. PDE7i’s may also hold promise in treating leukemia176, 177, and PDE8i’s 

may have potential for treating disorders associated with reduced androgen production in 

males as PDE8i’s, particularly when applied in combination with PDE4i’s, stimulate Leydig 

cell steroidogenesis178, 179.
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Therapeutic strategies beyond inhibition

PDE Activation

There are several disease states where PDE activation may be warranted. Tissue-, brain 

region-, and subcellular domain-specific decreases in PDE expression/activity and/or 

increases in cyclic nucleotide signaling have been implicated in select disease states, 

including some age-related deficits180, 181, Huntington’s disease182, social isolation183, 

migrane184–188, retinitis pigmentosa189, infertility98, prostate cancer190, melanoma and basal 

cell carcinoma161, cardiac hypertrophy24, 191, acrodysostosis25, and polycystic kidney 

disease192. PDE activators would be expected to have a greater impact in cells with higher 

cyclic nucleotide levels (either basal or stimulated) as opposed to cells with low cyclic 

nucleotide levels, although this remains to be empiracly established. Indeed, Mironid have 

developed PDE4 longform-specific activators (mechanism as yet unknown; Table 4) for the 

treatment of polycystic kidney disease where increased adenylate cyclase activity caused by 

overexpression of vasopressin V2R receptors results in elevated cAMP levels that drive cyst 

growth and disease progression193. There are several natural mechanisms by which PDE 

activity can be activated (Figure 3), and it is our contention that these avenues could be 

manipulated phamacologically to trigger PDE activation.

Targeting GAF domains—One route to PDE activation is by way of tandem GAF 

(cGMP-specific and stimulated PDE, Anabaena adenylyl cyclases, and E. Coli FhlA) 

domains194 (Figure 3B). Although GAF domains have been identified in over 7400 proteins, 

in mammals they are only are found in the PDE families 2, 5, 6, 10 and 11195, 196. For a vast 

majority of non-PDE GAF domains the activating ligand is unknown, however for PDEs it is 

known that cyclic nucleotides bind to these pockets (Figure 3). PDE2 and PDE5 are 

activated when cGMP binds the GAF domain197–199, and PDE10 is activated by cAMP 

binding the GAF domain200. In the context of activation, binding of cyclic nucleotides to 

GAF domains is thought to cause structural changes that relieve autoinhibition of the PDEs 

(Figure 3). In contrast, cGMP binding the GAF-A domain of PDE6 enhances protein-protein 

interactions that inhibit PDE6 catalytic activity201. This suggests that blocking cGMP 

binding of the PDE6 GAF domain may provide a means of promoting PDE6 activity. It also 

suggests it may be possible to both activate and inhibit GAF-containing PDEs with small 

molecules at a site distinct from the catalytic domain. Indeed, PDE11A is activated when a 

cGMP analog—but not cGMP itself—binds the GAF domain200. Further, even though 

cGMP binding of the GAF domain activates PDE5197, a number of other types of molecules 

that bind the GAF domain inhibit PDE5 in its activated—but not basal—state202. This is 

consistent with the fact that GAF domains are known to bind a diverse array of small 

molecules that are unrelated to cyclic nucleotides194. The fact that GAF domains are only 

found in PDEs in mammals196 makes GAF domains of high interest in the context of drug 

targeting203. Importantly, mammalian GAF domains are sufficiently structurally divergent 

from one another (e.g., low degree of homology between PDE families and the tandem GAF 

domains are preceded by variable N-terminal stretches) as to allow selective 

pharmacological targeting of individual PDE families197. Together, this suggests the GAF 

domains may provide an inroad for targeting reagents that selectively activate a given PDE 

isoform while avoiding off-target activity.
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Preventing trans-capping—PKA or PKG phosphorylation of PDE3204, 205, 

PDE4204, 206, PDE5207, and PDE8208 is also known to activate catalytic activity in a 

negative feedback loop. In the case of PDE4, for example, catalytic activity is inhibited 

when the UCR2 regulatory domain “trans-caps” the catalytic site; thus, occluding cAMP 

from reaching the enzymatic core of PDE472, 209 (Figure 3C). PKA phosphorylation of the 

UCR1 regulatory domain blocks the ability of UCR2 to trans-cap the catalytic site, which 

locks PDE4 in the active state72. Notably, select PDE4Di’s allosterically inhibit catalytic 

activity by promoting “trans-capping”127; whereas, phosphatidic acid activates PDE activity 

by inhibiting trans-capping in a similar but mutually exclusive manner to PKA210–212. 

Furthermore, the dominant negative peptide “UCR1C”, which corresponds to UCR1 

sequence, also activates PDE4 activity by inhibiting trans-capping213. These results provide 

proof of principle that activation of PDE4 may be achieved by either small molecules or 

biologics that prevent UCR2 from adopting a trans-capping conformation.

Manipulating protein-protein binding—PDEs may also be activated by manipulating 

protein-protein binding interactions. PDE6 is unique in the fact that the heterodimeric holo-

enzyme includes two inhibitory subunits that span the catalytic pockets of the dimer, thus 

occluding cGMP from the catalytic site214 (Figure 3D). Binding of the GTP-bound α-

subunit of the heterotrimeric G-protein transducin relieves PDE6 inhibition by binding to the 

C-terminal region of PDE6 and its inhibitory subunits215. The full crystal structure of PDE6 

is not yet available216; however, recent cryo-EM work217 has confirmed the predicted 

structural organisation of the holo-enzyme, albeit without sufficient detail to inform 

pharmacological targeting. The success in upregulating PDE6 activity via gene transfer to 

combat retinitis pigmentosa189 (see following section) suggests that PDE6 activation could 

be a viable therapeutic strategy for the treatment of vision loss. As discussed in greater detail 

below, it may also be possible to increase PDE activity by preventing the binding of PDEs to 

binding partners that sequester or suppress activity.

Gene therapy

Viral transfer of PDE genes, agents that silence PDE gene expression (e.g. antisense, 

silencing or microRNAs)160, 218–222, or gene editing (e.g., Crispr/Cas9)223 might also prove 

a useful means of therapeutically targeting individual PDE isoforms (Figure 4). The best 

characterized PDE gene therapy approach to date targets PDE6 activity in the retina. A loss 

of transducin-mediated activation of PDE6 results in elevated cGMP levels, which causes 

the loss of primary rods and, ultimately, vision224. Expression of recombinant PDE6α in the 

retina via an adeno-associated virus (AAV-PDE6α) preserved retinal structure, photo-

transduction, and vision in retinal degeneration (rd) mice, as did AAV-PDE6β225, 226. AAV-

PDE6α similarly rescued retinal deficits in a mouse model that mimics human retinitis 

pigmentosa mutations227. Experiments injecting AAV-PDE6γ into the retina have also 

proven successful in mice228. In dogs, delivery of recombinant PDE6α using a tyrosine 

capsid-mutant AAV8 was able to stabilize cGMP levels and improve survival of 

photoreceptor rods and cones in PDE6α-mutant dogs; however, several adverse effects 

related to the AAV injection were identified189. The recent development of synthetic AAV 

vectors that target the retina in non-human primates may provide the answer to these 

problems in the future229. Notably, two clinical trials are underway testing the safety and 
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efficacy of PDE6 gene therapy in retinitis pigmentosa (PhI , PhII ; clinicaltrials.gov accessed 

5/29/19).

A rapidly evolving approach within the gene therapy field is optogenetic medicine, which 

combines viral delivery of recombinant, light-activated proteins with biomedical devices that 

emit light of the specific intensity and wavelength needed to activate those proteins230. With 

the field of personalized bioelectronic implants quickly evolving, optogenetic-based 

biomedical approaches are being pursued for neurological diseases, cancer, cardiovascular 

disease and metabolic disorders230. Given that optogenetic-based approaches have now 

entered clinical trials230, it is worth noting here that light-activated PDEs have been 

identified in lower organisms231–233 and engineered in the lab234. Both are being explored as 

biological tools in higher organisms. Activating or inhibiting a given PDE by a spatially- and 

temporally-restricted light emission, as opposed to a systemically administered 

pharmacological agent, may prove an ideal approach for treating diseases where cyclic 

nucleotide signaling is down regulated in one tissue yet upregulated in another (e.g., aging; 

c.f.,235). It might also provide a means of avoiding side-effects associated with targeting 

PDE activity in a specific tissue (e.g., nausea/emesis associated with inhibiting PDE4 in the 

area postrema).

