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Abstract

Introduction: Cone-beam CT (CBCT) image quality is important for its quantitative analysis in 

adaptive radiation therapy. However, due to severe artifacts, the CBCTs are primarily used for 

verifying patient setup only so far. We have developed a learning-based image quality 

improvement method which could provide CBCTs with image quality comparable to planning 

CTs (pCTs). The accuracy of dose calculations based on these CBCTs is unknown. In this study, 

we aim to investigate the dosimetric accuracy of our corrected CBCT (CCBCT) in brain 

stereotactic radiosurgery (SRS) and pelvic radiotherapy.

Materials and Methods: We retrospectively investigated a total of 32 treatment plans from 22 

patients, each of whom with both original treatment pCTs and CBCTs acquired during treatment 

setup. The CCBCT and original CBCT (OCBCT) were registered to the pCT for generating 

CCBCT-based and OCBCT-based treatment plans. The original pCT-based plans served as ground 

truth. Clinically-relevant dose volume histogram (DVH) metrics were extracted from the ground 

truth, OCBCT-based and CCBCT-based plans for comparison. Gamma analysis was also 

performed to compare the absorbed dose distributions between the pCT-based and OCBCT/

CCBCT-based plans of each patient.

Results: CCBCTs demonstrated better image contrast and more accurate HU ranges when 

compared side-by-side with OCBCTs. For pelvic radiotherapy plans, the mean dose error in DVH 

metrics for PTV, bladder and rectum was significantly reduced, from 1% to 0.3%, after CBCT 

correction. The gamma analysis showed the average pass rate increased from 94.5% before 

correction to 99.0% after correction. For brain SRS treatment plans, both original and corrected 

CBCT images were accurate enough for dose calculation, though CCBCT featured higher image 

quality.
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Conclusion: CCBCTs can provide a level of dose accuracy comparable to traditional pCTs for 

brain and prostate radiotherapy planning and the correction method proposed here can be useful in 

CBCT-guided adaptive radiotherapy.
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INTRODUCTION

Cone-beam computed tomography (CBCT) has been shown a promising imaging modality 

in radiation therapy, especially for adaptive radiation therapy. However, its routine use has 

been hindered by the artifacts in current clinical CBCT images, since those artifacts reduce 

its accuracy significantly. Our machine learning-based CBCT correction method has been 

able to generate CBCT images with image quality that is comparable to that of planning CTs 

(pCTs),1 but dose calculation accuracy using these corrected CBCTs has not been 

characterized. In this study, we aim to quantify the accuracy of dose calculation on corrected 

CBCT images generated by our machine learning-based method applied for brain 

stereotactic radiosurgery (SRS) and prostate radiotherapy cases.

CBCT has been increasingly utilized in image-guided radiation therapy to improve treatment 

performance. CBCTs are acquired at the time of treatment delivery and provide detailed 

anatomic information in the treatment position. In clinical practice, CBCT is primarily used 

to determine the degree of patient setup error and inter-fraction motion by comparing the 

displacement of anatomic landmarks from the treatment planning CT images.2 More 

demanding applications of CBCT have been proposed with the increasing use of adaptive 

radiation therapy, such as daily estimation of delivered dose based on CBCT images, and 

automatic contouring on CBCTs based on a deformable image registration (DIR) with the 

pCT.3,4

However, such potential uses of CBCT have been limited due in part to image quality that 

can be significantly degraded when compared to pCTs. One major source of degradation is 

the streaking and cupping artifacts caused mainly by scatter contamination, as well as by 

other physical non-idealities including beam-hardening effect, photon starvation, and 

detector lag, etc.5,6 These artifacts lead to significant CT number errors, which complicates 

the calibration process of CBCT Hounsfield Unit (HU) to electron density, an essential step 

in dose calculation.6 The degraded image contrast and the suppression of bone CT number 

can also cause large errors in DIR for contour propagation from pCT to CBCT.7 Thus, the 

severe distortion caused by scatter is considered one of the fundamental limitations of 

CBCT, and prevents CBCT from quantitative usage in radiation therapy.

