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In Brief
Multiplexed proteomics has be-
come a powerful tool to assay
biological systems. So far, the
data is typically interpreted via
naive peptide averaging. Here,
we present a Bayesian approach
that integrates peptide quantifi-
cation concordance and ion sta-
tistics into the most probable
answer with confidence inter-
vals. Our approach considers
low signal peptides, does not
require replicates, and detects
smaller significant changes than
alternative approaches. Thus,
our method increases the value
of proteomics experiments, help-
ing researchers to interpret data
and prioritize resources.
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Bayesian Confidence Intervals for Multiplexed
Proteomics Integrate Ion-statistics with
Peptide Quantification Concordance*□S

Leonid Peshkin‡**, Meera Gupta§¶**, Lillia Ryazanova§¶, and Martin Wühr§¶�

Multiplexed proteomics has emerged as a powerful tool to
measure relative protein expression levels across multiple
conditions. The relative protein abundances are inferred
by comparing the signals generated by isobaric tags,
which encode the samples’ origins. Intuitively, the trust
associated with a protein measurement depends on the
similarity of ratios from the protein’s peptides and the
signal-strength of these measurements. However, typi-
cally the average peptide ratio is reported as the estimate
of relative protein abundance, which is only the most
likely ratio with a very naive model. Moreover, there is no
sense on the confidence in these measurements. Here,
we present a mathematically rigorous approach that inte-
grates peptide signal strengths and peptide-measure-
ment agreement into an estimation of the true protein
ratio and the associated confidence (BACIQ). The main
advantages of BACIQ are: (1) It removes the need to
threshold reported peptide signal based on an arbitrary
cut-off, thereby reporting more measurements from a
given experiment; (2) Confidence can be assigned without
replicates; (3) For repeated experiments BACIQ provides
confidence intervals for the union, not the intersection, of
quantified proteins; (4) For repeated experiments, BACIQ
confidence intervals are more predictive than confidence
intervals based on protein measurement agreement. To
demonstrate the power of BACIQ we reanalyzed previ-
ously published data on subcellular protein movement on
treatment with an Exportin-1 inhibiting drug. We detect
�2� more highly significant movers, down to subcellular
localization changes of �1%. Thus, our method drasti-
cally increases the value obtainable from quantitative pro-
teomics experiments, helping researchers to interpret
their data and prioritize resources. To make our approach
easily accessible we distribute it via a Python/Stan
package. Molecular & Cellular Proteomics 18: 2108–
2120, 2019. DOI: 10.1074/mcp.TIR119.001317.

Mass spectrometry-based proteomics has undergone a re-
markable revolution and is now able to identify �10,000 pro-

teins in a single experiment (1–3). However, because of the
difficulty in predicting ionization efficiency of peptides during
electrospray, the signal measured in the mass spectrometer is
not a direct readout for the peptide concentration in a sample.
Proteomics is well suited for comparing the abundance
change of the same peptides/proteins among multiple condi-
tions (e.g., replicates, perturbations, or time-points). In so-
called label-free proteomics, the peptide signal is compared
between multiple different runs and changes of �2-fold can
be detected as significant (4). Even smaller relative protein
abundance changes can be detected by encoding multiple
conditions with heavy isotopes and analyzing the samples
simultaneously. In MS1 based approaches like SILAC the
different conditions contain different numbers of heavy iso-
topes and conditions are encoded by differing peptide
masses. However, because of the increase in complexity of
the MS1 spectrum with more conditions, this approach is only
feasible for analyzing up to three conditions at a time (5). A
breakthrough for proteomics was the introduction of isobaric
tags (6). These tags, which are chemically attached to the
peptides, act as barcodes for the different conditions. Each
tag has the same mass and only on fragmentation are the
distinct reporter ions released. Because of the identical
masses, the MS1 spectrum does not increase in its complex-
ity with more conditions and currently up to 11 conditions
(channels) can be compared in a single experiment (7). Ini-
tially, the co-isolation and co-fragmentation of other peptides
led to major artifacts. However, more recently these artifacts
have been overcome with the introduction of MultiNotch MS3
(TMT-MS3), QuantMode, and the complement reporter ion
approach (TMTc�) (8–12). With these methods, data of su-
perb quality can be generated and changes of �10% can be
detected as significant (13).