Targeting location

As production of cAMP is utilized by a variety of different Gs-coupled receptors to 

transduce signals, compartmentalization of signaling intermediates is crucial to define 

physiological outcomes specific to each receptor236. This compartmentalization of cyclic 

nucleotide signaling is achieved by virtue of PDEs being tethered to a precise cellular 

location via binding partners (Table S1). Thus, promoting or disrupting isoform-specific 

protein-protein interactions may prove a viable approach to therapeutically target PDEs in an 

isoform-specific manner, a level of specificity that has not been achieved with 

pharmacological inhibitors to date (Figure 4).

Dominant negative PDEs—Proof of principle for such an approach first emerged with 

studies using dominant negative (DN) PDEs, catalytically inactive mutants that would 

displace their endogenous PDE. Using specific DN-PDE4 isoforms, in vitro studies have 

successfully altered perinuclear cAMP signaling237, β-arrestin-dependent desensitization of 

the beta2-adrenergic receptor238, 239, growth control of prostate cancer cells190, prostanoid 

receptor-mediated cAMP signaling240, glucagon-like peptide-1 release241, and cAMP 

gradients at the centrosome242. DN-PDE4 tools have also yielded beneficial effects in vivo. 

For example, viral delivery of a DN-PDE4A5 to the mouse hippocampus was able to rescue 

localized cAMP signaling deficits and hippocampus-dependent memory impairments that 

were caused by sleep deprivation243–245. In contrast, overexpression of a DN-PDE4B1 in the 

forebrain of mice did not affect hippocampus-dependent memory, although it did enhance 

hippocampal long-term potentiation in male mice246. This finding underscores the 

importance of understanding the role of specific PDE isoforms, because a homozygous 

mutation in PDE4B (Y358C) that greatly reduces activity of all PDE4B isoforms by virtue 

of attenuating interactions with the scaffold protein Disrupted In Schizophrenia 1 (DISC1) 

improves both long-term potentiation and memory as well as other mood-related 
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behaviors247. It is interesting to note that nature has developed its own dominant-negative 

approach with PDE4A7, a PDE isoform that is targeted to specific subcellular compartments 

but is catalytically dead248.

One point to consider in adopting a DN approach is the fact that a single PDE isoform can 

contribute to more than one function in a cell via its participation in multiple distinct 

signaling complexes, which involve mutually exclusive protein-protein interactions249 

(Table S1; Figure 4). For instance, PDE4D5 is involved in a number of processes common in 

almost all cells, such as cell growth, cell orientation, desensitization of Gs-coupled 

receptors, and inactivation of the phosphorylation of the ubiquitous chaperone HSP20250. 

The ability for PDE4D5 to have all these functions in a cell is a result of it being localized in 

different compartments by different anchors (e.g., RACK1 at leading edge of cells, beta-

arrestin at transmembrane receptors, and HSP20 in the cytosol; Figure 4;250). It is clear that 

this is also the case for a number of other isoforms based on proven protein-protein binding 

interactions (e.g., in heart tissue/cells, PDE4D3 can bind to either the ryanodine receptor, 

HSP20, or an AKAP9/Potassium channel complex—see Table S1) or based on inference 

from the fact that the exact same isoform can be found localized to multiple subcellular 

domains (e.g., ~50% of PDE11A4 in neurons localizes to the cytosol while 25% is localized 

to the nuclear fraction and another 25% to the membrane compartment69). Thus, a non-

selective DN approach has the potential to influence multiple domains within the cell. To 

achieve a compartment-specific manipulation of a given PDE isoform, one could mutate the 

binding site(s) that mediates a particular protein-protein interaction. Mutating isoform-

specific binding sites has also proven a useful approach, revealing that an integrin α5-

PDE4A5 complex regulates endothelial inflammation251, a PDE3A1-SERCA complex 

regulates myocardium contractility252, and a DISC1-mediated sequestering of PDE4B 

regulates hippocampal function247. An alternative approach is to develop a peptide or small 

molecule that specifically competes for a given protein-protein binding site253. This 

approach would displace only a specific “pool” of a given PDE isoform, while leaving the 

vast remainder unfettered in their respective signaling complexes (Figure 4). Efforts have 

begun to identify small molecules capable of promoting or interfering with protein-protein 

interactions, but have not yet been published so it is too early to speculate on the required 

design characteristics at this stage.

Disrupting protein-protein interactions with peptides—A recent review suggests 

cell-permeable, peptide disruptors effectively manipulate specific PDE isoforms in a 

compartment-specific manner253 and evidence continues to build. More recently, a PDE4D-

FAK disrupting peptide prevented direction sensing and invasion of melanoma cells254, 255 

and a PDE8A-Raf1 disruptor retarded cancer cell growth promoted by a Ras mutation208. 

Interestingly, the same PDE8A-Raf1 peptide has also been used to target T cell adhesion and 

migration and was more potent than a PDE8-specific inhibitor in reducing inflammatory 

signaling254. The effectiveness of PDE displacement has also been demonstrated in vivo, 

where intraperitoneal injections of a PDE4-HSP20 disruptor significantly attenuated 

hypertrophy-induced cardiac remodeling256.
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Disrupting PDE homodimerization—Disrupting PDE homodimerization (that is, a 

PDE monomer binding to itself) may also prove an effective way to target PDE function in a 

domain-specific manner. Disrupting PDE11A4 homodimerization using a peptide 

recognizing its GAF-B domain was shown to selectively remove PDE11A4 from membrane-

bound complexes but not the cytosol, which may hold utility for improving responsivity to 

the mood stabilizer lithium174 or age-related cognitive decline70, 173. Conversely, a peptide 

or mutation that could stabilize PDE11A4 homodimerization might prove useful in treating 

the deleterious psychological effects of social isolation183. Targeting homodimerization of 

PDE2, PDE4, or PDE5 may also relocate the enzymes by virtue of changing susceptibility to 

regulatory post-translational modifications196, 257. Indeed, nature appears to have taken 

advantage of dimerization as a mechanism to regulate PDE trafficking. For example, when 

PDE10A2 heterodimerizes with PDE10A19, PDE10A2 is prevented from trafficking to the 

membrane as it normally does under conditions of homodimerization258. Such complex-

specific targeting of PDE function may be required to achieve efficacy in absence of 

unwanted side effects, particularly in cases where multiple subfamily isoforms orchestrate a 

variety of physiologic responses by virtue of different protein-protein interactions (e.g., 

targeting various PDE3 isoforms for cardiovascular disease259).

Targeting post-translational modifications

As post-translational modifications (PTM) directly regulate PDE activity and location, 

PTMs could be considered a point of therapeutic control (Figure 5).

Phosphorylation—PKA or PKG phosphorylation of PDE3204, 205, PDE4204, 206, 

PDE5207, and PDE8208 will stimulate catalytic activity. Phosphorylation can also influence 

PDE cellular location by virtue of preventing other PTMs that promote membrane 

association (e.g., palmitoylation) or changing protein-protein binding interactions. A great 

example to illustrate these principals is PDE10A2. PDE10A2 is palmitoylated in its N-

terminal region, which directs membrane targeting and trafficking to dendrites155. If, 

however, PDE10A2 undergoes isoform-specific phosphorylation by PKA on Thr16260, 

palmitoylation of PDE10A2 is attenuated and the specific membrane localization is lost155. 