Many correction methods for CBCT shading artifacts have been proposed in the literature, 

and in general these methods fall into two major categories. The first are hardware-based 

pre-processing methods, including airgap,8 bowtie filter9 and anti-scatter grid methods.10 By 

preventing part of the scattered photons from reaching the detector, these add-on devices 

successfully mitigate severe shading artifacts. To maintain the signal-to-noise ratio, the 

correction efficacy is limited by an associated increase in patient imaging dose because 
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primary photons are attenuated by these devices as well as scattered photons. The second are 

post-processing techniques which correct image artifacts by estimating the scatter in the 

projection domain or the image domain. Typical methods of this type include analytical 

modeling,11 Monte Carlo simulation,12,13 measurement-based methods,14 and modulation 

methods.15 For example, high quality pCT images can be used as prior information to 

enhance the CBCT images of the same patient in either image domain6,16–18 or projection 

domain19,20. Instead of using such prior images as external helpers, other methods mitigate 

the shading artifacts by estimating the low-frequency shading field from the images, which 

is achieved by sophisticated image segmentation methods21–23 or ring-correction methods24. 

These methods enhance the scatter correction performance, while their implementations 

entail combined considerations of computational complexity, imaging dose, scan time, 

practicality, and efficacy.

In current commercial CBCT imaging systems, effective shading correction has been 

implemented by a combination of the above methods. For example, on the Varian TrueBeam 

On-Board Imager (OBI) CBCT system, a 10:1 anti-scatter grid is mounted on the flat-panel 

detector, and a model-based adaptive-scatter-kernel-superposition (ASKS) method is 

implemented in the image reconstruction process. However, residual artifacts are still 

commonly observed in clinical CBCT images. Moreover, most of the existing methods 

cannot restore the true Hounsfield Unit (HU) value in CBCT images; i.e., the pixel values in 

CBCT images are not calibrated identically to pCT images in the treatment planning system 

for dose calculation.

Recently, we developed a novel machine-learning based method to further improve CBCT 

image quality such that they are comparable to that of pCTs for potential application to 

CBCT-guided adaptive radiotherapy.1,25,26 By building a set of paired training images of 

pCT and CBCT and using the pCT as the learning target, the image quality of CBCT was 

improved significantly through a learning process. Compared with existing methods, our 

method not only mitigates non-uniform and streaking artifacts, but also restores true HU 

values on CBCT images such that the CBCT images after correction share the same 

calibration as pCTs for dose calculation. We evaluated our method with respect to image 

quality1. Our method has correction accuracy with mean absolute error of 12.81 ± 2.04 HU.

In this paper, we aim to study the dose calculation accuracy of the corrected CBCT images 

using our previously developed machine-learning-based method. We retrospectively 

investigated patient data of brain SRS and prostate radiotherapy treatments with both pCTs 

and CBCT images acquired during treatment. The dose maps of the same treatment plans 

were calculated on original pCT simulation images as ground truth, as well as on original 

(i.e., uncorrected) CBCT (OCBCT) and corrected CBCT (CBCCT) images. Clinically 

relevant DVH metrics and gamma analysis were extracted from both the ground truth and 

OCBCT/PCBCT results for comparison and evaluation on a total of 32 treatment plans from 

22 patients.
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METHODS AND MATERIALS

In this retrospective study, we analyzed the dataset of 12 patients with intracranial 

malignancies receiving frameless SRS and 10 patients with pelvic malignancies. These 

patients were randomly selected; each patient had at least one plan with both CT simulation 

and CBCT images acquired during the treatment. Some treatment plans included multiple 

target sites, while other some patients had multiple treatment plans each with its own 

isocenter. Our study was performed on individual plans, and a total of 16 brain SRS plans 

and 16 pelvic radiation therapy plans were analyzed. The specific location of the lesion 

varied from patient to patient.