Interestingly, phosphorylation on the same site also interferes with the scaffolding of 

PDE10A2 by AKAP150261. Hence, although PDE10A catalytic activity is not directly 

affected by this PTM, cyclic nucleotide levels should increase within this compartment due 

to the absence of PDE10A2. Preliminary evidence also suggests that PDE11A4 can similarly 

be shuttled between membrane and cytosolic compartments by virtue of phosphorylation of 

N-terminal serines, although this is likely by virtue of altering protein-protein interactions as 

opposed to a direct insertion into the membrane262. PKA phosphorylation of PDE4D3 drives 

an association with the mAKAP signaling complex to evoke rapid signal termination in the 

muscle compartment263, which may have therapeutic implications given that polymorphisms 

in the PDE4D3-mAKAP binding site lead to a higher susceptibility to cardiovascular 

disease264. PDE4D enzymes also get phosphorylated by both casein kinase 1 (CK1) and 

glycogen synthase kinase 3β (GSK3β) in the catalytic region on a motif known as a 

“phosphodegron”265. This action increases the affinity of the PDE for a ubiquitin ligase 

complex (Cullin 1 containing SCF E3 ligase) which promotes proteosomal degradation of 
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the enzyme265. Hence PDE phosphorylation not only affects activity, localization, and 

protein-protein interactions, it also regulates protein turnover.

Ubiquitination and sumoylation—It has been known for some time that increases in 

PKA activity promote the proteosomal degradation of short-lived proteins, an action that can 

be enhanced by PDE inhibitors (c.f.,266). However, we are just starting to understand that the 

stability of PDEs can themselves be influenced by the ubiquitin-proteosome system (Figure 

5). Ubiquitin conjugation is known to target proteins for degradation by the proteasome and 

specificity is introduced at the level of E3 ligase-substrate interaction. We now know of 

multiple instances where PDEs interact definitively with one of the over 600 E3 ligase types 

to dramatically shorten PDE half-life and this could be a new point at which to direct 

innovative therapeutics. As mentioned above, PDE4Ds can be degraded by virtue of an SCF 

E3265, whereas PDE4B levels can be down-regulated by a different E3, Smurf2, to promote 

anti-fibrotic signaling in the liver267. PDE4D5 can also be targeted for ubiquitin 

modification by the RING type MDM2 E3 ligase; however, this beta-adrenergic driven 

ubiquitination of PDE4D does not signal a degradation of the enzyme. Instead, it shifts 

PDE4 from binding RACK1 to binding β-arrestin268. PDE4s are similarly regulated by the 

ubiquitin-like protein SUMO (small ubiquitin-like modifier)269. SUMO-conjugation tends to 

alter the location, activity or protein-protein interactions of a protein rather than tagging for 

destruction via the ubiquitin-proteosome system270. Unlike ubiquitination, sites of 

SUMOylation can be predicted in the amino acid sequence of putative substrates as 

conjugation usually occurs on a lysine residue within the consensus h-K-X-D/E (where h is 

a bulky hydrophobic and X is any residue)270. PDE4s from subfamilies A and D contain the 

consensus motif, whereas subfamilies B and C do not. This adds an extra layer of sub-

family-specific regulation as SUMOylation serves both to protect against the inhibitory 

phosphorylation by ERK/MAP kinases271 and further enhances activity of the PKA 

phosphorylated longform PDE4 by locking it in the “open” non-UCR inhibited 

conformation269.

S-nitrosylation and proline hydroxylation—Two additional PTMs that trigger PDEs 

for destruction include S-nitrosylation and proline hydroxylation (Figure 5). PDE5 can be S-

nitrosylated by NO on Cys220272, which targets the enzyme to the proteasome and reduces 

PDE activity. Under conditions of reduced NO bioavailability, as in heart disease, PDE5 is 

upregulated due to a loss of this S-nitrosylation-induced degradation272. Proline 

hydroxylation has also been identified as a modification that can tag substrates for 

recognition by E3 ligase complexes273. In the heart, proline hydroxylases domain-containing 

proteins (PHDs) hydroxylate surface-associated prolines on PDE4D enzymes, triggering 

their degradation274. In this way, direct binding of PHDs to PDE4s increase cAMP without 

affecting adenylate cyclase activity.

Challenges

Although this is clearly an exciting time in the PDE field, there is much work that remains to 

be done. For therapeutics to be efficiently developed, we need to more thoroughly 

understand precisely where cyclic nucleotide signaling is disrupted in a given disease—in 

which tissue, cell types, and subcellular compartments. We then need to target a PDE in a 
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defined locale, with the understanding that subcellular compartmentalization of a given PDE 

may vary depending on species, age, tissue type, or disease status (e.g.,5–12; for full review, 

see Table S1). This consideration is equally important in the evaluation of potential efficacy 

and potential side effects. To maximize potential efficacy while minimizing potential side 

effects, one would target a PDE that is enriched, if not exclusively expressed, in the tissue of 

interest and that controls the same pool of cyclic nucleotides that is altered by the disease. At 

the same time, efforts to unravel the intramolecular signals responsible for trafficking each 

PDE also need to continue to inform more sophisticated therapeutic approaches that can 

preferentially target a given PDE in a given subcellular compartment. Along these same 

lines, we need to grow our understanding of how to stimulate PDE activity and how to target 

the PDE catalytic activity of dual-specificity PDEs in a functionally-selective manner (i.e., 

target only its cAMP- or cGMP-hydrolytic activity, see203 for further discussion). Perhaps 

by increasing the specificity of our approach, we can retain efficacy while mitigating the 

numerous side effects described above that have plagued PDE inhibitors to date.

An additional challenge is to gain a better understanding of which physiological/disease 

processes are governed by PDE regulation of canonical versus non-canonical cyclic 

nucleotides. Research into the role of non-canonical cyclic nucleotides is rapidly evolving as 

new techniques and reagents facilitate functional studies4. Cyclic cytidine monophosphate 

(cCMP) and cyclic uridine monophosphate (cUMP) are synthesized by soluble guanylate 

and soluble adenylate cyclases in mammalian systems, although an as-yet-to-be identified 

generator likely accounts for the majority of production given the dissociation between 

sGC/sAC and cCMP/cUMP expression patterns4. ExoY, a bacterial nucleotidyl cyclase, is 

known to generate cUMP in non-mammalian systems2. Hydrolysis of cCMP is catalyzed by 

PDE7A whereas cUMP is broken down by PDE3A, PDE3B and PDE9A2. Functionally both 

nucleotides have been shown to activate PKA/PKG275, cyclic nucleotide gated channels276, 

and cCMP is described as a partial agonist of EPAC277. In a disease context, the non-

canonical cyclic nucleotides play roles in promoting virulence of pseudomonas aeruginosa 

infections278 and triggering apoptosis of cancer cells279; however much more research is 

needed to accurately characterize the pathophysiology involving these signaling molecules. 

Difficult issues facing the field will be defining specific non-canonical cyclic nucleotide 

signaling systems that are aberrantly regulated in disease, determining the mechanisms by 

which PDEs might preferentially degrade non-canonical versus canonical cyclic nucleotides, 

and visualising the compartmentalisation of non-canonical signalosomes in specific 

locations within cells and tissues.

Finally, development of PDE-targeted therapeutics faces the same challenges as does all 

drug discovery—namely the high rate of failure in clinical trials. A recent study suggests 

that from 2000–2015, only 13.8% of all compounds made it from Phase I to approval280. 

When considering success rates for individual indications, we may gain insight into the 

likelihood that a PDE-targeted therapeutic will achieve success within a given disease area. 

For example, oncology saw only 3.4% of compounds made it from Phase 1 to approval, 

perhaps not surprising given the resistance and heterogeneity that dogs this area. In contrast, 

metabolic/endocrinology, cardiovascular, CNS, autoimmune/inflammation, genitourinary, 

and ophthalmology saw a success rate of 19.6%, 25.5%, 15%, 15.1%, 21.6%, and 32.6%, 

respectively280. This certainly paints a grim picture for pursuing any type of therapeutic in 
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the context of cancer; however, this failure rate also underscores the desperate need to 

develop novel therapeutic options. It is then important to note that success rates were 

doubled for cancer compounds when patient selection biomarkers were employed in the 

trials; the success rate for cardiovascular compounds similarly benefited280. Importantly, 

expression or activity of PDEs themselves may prove viable biomarkers in this context (Box 

2).

Outlook

Although the challenge of targeting localized pools of PDEs for purposes of correcting 

pockets of aberrant cyclic nucleotide signaling has proven difficult in the past, there are 

indications that innovative approaches and technological advances are making headway (see 

Table 4 for recent patent activity that includes PDE activators, biomarkers, and viral 

approaches). For example, agents that show remarkable selectivity for sub-families of PDE4 

are showing promising results in mouse models of learning and memory and translation to 

human disease would be a game-changing advance121. Additionally, novel delivery systems 

are being developed that can transport PDE inhibitors to precise tissues or cell types, thereby 

abrogating complications associated with systemic distribution (e.g.,281, 282). In the future, 

novel delivery systems such as these could be employed to deliver agents that specifically 

disrupt the anchoring of single isoforms. Another potential approach is the intelligent design 

of a new generation of PDE inhibitors that preferentially accumulate in or segregate from 

certain tissues or organs. The mild side-effect profile of Apremilast is largely due to its 

inability to penetrate the brain and engineering of similarly restricted distribution profiles 

may unlock the latent abilities of other PDE inhibitors. Gene therapy that seeks to abrogate 

or enhance activity of single PDE isoforms in a cell type-specific manner may provide a way 

to combat disease or fight complications associated with ageing. There is also the possibility 

that an improved therapeutic window might be achieved by combining sub-optimal doses of 

PDEi’s with ineffective doses of downstream-target activators, which would result in an 

effective combined dose only in tissues and subcellular compartments where both molecules 

were present (e.g.,283). Indeed, PKA, PKG, and Epacs have been implicated as therapeutic 

targets in their own right for a number of indications for which PDEi’s are being pursued, 

including diseases of the cardiovascular, immune, metabolic and nervous systems as well as 

cancer (e.g.,115, 116, 284–289). Further, several studies in a variety of tissues have attributed 

the beneficial effects of PDEi’s to the activation of PKA, PKG and/or Epac (e.g.,
121, 290–292). As we learn more about the functional role and molecular interactions of each 

PDE splice variant, and how the function and/or localization of an individual variant may be 

altered in a given disease, it will become clearer how we can successfully target PDEs in a 

specific fashion to achieve efficacy while avoiding side effects. Only with this detailed level 

of knowledge will we be able to realize the full potential of PDEs as therapeutic targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1.

Physiological roles of PDEs.

Because PDEs are ubiquitously distributed and are the only enzymes to degrade 3’,5’-

cyclic nucleotides, this superfamily of enzymes plays a role in numerous biological 

processes in health and disease. That said, the biological roles played by a given PDE 

isoform are distinct due to its unique expression pattern at the level of tissue/organ, cell-

type and subcellular compartment (Table S1).

Most PDEs families are expressed in the nervous system where they regulate 

neurodevelopment and apoptosis, neuronal excitability, synaptic transmission and 

neuroplasticity70, 95. Every brain region expresses more than one PDE, but no two PDEs 

exhibit the exact same regional distribution70. For instance, PDE11A is the only PDE 

with brain expression restricted to the hippocampus. While PDE11A regulates how well 

an individual responds to the mood stabilizer lithium, it does not regulate basal anxiety- 

and depression-related behaviors174. In contrast, PDE4D is expressed in most brain 

regions and does appear to regulate basal depression-related behaviors (e.g.,293). PDE1B, 

PDE2A, PDE7B, PDE8B and PDE10A are enriched in the striatum relative to other brain 

regions70, and each has been implicated in regulating basic motor function; whereas, 

PDE5A and PDE9A that are enriched in the cerebellum have not (for review, see70, 294). 

In the retina, PDE6 function is central in mediating activation of the light response in rod 

and cones photoreceptors, and PDE6 mutations cause photoreceptor degeneration in 

retinitis pigmentosa224, 295.

In the cardiovascular system, PDE2, PDE3 and PDE4 isoforms control different 

subcellular pools of cyclic nucleotides to regulate important cardiac functions from 

myocardial contraction/relaxation to chronic cell growth and survival, and disruption of 

this PDE signaling has been associated with disease (for review, see1). For example, heart 

failure has been associated with reduced levels of PDE3A and PDE4D, which results in 

myocyte apoptosis and cardiac arrhythmias, respectively222, 236.

Many cancers have been associated with reduced levels of cAMP and/or cGMP 

secondary to an elevation in PDE activity. For example, chronic lymphocytic leukemia 

cells exhibit increased PDE7B expression; leukemia, colon cancer, and glioma cells 

overexpress one or more isoforms of PDE4; and colon cancer cells and adenocarcinmoas 

exhibit elevated PDE5 activity16, 296, 297.

Inflammation of numerous tissue types can be enhanced by a drop in cAMP levels that 

is caused by an increase in cAMP-PDE activity. For example, activity of PDE4—the 

predominant cAMP-hydrolyzing enzyme in the immune system—is elevated in the 

context of various inflammatory diseases, including psoriasis, COPD and asthma298, 299.

PDEs are also implicated in reproductive health. Several isoforms are present in 

granulosa cells as well as in oocytes in preovulatory follicles of mammalian ovary 

regulating the meiotic cell cycle300. Furthermore, many PDEs are expressed in cells of 

the spermatogenic pathway where they may regulate sperm motility301, 302, and PDE5 is 
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expressed in the contractile tissues of the male excurrent tract and accessory where its 

increased activity contributes to erectile dysfunction (e.g.,23).
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Box 2.

PDEs as disease biomarkers.

PDEs are also being explored as both diagnostic and patient-selection biomarkers. This 

super family of enzymes, like other genes, can be genotyped from blood samples to 

assess risk for specific diseases (e.g., high suicide risk,303; PDE8A, ). PDE mRNA and 

protein expression can be measured ex vivo in an isoform-specific manner from biopsied 

samples (e.g, excised tumors). Further, imaging compounds can be engineered with 

relative ease to selectively target a given PDE family/sub-family in vivo. Thus, PDEs can 

be explored as biomarkers in diseases where tissue is readily biopsied (e.g,. cancers) and 

diseases where tissue is not (e.g., diseases of the brain).

Ex vivo biomarkers.

Measurement of PDE4D7 is seen as a valuable biomarker for both pre-surgical and post-

surgical risk stratification to optimize treatment decisions303, 304 (Table 4). Studies in 

patient samples showed that PDE4D7 expression is initially upregulated with the 

development of primary tumours but then is downregulated when the disease progresses 

to an androgen-independent state (e.g., in castration-resistant tumours)305, 306, consistent 

with in vitro reports using prostate cancer cells190. The analysis of PDE4D7 expression 

in biopsy/surgery samples has been applied to develop InformMDx™ (licensed by 

MDxHealth from Philips), a tissue-based prognostic prostate cancer biomarker test to 

stratify patients by risk of disease progression and secondary tumors and, thus, inform 

post-biopsy/post-surgery treatment decisions (https://mdxhealth.com/press-release/

mdxhealth-launch-agreement-philips-prognostic-prostate-cancer-biomarker; accessed 

12/03/18).

PDE3A may also represent a useful cancer biomarker as it is greatly expressed in certain 

cancer cell types such as squamous carcinoma cell lines or gastrointestinal stromal 

tumour (GIST) cells307, 308. Furthermore, cancer cell lines with the highest PDE3A 

expression proved the most susceptible to the chemotherapeutic effects of PDE3i’s309. 

Thus, PDE3A expression could qualify as a biomarker for patient selection which 

improves patient care by reducing exposure to ineffective drugs and accelerates clinical 

development of novel therapeutic agents by testing them in targeted populations.

In vivo biomarkers.