The CT images were acquired using a Siemens SOMATOM Definition AS CT scanner at 

120 kVp with the patient in treatment position. The image spacing was 0.586 mm × 0.586 

mm × 0.6 mm and 0.98 mm × 0.98 mm × 2.0 mm for brain and pelvis patients, respectively. 

The CBCT images were acquired using the Varian On-Board Imager CBCT system. The 

image spacing was 1.17 mm × 1.17 mm × 2.5 mm for brain patients on Novalis Tx, and 

0.908 mm × 0.908 mm × 2.0 mm for pelvis patients on TrueBeam. Physicians defined the 

target volume and organs-at-risk (OARs) on CT images, prescribed dose by protocols and 

registered the pCT and CBCT image datasets before treatment started. Treatment plans were 

created by dosimetrists based on pCT images using either Volumetric Arc Therapy (VMAT) 

or Dynamic Conformal Arc (DCA) technique for SRS patients, and VMAT plans for pelvis 

radiotherapy, using Eclipse 13.6 (Varian Medical Systems, Palo Alto, CA).

We have previously developed a learning-based method to improve the image quality of 

CBCTs.1 The OCBCT images of each patient were imported into a well-trained machine 

learning model to generate corresponding CCBCT images. Details in methods and 

implementation on this machine learning model developed by our group have been reported 

in our previous publication,1 and we would like to briefly introduce it here.

Suppose we have a set of pairs of CBCT and CT training images. For each pair, CT image is 

used as the regression target of CBCT image to improve the CBCT quality. CBCT and CT 

are preprocessed by removing noise and uninformative regions. The intra-subject 

registration is performed to align each pair of CT and CBCT images of the same patient, and 

a inter-patient registration is used to roughly map all patients onto a common space. We then 

register all the training data to the new CBCT image. In the training stage, patch-wise multi-

level features, i.e., DCT27, LBP28, and pairwise voxel difference with multi-scale 

sensitivity29, i.e., original and down-sampled image with three down sampling factors (0.75, 

0.5 and 0.25), are extracted from training CBCT. Secondly, fuzzy c-means labeling30 is 

utilized to generate the corresponding CT label automatically. Combining the extracted 

features with CT labels, we perform a feature selection using logistic LASSO algorithm31–34 

to identify the most salient and informative features with patient-specific information. 

Thirdly, we utilize the selected features as well as the corresponding CT targets to train a 

random forest using alternating regression forest (ARF)35. During the training, we apply 

auto-context model (ACM)36 to incorporate the appearance information from original CBCT 

with the context information from the previously predicted CT for iterative refinement. In 

the test stage, anatomical features from the new CBCT are extracted and fed into the well-

Wang et al. Page 4

Med Dosim. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



trained random forest for the prediction of an improved CBCT. Finally, we use all predicted 

patches together to reconstruct the final high-quality CBCT image prediction. Fig.1 shows 

the brief workflow of our prediction method.

Alternating Regression Forest (ARF) is used in this study in training the regression model. 

Recent studies showed the efficacy of random forest in tackling medical image 

processing25,29,32. Classical random forest trains a bag of binary decision trees each of 

which is provided with a random subset of training data and trained independently from the 

others. The major drawback of classical random forest is its binary decision tree is only 

decided locally on the node level how the data is further split, without considering the state 

of the whole regressor. In this work, we propose ARF as a novel splitting procedure 

considering both the global and local optimization. The general learning objective can be 

written as a greedy stage-wise optimization:

arg min
ϕd

∑
xi, yi

L yi, Rd − 1 xi, ϕ + rd xi, ϕd (1)

where L(·) is a differentiable loss function, Rd−1(xi, ϕ) denotes the regressor trained up to 

depth d−1, rd(xi, ϕd) denotes the regressor for current depth, and ϕd is the split threshold 

optimized in the depth d. At root nodes, we start with an initial regressor R0 = r0(xi, ϕ) and 

add a new depth to the forest. At depth d, assume previous regressor Rd−1(xi, ϕ) predicts 

training samples xi as Rd−1(xi, ϕ) = Rd−2(xi, ϕ) +rd−1(xi, ϕd) by ensemble model according to 

stored samples in corresponding nodes. These predictions yield a stage-wise loss which 

should be minimized by (Eq. 1). After optimizing thresholds, the regressor rd(xi, ϕd) can be 

determined according to information gain criterion. Since the splitting function of each node 

and each depth is chosen by jointly reducing the uncertainty of training data and regularizing 

the whole regressors’ global loss, unlike the classical random forest whose path of splitting 

training data is independent beforehand for each node, our proposed ARF allows the 

splitting path to be always optimized globally and locally as we have a hierarchical splitting 

structure. Thus, the feedback of each depth reasonably reduces the uncertainty of binary 

decision tree and enhances the accuracy of the inference, as shown in Fig. 2.

ACM is used to leverage the surrounding information with respect to the object of interest 

such as bone area for further improvement in the prediction performance36–39. We use the 

initial ARF to create context features for all training patients, which are then used in 

combination with the initial extracted features to train an improved ARF. The process is 

repeated to train a series of ARFs until the prediction criterion is met. It is proven that ACM 

can reduce the prediction error. In the testing stage, to predict the improved CBCT, the new 

CBCT image can follow the same concept of ACM to generate the final improved CBCT. 

The framework of ACM is showed in Fig. 3.

To evaluate the dose calculation accuracy of the OCBCT/CCBCT images, we compared the 

differences between OCBCT/CCBCT and original pCT dose maps using the same plan 

parameters. To minimize the anatomy difference from pCT, we choose the CBCT from the 

first fraction of treatment. Both rigid and deformable registrations were performed between 

the pCT volume and OCBCT/CCBCT to align the patient anatomy. The aligned OCBCT/
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CBCCT images were interpolated into the same voxel size as the pCT images and then 

imported into the treatment planning system. The structures and treatment plan from the 

pCT volumes were duplicated onto the OCBCT/CBCCT volumes for dose calculation using 

the same algorithm (analytical anisotropic algorithm, AAA), grid size (0.1 cm for brain SRS 

and 0.25 cm for pelvis radiotherapy) and HU calibration. The original pCT-based plans 

served as ground truth.

For each patient, we first studied the image quality of OCBCT/CCBCT images to validate 

our method. We evaluated OCBCT/CCBCT image accuracy by two commonly used image 

quality matrices, i.e. mean absolute error (MAE) and peak signal-to-noise ratio (PSNR). 

MAE quantifies the absolute difference between OCBCT/CCBCT and pCT for each pixel. 

PSNR is an engineering term expressing the ratio between the maximum possible power of a 

signal to the power of corrupting noise that affects the fidelity of its representation, which is 

directly related to the relative difference between OCBCT/CCBCT and pCT. They are 

defined as follows:

MAE = 1
N ∑ ICBCT(i) − I pCT(i) , (2)

PSNR = 10log10
NQ2

ICBCT − I pCT
, (3)

where ICBCT and IpCT indicate image of OCBCT/CCBCT and pCT, i is the ith pixel in 

image volume, N is the total number of pixels in ICBCT or IpCT, Q is the maximum pixel 

intensity among ICBCT and IpCT. A lower MAE or a higher PSNR indicates higher quality of 

CBCT images.

For each plan, we visually checked the similarity of the dose distributions calculated on the 

OCBCT/CCBCT and the original pCT. Quantitatively, clinically relevant DVH metrics were 

extracted to compare dose to PTVs and relevant OARs. Specifically, Dmin, D10%, D50%, 

D95%, Dmean and Dmax are used as metrics for all PTVs and OARs, and D99% for brain 

SRS PTV additionally. For plans with multiple PTVs, each PTV is considered separately. 