Altered cyclic nucleotide signaling has been implicated in a variety of age-related 

diseases of the brain (c.f.,235). PDE10A is widely reported as downregulated in both the 

striatum and cortex of patients with Huntington’s disease, with the extent of PDE10A 

loss corresponding to the genetic burden associated with the disease28, 67, 310, 311. A loss 

of PDE10A expression has also been observed in the basal ganglia of patients with 

Parkinson’s disease312. Importantly, highly-specific PDE10A positron emission 

tomography (PET) tracers shows that PDE10A expression in HD patients continues to 

decline over years28. Thus, PET imaging of PDE10A could be a useful biomarker for 

assessing the initial diagnosis and subsequent progression of these neurodegenerative 

diseases313. PET ligands also exist for PDEs 2, 4, 5, and 7314.
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Figure 1. 11 families of PDEs degrade cyclic nucleotides.
Both of the canonical cyclic nucleotide signaling pathways (cAMP and cGMP) are 

composed of numerous molecules responsible for the synthesis, execution, and breakdown 

of their signals. cAMP is synthesized by transmembrane adenylyl cyclases (ACs) that are 

activated by Gαs and inhibited by Gαi315 as well as soluble ACs that are activated by 

bicarbonate and calcium316. cGMP is synthesized by particulate guanylyl cyclases (pGCs) 

that are activated by natriuretic peptides and soluble guanylyl cyclases (sGCs) that are 

activated by nitric oxide (NO)317. Both cAMP and cGMP activate cyclic nucleotide gated 

channels and allosterically modulate activity of select PDEs196. In contrast, only cGMP 

stimulates protein kinase G (PKG); whereas, cAMP activates protein kinase A (PKA), 

exchange protein activated by cAMP (Epac) and popeye domain-containing proteins 

(POPDC)318. Signaling through either the cAMP or cGMP pathways ultimately leads to 

phosphorylation of a myriad of downstream targets, including the transcription factor cAMP 

response element binding protein (CREB). In addition to cAMP and cGMP, several PDEs 

also hydrolyze the non-canonical cyclic nucleotides (not included) cUMP (PDE3A, PDE3B, 

PDE9A), cCMP (PDE7A), and c-di-GMPa (bacterial PDEs), albeit with much lower 

affinity2, 3.

Baillie et al. Page 42

Nat Rev Drug Discov. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The 21 phosphodiesterase (PDE) genes are grouped into families (name and substrate 
specificity listed to right of each illustration) based on the homology of their C-terminal catalytic 
domain (represented as a semi-ellipse).
Due to alternate promoters and splicing events, each PDE family has multiple isoforms that 

differ in terms of the length and complexity of their N-terminal regulatory domains (depicted 

with different shapes), which are thought to regulate subcellular trafficking, substrate 

affinity, and catalytic activity. The relative size and domain distances were drawn based on 

estimations from the Pfam/uniprot database, with the exception of the REC domain of PDE8 

(estimated from319) and the second CaM domain of PDE1 (estimated from302). Illustrations 

represent the longest isoform for gene A of each PDE family. CaM, calmodulin-binding 

domain; GAF, cGMP-binding PDEs Anabaena adenylyl cyclases and E. coli FhlA; TM, 

transmembrane domain of PDE3; UCR, upstream conserved region; REC, signal receiver 

domain; PAS, Per-Arnt-Sim domain.
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Figure 3. Mechanisms that activate phosphodiesterase (PDE) catalytic activity.
A) Calcium-calmodulin (CaM) binding to the CaM domains of PDE1 relieves N-terminal 

auto-inhibition of the catalytic site, thereby promoting enzymatic activity320. B) Cyclic 

nucleotides binding to GAF domains of dimeric PDEs (shown here: cGMP binding the 

GAF-B domain of PDE2) are thought to promote catalytic activity by inducing an outward 

rotation of the catalytic domains and, thus, enabling access to substrates321. C) 

Phosphorylation by PKA or PKG activates several PDEs196. In the case of PDE4D, 

phosphorylation of the UCR1 domain by PKA causes UCR1 to bind its own UCR2 domain 

instead of the catalytic site of the other monomer, thereby locking the enzyme in an active 

state. D) PDE activity can also be modulated by protein-protein binding interactions. One 

such well-characterized example involves membrane-bound PDE6, where the rhodopsin-

activated G-protein α-subunit transducin displaces the inhibitory PDE6γ C-termini from the 

catalytic sites on PDE6αβ, thus, promoting cGMP hydrolysis322.
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Figure 4. Methods for targeting phosphodiesterase signaling with increasing specificity.
Given the vast diversity of PDE isoforms, each with unique tissue expression profiles, 

subcellular compartmentalization, and protein-protein interactions, it is becoming clear that 

selective targeting of PDE function will be required to achieve efficacy while diminishing 

undesirable side effects. Small molecule inhibitors (e.g., cilomilast) are readily developed 

with family-specific selectivity (e.g., targeting PDE4 over PDE3); however, isoform 

specificity remains a challenge (e.g., cilomilast inhibits PDE4D with only 7-fold selectivity 

versus PDE4B)323. Conversely, gene therapy (i.e., expressing a recombinant construct to 

knock down or restore expression of a given PDE isoform) and dominant negative 
approaches (i.e., expressing a catalytically inactive PDE4D5 that displaces the endogenous 

isoform from its interacting partners) can target isoform subtypes exclusively (e.g., targeting 

PDE4D5 but not PDE4D3 nor PDE4B). That said, dominant negative approaches would 

influence signalling within all microdomains regulated by that isoform. The greatest 
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specificity can be achieved with peptide/small molecule binding disruptors or 

mutagenesis approaches (not shown) that are designed to prevent a specific PDE isoform 

from binding a specific partner, thus, altering signaling only within one specific complex. As 

shown here, a disruptor peptide that specifically prevents the interaction between PDE4D5 

and β-arrestin would lead to the recruitment of EPAC1 to β2 adrenergic receptors (βAR), but 

would leave PDE4D5 regulation of heat shock protein 20 (HSP20) and RACK1 complexes 

intact236, 324, 325.
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Figure 5. Phosphodiesterase (PDE) regulation by post-translation modification (PTM).
Cyclic nucleotide dynamics can be modulated by the addition of different functional groups 

to PDEs. Phosphorylation is a very common mechanism to control PDE activity as 

depicted by the action of PKA on PDE4D3. Both enzymatic activity and binding affinity of 

PDE4D3 for mAKAP are increased by PKA phosphorylation, allowing a faster signal 

termination in myocytes263. Palmitoylation of PDE10A2 in its N-terminal region 

translocates the enzyme to the plasma membrane, although its phosphorylation by PKA can 

prevent the action of the palmitoyl acyltransferase (zDHHC)155. Ubiquitination can 

influence PDE function by controling stability. For example, the E3 ubiquitin ligase Smurf2 
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targets PDE4B for degradation which leads to the attenuation of liver fibrosis267. S-
nitrosylation can also tag PDEs for destruction. Thus, the covalent incorporation of nitric 

oxide (NO) to the GAF-A domain of a PKG-phosphorylated and active PDE5, directs the 

enzyme to the proteasome272. Hydroxylation of proline residues has emerged as another 

PTM to stimulate turnover of PDEs. Prolyl hydroxylase domain protein 2 (PHD2) action on 

PDE4D increases its recognition by E3 ligase complexes in cardiomyocytes274. Finally, 

SUMOylation can intensify the activity of PDE4A and PDE4D. The SUMO transfer from 

the E2 conjugase UBC9–E3 enzyme PIASy complex to the PDEs, enhances their activation 

by PKA phosphorylation and represses their inhibition induced by ERK activity269.
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Table 1.

Marketed PDE inhibitors

Compound
(popular trade names) Indication

Approval date
(USA, Europe and Asia 

markets)
Side effects

Non-selective

Theophylline
[inhibits PDE3, 4, 7, 

adenosine 2 receptors]
(Theolair, Slo-Bid, Theo 24)

Asthma and 
Bronchoconstriction

FDA (1937), Europe (e.g. Spain, 
1922), Asia (e.g. India, 1969)

Nausea, vomiting, diarrhea, headache, 
irritability, flushing and palpitations.

Aminophylline
[inhibits PDE3, 4, 7, 
adenosine 2 receptor]

(Phyllocontin)

Asthma and 
Bronchoconstriction

FDA (1940), Europe (e.g. 
Hungary, 1935), Asia (e.g. India, 
1950)

Stomach pain, diarrhea, headache, 
irritability, restlessness and insomnia

Oxtriphylline
[inhibits PDE3, 4, 7, 

adenosine 2 receptors]
(Choledyl)

Asthma and 
Bronchoconstriction

FDA (1981), Europe (only in 
Greece, 2003)

Stomach pain, nausea, vomiting, 
diarrhea, headache, irritability, 
restlessness, insomnia flushing, and 
increased urination

Dyphylline
[inhibits PDE3, 4, 7, 

adenosine 2 receptors]
(Dilor, Lufyllin)

Asthma and 
Bronchoconstriction

FDA (1951), some countries in 
Europe (e.g. Spain 1968) and Asia 
(e.g. Japan, 1952)

Stomach pain, nausea, vomiting, 
diarrhea, headache, irritability, 
restlessness, insomnia flushing, and 
increased urination

Pentoxifylline
[inhibits PDE4, 5, adenosine 

2 receptors]
(Trental, Pentoxil)

Intermittent Claudication
FDA (1984), some countries in 
Europe (e.g. Spain, 1978) and 
Asia (e.g. India, 1975)

Belching, bloating, upset stomach, 
nausea, vomiting, indigestion, 
dizziness, and flushing, headache

Ibudilast
[highest affinity for 
PDE10A, 4, 11, 3]

(Ketas, Pinatos, Eyevinal)

Asthma and dizziness related 
to cerebral infarction

Asia (Japan, 1989; South Korea, 
1998; China, 2003) Nausea, diarrhea and abdominal pain, 

depression, rash and fatigue
Allergic conjunctivitis Japan (2000)

Tofisopam
[highest affinity for PDE4, 

PDE10, 3, 2]
(Emandaxin, Grandaxin)

Anxiety
Some countries in Europe (e.g. 
Hungary, 1974) and Asia (e.g. 
Japan, 1985)

Nausea, stomach discomfort, dry 
mouth, skin rash, insomnia, vomiting 
and drowsiness

Dipyridamole
[highest affinity for PDE8, 1, 

3, 2 adenosine deaminase 
and ENT1]
(Persantine)

Post-operative 
thromboembolism

FDA (1961), some countries in 
Europe (e.g. Spain 1986) and Asia 
(e.g. India, 1964)

Headache, dizziness, nausea, diarrhea, 
muscle pain and vomiting

PDE1

Vinpocetine
(Cavinton)

Cerebral vascular disorders 
and memory impairment

Some countries in Europe (e.g. 
Spain, 1997) and Asia (e.g. India 
2002). USA as an over-the-
counter dietary supplement

Flushing, rashes, and minor 
gastrointestinal disturbances

PDE3

Cilostazol
(Pletal, Ekistol) Intermittent Claudication

FDA (1999), some countries in 
Europe (e.g. UK, 2000) and Asia 
(e.g. South Korea, 1990)

Headache, palpitations, diarrhea, 
dizziness, nasal irritation and 
pharyngitis

Milrinone
(Primacor, Corotrope) Congestive Heart Failure FDA (1987), EMA (2016), Asia 

(e.g. Japan, 1996)

Ventricular/supraventricular 
arrhythmias, hypotension and 
headache

Amrinone 
(Inamrinone, Inocor) Congestive heart failure FDA (1984), some countries in 

Asia (e.g. India, 1988)
Thrombocytopenia, nausea, diarrhea, 
hepatotoxicity, arrhythmias and fever

Enoximone
(Perfan) Congestive heart failure Some countries in Europe (e.g. 

France, 1987)

Headache, diarrhoea, insomnia, 
hypotension, vomiting, nausea, 
tachycardia and arrhythmias
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Compound
(popular trade names) Indication

Approval date
(USA, Europe and Asia 

markets)
Side effects

Olprinone
(Coretec) Heart failure Japan (1996) Cardiac dysrhythmias and 

thrombocytopenia

Pimobendan 
(Acardi) Heart failure Japan (1994) Headache, palpitation, nausea and 

ventricular arrhythmias

Anagrelide
[also inhibits phospholipase 

A2]
(Agrylin, Xagrid)

Thrombocythemia
FDA (1997), EMA (2004), some 
countries in Asia (e.g. South 
Korea, 2004)

Headache, diarrhea, unusual weakness/
fatigue, hair loss, nausea and dizziness

PDE4

Roflumilast
(Daliresp, Daxas)

Chronic Obstructive 
Pulmonary Disease (COPD)

FDA (2011), EMA (2010), some 
countries in Asia (e.g. India, 2014)

Diarrhea, weight loss, nausea, 
headache, insomnia, decreased appetite

Apremilast
(Otezla)

Psoriasis and psoriatic 
disorders

FDA (2014), EMA (2014), some 
countries in Asia (e.g. Japan, 
2016)

Diarrhea and vomiting, weight loss, 
mood changes

Crisaborole
(Eucrisa)

Moderate Atopic dermatitis 
(patients >2 years old) FDA (2016) Hypersensitivity reactions of the skin

Drotaverine
[also inhibits L-type voltage-

operated calcium channel]
(No-Spa, Doverin)

Functional bowel disorders 
and alleviating pain caused 
by smooth muscle spasm

Some countries in Europe (e.g. 
Hungary, 1963) and Asia (e.g. 
China, 1999)

Fainting, nausea, vomiting and dry 
mouth

PDE5

Sildenafil
(Viagra, Revatio)

Erectile Dysfunction FDA (1998), EMA (1998), Asia 
(e.g. Japan, 1999)

Headache, flushing, dyspepsia, nasal 
congestion, and impaired vision, 
including photophobia and blurred 
vision

Pulmonary arterial 
hypertension (PAH)

FDA (2014), EMA (2005), Asia 
(e.g. Japan, 2008)

Vardenafil
(Levitra, Staxyn, Vivanza) Erectile Dysfunction

FDA (2003), EMA (2003), some 
countries in Asia (e.g. Japan, 
2004)

Headache, flushing, and dyspepsia

Tadalafil
(Cialis, Adcirca)

Erectile Dysfunction, benign 
prostatic hyperplasia

FDA (2003), EMA (2002), some 
countries in Asia (e.g. India, 2003) Headache, dyspepsia, back pain and 

myalgia
PAH FDA (2009), EMA (2008), some 

countries in Asia (e.g. India, 2009)

Avanafil
(Stendra, Spedra) Erectile Dysfunction

FDA (2012), EMA (2013), some 
countries in Asia (e.g. South 
Korea, 2011)

Headache, flushing, and 
nasopharyngitis

Udenafil
(Zydena)

Erectile dysfunction and 
hypertension

Some countries in Asia (e.g. South 
Korea, 2005)

Headache, dizziness, reddening, nasal 
congestion, dyspepsia and impaired 
vision

Mirodenafil
(Mvix) Erectile Dysfunction South Korea (2007) Flushing, headache, nasal congestion, 

eye redness, nausea and dizziness 

PDE10A

Papaverine
(Pavabid, Pavagen)

Visceral spasm and 
vasospasm and erectile 
dysfunction

FDA, Europe (e.g. Hungary, 
1933), Asia (e.g. Japan, 1953)

Ventricular tachycardia, diarrhea, 
somnolence, vertigo, flushing and 
headache

Source: Drugs.com, drugcentral.org, drugbank.ca, kegg.jp, and approval dates by FDA (Food and Drug Administration), EMA (European 
Medicines Agency), ANSM (French Agency for the Safety of Health Products), MHRA (Medicines and Healthcare products Regulatory Agency), 
AEMPS (Spanish Agency of Medicines and Medical Products), EOF (Greek National Organization for Medicines), OGYÉI (National Institute of 
Pharmacy and Nutrition), PMDA (Pharmaceuticals and Medical Devices Agency), CDSCO (Central Drugs Standard Control Organisation), 
MFDS (Ministry of Food and Drug Safety) and CFDA (China Food and Drug Administration).
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Table 2.