Gamma analysis using the 1%/1mm criteria was performed on axial, coronal and sagittal 

planes at isocenter to compare the dose distributions computed on the OCBCT/CCBCT and 

the original pCT.

RESULTS

In Fig.4, the image quality improvement of CCBCT is shown using a side-by-side 

comparison with pCT and OCBCT; one example each is provided from a brain SRS case 

and a pelvic radiotherapy case with the same HU window level for each. Non-uniform 

artifacts and global HU shifts can be seen on OCBCT images in both cases, and are much 

more severe in the pelvic case. Our CCBCT images feature better image quality than 

OCBCT with comparable uniformity, contrast, and HU ranges to pCT, and its improvement 

in image quality in the pelvis case is more remarkable than that of the brain case. These 

findings are also consistent with the measured MAE and PSNR of OCBCT and CCBCT for 

Wang et al. Page 6

Med Dosim. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each patient of brain or pelvis case plotted in Fig.5 and summarized in Table I. For all the 

patients, CCBCT has shown lower MAE and higher PSNR than OCBCT, and such 

improvement is larger for pelvis patients than brain SRS patients.

Fig. 6 compares the dose distribution in the axial plane of the patients shown in Fig. 4. For 

the radiosurgery case, the dose differences of OCBCT and CCBCT from pCT shown in Fig. 

6 (bottom left) are both very small (~0.5%), and the dose calculation improvements of 

CCBCT can hardly be observed. However, for the pelvic case shown in the bottom right, the 

corresponding improvement is significant. Dose differences using the OCBCT occur mostly 

around streaking artifacts, which are largely mitigated for the majority of the volume in the 

CCBCT. The corresponding DVH curves of PTVs and relevant OARs shown in Fig. 7 

indicate that the dose differences in target and avoidance structures are minimal. These 

results from the two patients are presented as examples, and similar results can be seen in 

other patients.

The mean dose differences between OCBCT/CCBCT and pCT in relevant DVH metrics for 

both types of cases are shown by the chart in Fig. 8. All DVH metrics using the CCBCT are 

closer to pCT than those on OCBCT. For brain SRS cases, both OCBCT and CCBCT have 

very low dose difference for PTVs (~0.2%) and OARs (<0.05%). Compared with the 1% 

uncertainty in dose calculation from CT images in brain SRS cases,40 such dose difference 

between OCBCT/CCBCT and pCT is negligible, which indicates that OCBCT and CCBCT 

are both accurate enough for dose calculation for brain SRS cases. However, for pelvic 

cases, OCBCTs have relatively large dose difference in PTV, bladder and rectum (~1%), and 

the use of CCBCTs reduces that difference to ~0.3%. DVH differences among all plans are 

summarized in Table II. For brain SRS cases, there is no statistically significant 

improvement from the use of CCBCTs on dose calculation for all DVH metrics; however, 

such improvements are statistically significant for many pelvic DVH metrics.

The dose accuracy of OCBCT/CCBCT is further evaluated by gamma analysis using 

1%/1mm criteria on the three orthogonal dose planes cross isocenter between OCBCT/

CCBCT and pCT for each plan. The passing rates for brain SRS are above 99% for both 

OCBCT and CCBCT for all cases. For pelvic cases, the average passing rates are 94.5% and 

99.0% for OCBCT-based and CCBCT-based dose plans, respectively.

CONCLUSIONS AND DISCUSSION

In this study, we evaluated the dose calculation accuracy improvement of corrected CBCTs, 

made by our machine-learning-based method, in the context of brain SRS and pelvic 

radiotherapy. The side-by-side comparisons on image quality demonstrated better image 

contrast and more accurate HU ranges of corrected CBCTs compared to original CBCTs. 