Clinical trials involving PDE inhibitors that failed to reach the market for the described indication

Compound / Manufacturer Indication Phase / Status Clinical 
trial ID Cause of failure

PDE2

PF-05180999 / Pfizer

Healthy volunteers 
(schizophrenia) Phase I / Completed 2011

Healthy volunteers Phase I / Completed 2012

Migraine Phase I / Terminated early 2014 Safety concerns

Migraine Phase I / Withdrawn prior to 
enrollment 2014

PDE2/5

Exisulind (Aptosyn) / Cell Pathways

Breast cancer neoplasms 
and metastases Phase I/II / Completed 2003

Breast cancer Phase II / Completed 2008

Non-small cell lung cancer Phase I/II/III / Completed 
2003–2007 , ,

Small cell lung cancer Phase II / Completed 2008 326 Lack of efficacy

Prostate cancer and 
prostatic neoplasms

Phase II / Completed 2006–
2011 , , , , 327, 328 Safety and efficacy 

deficiencies

Melanoma Phase II / Completed 2011 329 Lack of efficacy

PDE3

Cilastozol (Pletal) / Otsuka 
Pharmaceuticals

Type 2 diabetes 
polyneuropathy Phase IV / Completed 2009 48 Lack of efficacy

PDE4

ASP9831 / Astellas Pharma Non-alcoholic 
steatohepatitis (NASH) Phase II / Completed 2010 50 Lack of efficacy

PDE5

Sildenafil (Viagra or Revatio) or 
Tadalafil (Cialis or Adcirca) / Pfizer 

and Eli Lilly, respectively

Duchenne or Becker 
Muscular Dystrophy

Early Phase I/Phase I / 
Completed 2013 , 57

Phase II/III / Terminated early 
2014–2017 , 330–332 Lack of efficacy

Phase IV / Completed 2012 58

Impaired glucose tolerance Phase IV / Terminated early 
2016

333 Safety concerns

Vardenafil (Levitra) / Bayer/GSK Type 2 diabetes Phase II / Completed 2014 149 Lack of efficacy

PDE9

BI 409306 / Boehringer Ingelheim AD Phase II / Completed 2017 , 63, 334 Lack of efficacy

PF-04447943 / Pfizer AD Phase II / Completed 2010 59 Lack of efficacy

PDE10

PF-02545920 (a.k.a. MP-10) / Pfizer

Schizophrenia Phase I / Completed 2007

Schizophrenia Phase II / Terminated early 
2008 Safety concerns

Healthy volunteers 
(glucose metabolism) Phase I / Completed 2011
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Compound / Manufacturer Indication Phase / Status Clinical 
trial ID Cause of failure

Schizophrenia Phase II / Completed 2011 66, 335 Lack of efficacy

Schizophrenia Phase I / Terminated early 2012 Results from other 
clinical study

Schizophrenia Phase I / Completed 2013

Schizophrenia Phase II / Terminated early 
2014

336 Lack of efficacy

Healthy male volunteers 
(PET imaging) Phase I / Completed 2014 337

Huntington’s Disease Phase II / Completed 2015–
2016 , Lack of efficacy

Huntington’s Disease Phase II / Terminated early 
2017 Results from

OMS643762 / Omeros

Schizophrenia Phase II / Completed 2014

Huntington’s Disease Phase II / Terminated early 
2016 Results from

PBF-999 / Palobiofarma

Huntington’s Disease Phase I / Completed 2015

Huntington’s Disease Phase I / Terminated early 2016
Change in 
therapeutic 

indication (cancer)

Reported on Clinicaltrials.gov (accessed 05/28/19). Information is included for all clinical trials involving molecules whose pursuit was terminated 
after April 2009.
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Table 3.

Selected clinical trials involving PDE inhibitors pursued for new indications

Compound / Manufacturer Indication Phase / Status Clinical trial ID (Refs)

PDE3, 4, 10, 11

Ibudilast (AV-411, MN-166) / 
MediciNova

Opioid withdrawal Phase II / Completed 2012–
2017 ,

Methamphetamine-dependence Phase I / Completed 2013 77, 78

Alcohol use disorder Phase I / Completed 2015 80

Alcohol use disorder Phase II / Recruiting

Opioid abuse Phase II / Completed 2017 79, 338

Amyotrophic lateral sclerosis (ALS) 
(Biomarker study) Phase II / Active, not recruiting

PDE1

ITI-214 / Intracellular Therapies

Schizophrenia Phase I / Terminated early 2014

PD Phase I/II / Completed 2018

Healthy volunteers (CNS 
engagement) Phase I / Recruiting

Systolic heart failure Phase I/II / Recruiting

Vinpocetine / Rxmidas 
Pharmaceuticals/ Nootrobox

Ischemic stroke Phase II/III / Completed 2013–
2015 , 339

Cognition enhancement Not Applicable / Completed 
2017

PDE2

TAK-915 / Takeda

Healthy volunteers (PET imaging, 
schizophrenia) Phase I / Completed 2016

Healthy volunteers Phase I / Completed 2016

PDE3

Cilostazol (Pletal) / Otsuka 
Pharmaceuticals

Type 2 diabetic atherosclerosis Phase IV / Completed 2010–
2012 , 340

Chronic tinnitus Not applicable / Completed 
2013

94

Alzheimer’s Disease Phase IV / Completed 2013 341

Atherosclerotic events in type 2 
diabetes Phase IV / Unknown

Mild Cognitive Impairment Not applicable / Completed 
2015

Ischemic events in type 2 diabetic 
artery obstruction Phase IV / Recruiting

Antiplatelet aggregation in type 2 
diabetes Phase IV / Active, not recruiting

Antiplatelet aggregation in type 2 
diabetes Phase IV / Recruiting

Antiplatelet aggregation in type 2 
diabetes Phase IV / Unknown

PDE4

Apremilast (Otezla) / Celgene Corp. Vitiligo Phase II / Active, not recruiting ,
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Compound / Manufacturer Indication Phase / Status Clinical trial ID (Refs)

Lichen Planus of Vulva Phase II / Not yet recruiting ,

BPN14770 / Tetra Discovery

Alzheimer’s Disease Phase I / Completed 2016–2017 ,

Alzheimer’s Disease Phase II / Now recruiting

Fragile X Syndrome (FXS) Phase II / Recruiting

Crisaborole (Eucrisa) / Pfizer Morphea Phase II / Recruiting

GSK356278/ GlaxoSmithKline Huntington’s Disease Phase I / Completed
2012 ,

Roflumilast (Daxas or Daliresp) / 
Astrazeneca

Polycystic Ovary Syndrome Phase IV / Completed 2014 , 108, 109

Cognitive deficits in schizophrenia Phase II / Completed 2015 112

Cognition (Dementia) Phase II / Completed 2013–
2015

, 2013–001223–39 
(EudraCT)111, 113, 342

Insulin and Blood Sugar Levels in 
Prediabetic Overweight and Obese 

Individuals
Phase I/II / Completed 2017 343

HT-0712 / Dart Neuroscience Age-associated memory impairment 
(AAMI) Phase II / Completed 2015

N/A McCune-Albright Syndrome (PET 
imaging) Phase I/II / Recruiting

TAK-648 / Takeda Type 2 diabetes Phase I / Completed 2015 , ,

Zembrin / ND Aged Individuals Phase I / Completed 2012 39

PDE5

ND Contrast Media-induced 
Nephropathy (CMN) Not Applicable / Unknown

ND Diabetic nephropathy Not Applicable / Unknown

Sildenafil (Viagra or Revatio) / Pfizer

Diabetic cardiomyopathy (type 2 
diabetes) Phase IV / Completed 2009 145–148

Metabolic syndrome (Skeletal 
muscle insulin signaling) Phase IV / Completed 2016