Based on the statistical analysis of comparative DVH metrics between OCBCT, CCBCT and 

pCT for the same plans, we showed that the mean dose error in DVH metrics for PTV, 

bladder and rectum was reduced from 1% to 0.3% after CBCT correction in pelvic cases, 

and such improvements were statistically significant. The improvement in dose calculation 

accuracy is further supported by the gamma analysis study with an average pass rate 

increasing from 94.5% before correction to 99.0% after correction. For brain SRS 
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treatments, both OCBCT and CCBCT images were accurate enough for dose calculation, 

while CCBCT features higher image quality. These quantitative results strongly indicate that 

the CCBCT could provide dose accuracy comparable to pCTs for brain SRS and prostate 

radiation therapy. It also demonstrates that the proposed correction method has great 

potential in CBCT-guided adaptive radiotherapy.

In the presented study, we found that the difference of dose distributions between CCBCT 

and pCT (Fig. 6) was very minimal for the majority of the volume, even in small areas with 

residual artifacts on the CCBCT images. It indicates that the artifacts are successfully 

mitigated for accurate dose calculation on CCBCT. Slightly larger errors were observed at 

the surface of body, especially for pelvic cases; this could be because the pCT images, which 

are chosen to be ground truth in this study, are not perfectly matched with CBCT images due 

to inter-fraction setup uncertainty. Such uncertainty includes misalignment in registration 

and deformation of body surface, both of which contribute to the image difference between 

CBCT and pCT, especially at the surface of body. Minimal image differences at the surface 

could lead to large dose differences since dose calculations were not performed outside the 

body contour. For pelvic cases, the soft tissue deformation of the body surface is more 

commonly seen than brain cases, which results in larger dose differences.

In this study, we evaluated our learning-based method on brain SRS and pelvic radiation 

therapy patients. Compared to other sites, brain SRS cases are special since CBCT scatter 

artifacts are minimized due to its smaller size, and photon plans are more forgiving due to its 

homogeneity. Thus, CBCT images are shown to be accurate enough for dose calculation 

without additional correction, even for SRS treatments that deliver large amount of dose to a 

very small volume. However, CBCT correction can still help provide better image quality 

for other tasks such as image registration and contour propagation in adaptive radiation 

therapy. For pelvic cases where CBCT contains complicated bone-tissue interface and severe 

artifacts, CBCT correction has been demonstrated to be necessary for both image quality 

and dose calculation.

In our clinic, the majority sites of CBCT taken on patients are pelvic and brain SRS 

treatment. Investigations in dose calculation using CBCT for these two cases would meet the 

most demands from clinical. Other cases involving CBCT in our clinic are lung. However, 

the CBCT images on thorax usually truncate patient body outside field of view. Thus, it is 

not an ideal case for this study.
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Figure 1. 
Schematic flow chart of the proposed algorithm for high-quality CBCT predication.
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Figure 2. 
The flow chart of the alternating regression forest.
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Figure 3. 
The framework of the ACM.
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Figure 4. 
The axial view of pCT/OCBCT/CCBCT images of brain patient (top) and pelvis patient 

(bottom). The red contours indicate PTVs. Display window: [−160 240] HU.
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Figure 5. 
Image quality matrices MAE (left) and PSNR (right) for each brain SRS (top) or pelvis 

(bottom) patient.
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Figure 6. 
Dose distribution calculated on pCT, OCBCT, and CCBCT. Top: dose maps in color wash on 

pCT, OCBCT, and CCBCT shown on the axial plane of isocenter. Bottom: dose difference 

map between pCT and OCBCT/CCBCT. Left and right are brain case and pelvis case, 

respectively.
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Figure 7. 
The DVH curves of PTVs and related OARs for brain case (top) and pelvis case (bottom) in 

Fig. 1. OARs for brain case are chiasm, brainstem, left optic nerve, and right optic nerve; 

OARs for pelvis are bladder, rectum, left femur and right femur.
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Figure 8. 
Mean differences in DVH metrics between OCBCT/CCBCT and pCT among all plans of 

brain SRS (top) and pelvis cases (bottom).
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Table I

Mean and standard deviation of MAE and PSNR among all patients of brain SRS and pelvis cases.