Urolithiasis/urinary stones Phase IV / Active, not recruiting

Migraine aura Early Phase I / Recruiting

Solid tumors Phase I / Active, not recruiting 151

mTBI or concussion Phase I / Recruiting ,

Sildenafil cream (SST-6007) / 
Strategic science and technologies/

Dare
Sexual arousal disorder Phase II / Completed 2017

Tadalafil (Cialis or Adcirca) / Eli Lilly

Type 2 Diabetes (Postprandial 
Hyperglycemia) Phase I / Terminated early 2011

Head and neck squamous cell 
carcinoma

Phase II / Completed 2012–
2016

153

Head and neck squamous cell 
carcinoma Phase II / Active, not recruiting

Obesity Phase IV / Completed 2015 144

Insulin secretion/ sensitivity in 
obesity Phase IV / Completed 2015 344

Aortic stenosis (AS) left ventricular 
remodeling/hypertrophy

Phase IV / Terminated early 
2017
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Compound / Manufacturer Indication Phase / Status Clinical trial ID (Refs)

Multiple myeloma (MM) Phase II / Terminated early 
2017

Insulin Resistance in Type 2 
Diabetes Phase II / Recruiting

Diabetic cardiomyopathy (DC) Phase IV / Recruiting

Endocrine cardiomyopathy in 
Cushing Syndrome (CS) Phase II / Recruiting 345

Access sheath deployment 
(Nephrolithiasis/kidney stones) Phase IV / Enrolling 2019

Lower urinary tract symptoms 
(prostatic hyperplasia) Phase IV / Recruiting

Obesity-related cardiometabolic 
dysfunction Phase II / Recruiting

Anti-tumor Mucin 1 vaccine efficacy 
in head and neck squamous cell 

carcinoma (HNSCC)
Phase I/II / Recruiting

Small Vessel Disease Phase II / Active, not recruiting 346

PDE9

PF-04447943 / Pfizer Stable sickle cell disease Phase I / Completed 2016 347

BI 409306 / Boehringer Ingelheim

Healthy volunteers Phase I / Completed 2011–2018 , , , , , , , , 61, 348, 349

Alzheimer’s disease, schizophrenia Phase I / Completed 2017

Schizophrenia Phase I / Completed 2013–2016 , 60, 62

Schizophrenia or attenuated 
psychosis syndrome Phase II / Recruiting ,

Drug-drug interactions Phase I / Completed 2016–2017 , , , ,

PDE10

 [18F]MNI-659 Huntington’s Disease (PET imaging) Early Phase I / Completed 
2016/2017

, , 2012–003808–13 
(EudraCT)350

PBF-999 / Palobiofarma Cancer Phase I / Recruiting

EVP-6308 (now FRM-6308) / En 
Vivo Pharmaceuticals (now Forum 

Pharmaceuticals)
Schizophrenia Phase I / Completed 2014 ,

RO5545965 / Hoffmann-La Roche Schizophrenia Phase I / Completed 2013–2017 , , , ,

TAK-063 / Takeda
Schizophrenia Phase I / Completed 2014 , , 163

Schizophrenia Phase II / Completed 2016 351

Reported on Clinicaltrials.gov (accessed 05/28/19) with an end date after April 2009

PK/PD, Pharmacokinetics and Pharmacodynamics; ND, not described
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Table 4.

Selected patents involving PDEs published in the last 5 years.

Patent #
(Priority date d/m/y) Subject Assignee Author

PDE3

US2019046528
(08/08/2017)

Method of preventing hair loss or promoting hair 
growth by using PDE3 inhibitor Seoul Nat Univ Hospital Kwon O, Choi HI, Jo SJ, 

Kim KH

WO2017186103
(26/04/2016)

Applications of PDE3A in determination of tumor 
treatment effect of Anagrelide

Shanghai Inst Materia 
Medica Cas Yu Q, Liu J

PDE4

CN108904493A
(12/08/2018)

PDE4 inhibitor and purpose for preparing novel anti-
inflammatory drugs Hu Y Hu Y

WO2018167142
(16/03/2017)

Treatment of idiopathic pulmonary fibrosis [with a 
PDE4 inhibitor] Takeda GMBH Hanauer G, Nikam S, 

Hazama M

WO2017133713
(05/02/2016)

Application of PDE4 inhibitor ZL-N-91 in preparation 
of medications for lung cancer proliferation and 
metastasis

Guangzhou Sinogen 
Biomedical Tech Ltd

Zhao AZ, Gong S, Lin Y, Li 
F, Li X

WO2018060704
(28/09/2016)

Compounds and their use as PDE4 activators for the 
treatment of disorders requiring a reduction of cAMP Mironid Ltd Adam JM, Adams DR

WO2018037109
(26/08/2016)

Treatment of nonalcoholic fatty liver disease with 
PDE4 inhibitors Takeda GMBH Hanauer G, Nagabukuro H, 

Amano Y

CN107412214A
(31/07/2017)

Application of PDE4 Inhibitor (FCPR16) for the 
treatment of PD

Guangzhou 
Lanssonpharm Jianzhi 
Tech Co Ltd

Xu L

US2017051291
(28/12/2005)

RNAi-mediated inhibition of PDE4 for treatment of 
cAMP-related ocular disorders

Arrowhead 
Pharmaceuticals Inc

Yanni JM, Chatterton JE, 
Gamache DA, Miller ST

WO2017017165
(29/07/2015)

PDE4 inhibitor for the treatment of diabetic 
nephropathy Takeda GMBH Hanauer G, Vollert S, 

Hazama M, Matsuo T

WO2016075543
(13/11/2014)

Treatment of multiple sclerosis with the combination 
of laquinimod and a PDE4 inhibitor

Teva Pharma, Piryatinsky 
V, Kaye J Piryatinsky V, Kaye J

WO2015022417
(16/08/2013)

Treatment of cognitive impairment with the 
combination of a PDE4 inhibitor and an 
acetylcholinesterase inhibitor

Univ Maastricht
Yamada T, Prickaerts J, Van 
Duinen M, Sambeth A, 
Blokland A

PDE5

US2018221373
(16/09/2015) Method of treating insomnia with PDE5 inhibitors Rosenberg LI Rosenberg LI

CA2975049
(10/08/2016)

PDE inhibitors (sildenafil) to repair brain and/or 
retinal injury in human newborns Wintermark P Wintermark P

CN107163052A
(18/04/2017)

Immunodetection method for various PDE5 inhibitor 
drugs

Univ South China 
Agricult

Shen Y, Hua Y, Xu Z, Yang 
J, Wang H, Sun Y, Lei H

WO2014088326
(04/12/2012)

Composition comprising PDE5 inhibitor for inhibiting 
apoptosis of nerve cells

Aribio Inc, Sk Chemicals 
Co Ltd Kim MH, Choung JJ, Ku SK

PDE6

JP2019047763A
(12/09/2017)

Rhodopsin PDE as an optogenetic tool for light control 
of intracellular cyclic nucleotides

Nagoya Institute Of 
Technology

Kandori H, Tsunoda SP, 
Yoshida K

CN107287239
(11/04/2016)

Gene therapy vector and medicine (adenovirus 
encoding PDE6B) for retinal pigment degeneration

Shenyang Fuming 
Biological Tech Co Ltd Pang J

PDE7

WO2018055140
(23/09/2016)

T cells with increased immunosuppression resistance 
[expressing PDE4C or 7A for the treatment of cancer] Adaptimmune Ltd Laugel B, Skibbe K
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Patent #
(Priority date d/m/y) Subject Assignee Author

PDE9

WO2017070293
(20/10/2015)

PDE9 inhibitor and levodopa therapy for treating PD 
or Parkinsonism

Ironwood Pharmaceuticals 
Inc Leventhal L, Townsend TM

PDE10

WO2019067955
(29/07/2017)

Compositions and methods for regulating let-7 
microRNA targets, such as PDE10A, for treatment of 
cancers

Univ California Roos M, Lowry W

Source: Espacenet and Google patents (accessed 05/28/19)
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