Brain Pelvis

OCBCT CCBCT Improvement OCBCT CCBCT Improvement

MAE 27.82 12.81 15.01 45.47 19.94 25.53

PSNR 35.64 41.07 15.24% 26.71 31.31 17.22%
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Table II

Mean and standard deviation of differences in DVH metrics between OCBCT/CCBCT and pCT among all 

plans of brain SRS (top) and pelvis cases (bottom). The p-value of t-test of DVH differences between OCBCT 

and CCBCT are also listed.

Dmin D10% D50% D95% D99% Dmean Dmax

PTV

OCBCT 0.193
± 0. 172

0.232
± 0. 174

0.211
± 0. 141

0.200
± 0. 120

0.202
± 0. 118

0.209
± 0. 142

0.310
± 0.321

CCBCT 0.136
± 0.210

0.134
± 0.158

0.105
± 0. 124

0.096
± 0. 115

0.122
± 0. 117

0.104
± 0. 124

0.210
± 0.255

P-value 0.318 0.986 0.518 0.638 0.431 0.757 0.547

Brain Stem

OCBCT 0.007
± 0.014

0.031
± 0.059

0.016
± 0.037

0.008
± 0.013

0.016
± 0.031

0.051
± 0.069

CCBCT 0.001
± 0.002

0.006
± 0.008

0.004
± 0.005

0.002
± 0.002

0.003
± 0.003

0.013
± 0.013

P-value 0.679 0.285 0.46 0.694 0.383 0.088

Optic Nerve

OCBCT 0.02
±0.042

0.022
±0.048

0.024
±0.047

0.02
±0.042

0.023
±0.046

0.033
±0.062

CCBCT 0.005
±0.011

0.012
±0.030

0.009
±0.020

0.005
±0.010

0.009
±0.020

0.017
±0.040

P-value 0.661 0.46 0.424 0.58 0.385 0.256

Chiasm

OCBCT 0.016
±0.030

0.026
±0.055

0.024
±0.048

0.021
±0.037

0.024
±0.047

0.039
±0.072

CCBCT 0.003
±0.004

0.004
±0.005

0.003
±0.004

0.002
±0.003

0.003
±0.004

0.009
±0.011

P-value 0.645 0.303 0.304 0.539 0.338 0.476

Dmin D10% D50% D95% Dmean Dmax

PTV

OCBCT 0.924
± 0.724

0.918
± 0.548

0.774
± 0.493

0.66
± 0.434

0.791
± 0.491

1.53
± 1.235

CCBCT 0.452
± 0.476

0.297
± 0.176

0.284
± 0.153

0.237
± 0.168

0.281
± 0.150

0.602
± 0.898

P-value 0.559 0.001 0.001 0.002 0.001 0.002

Bladder

OCBCT 0.068
± 0.081

0.797
± 0.434

0.443
± 0.419

0.138
± 0.185

0.468
± 0.346

1.172
± 0.868

CCBCT 0.042
± 0.074

0.332
± 0.143

0.143
± 0.111

0.044
± 0.037

0.161
± 0.093

0.459
± 0.434

P-value 0.021 0.001 0.01 0.073 0.002 0.001

Rectum

OCBCT 0.037
± 0.041

1.085
± 1.456

1.054
± 1.073

0.178
± 0.324

0.485
± 0.585

1.641
± 1.870

CCBCT 0.025
± 0.035

0.52
± 0.839

0.545
± 0.976

0.035
± 0.053

0.21
± 0.282

0.896
± 1.343

P-value 0.021 0.013 0.007 0.311 0.003 0.02

Femur

OCBCT 0.025
± 0.050

0.295
± 0.211

0.065
± 0.049

0.013
± 0.017

0.181
± 0.280

0.447
± 0.293

CCBCT 0.021
± 0.057

0.111
± 0.080

0.055
± 0.047

0.016
± 0.023

0.129
± 0.294

0.209
± 0.182

P-value 0.096 0.004 0.006 0.784 0.004 0.001
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