Despite these impressive capabilities of quantitative multi-
plexed proteomics, a remarkable shortcoming is the lack of
confidence assigned to these measurements. Typically, the
average peptide ratio is reported as the estimate of protein
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relative abundance, which is only the most likely ratio with a
very naive model. Various factors can distort the measure-
ments: peptide-to-spectra matching uncertainty, enzymatic di-
gestion efficiency, post-translational modifications, and interfer-
ence (11). Generally, there is no sense of how much we can trust
the data (14). Noise models have been presented to handle
peptide-to-protein aggregation in label-free settings. However,
these approaches are not easily transferable to multiplexed
proteomics, where the data is of a very different nature (15–17).
Using multiplexed data, previous studies considered measure-
ment agreement among peptides assigned to a protein, but the
underlying ion-statistics were ignored (18, 19). Because multi-
plexed proteomics data is compositional in nature, the peptide
signal in each channel is usually converted into proportions.
However, conversion to proportions comes with a drawback of
losing the information on the signal strength with which that
proportion was measured. Hence, the integration of errors be-
cause of poor signal strength and the peptide ratio concord-
ance has been a challenge. With replicate experiments, confi-
dence can be calculated with standard approaches like the t
test or ANOVA (9, 20, 21). For these approaches, protein level
measurements typically weigh peptides by ion-signal but ignore
the underlying agreement among peptide measurements. For
approaches based on replicate protein-level measurements, the
confidence of the measurement can obviously only be ex-
pressed for the intersection of protein sets measured in all
repeated experiments. Moreover, these approaches may lead
to unwarranted high confidence when multiple experiments
have wrong but concordant measurements and each experi-
ment ignores the disagreement at the peptide level. Also, pep-
tides which are measured with the signal below an arbitrary level
are ignored (9, 22).

Most proteins are measured via multiple peptide quantifi-
cation events. Intuitively, for a protein-level measurement, one
should be able to use both the agreement between measure-
ments from all assigned peptides, and the signal strength for
each of those measurements, to assign both a quantification
value and an associated confidence. However, to our knowl-
edge there is currently no way to integrate all this information
to express the confidence of protein level quantification. Sup-
plemental Fig. S1 summarizes the challenge to express con-
fidence for multiplexed proteomics measurements. Assigning
confidence is important because it allows one to assess the
significance of changes and enables researchers to prioritize
valuable time and resources in follow-up experiments.

In this paper, we propose a novel, mathematically rigorous
method for computing and representing the uncertainty
of quantitative multiplexed proteomics measurements. Our
method is based on a generative hierarchical Bayesian model
of a two condition Beta-Binomial method (or the Dirichlet-
Multinomial for the multiple-condition scenario). We call our
method BACIQ1 (Bayesian Approach to Confidence Intervals
for protein Quantitation - pronounced BASIC).

Beta-Binomial models have been previously used in the
context of proteomics for the scenarios involving multiple
levels of noise, for example accounting for within and be-
tween sample variation of the spectral count data (23) or to
deconvolute the isotopic incorporation of N15 into natural
abundance, partially and fully labeled distributions (24). A
challenge in applying a beta-binomial model to multiplexed
proteomics data is that the peptide signal is not the direct
readout of the number of ions. We demonstrate a calibration
approach that converts the peptide signal to the number of
ions.

Our approach allows us to represent uncertainty for both
individual peptides as well as multi-peptide proteins and con-
siders peptides regardless of the signal strength, thereby
increasing the sensitivity of proteomics measurements. Our
method does not require multiple repeated experiments, but if
such repeats are available, it integrates the results providing
the output and confidence for the union (not intersection) of all
separately measured proteins. If the repeats are available,
BACIQ is more predictive than the standard approach using a
t test. Further, we demonstrate the power of our method by
re-analyzing a previously published proteomics dataset that
studies the change of subcellular protein localization on ad-
dition of an Exportin-1 inhibitor Leptomycin B (13). With
BACIQ, we can identify �2x more Leptomycin B responders
compared with our previously published naive analysis and
detect subcellular localization changes of as low as 1% to be
significant at 5% FDR.

EXPERIMENTAL PROCEDURES

Sample Preparation—The single proteome standard and the two-
proteome interference sample was prepared mostly as previously
described (10, 13, 25). HeLa S3 cells were grown in suspension to 1 �
106 cells/ml. Cells were harvested by spinning at 160 RCF for 5 mins
at room temperature. After two washes with PBS, the pellet was flash
frozen in liquid nitrogen. The pellet containing about 600 �g of total
protein was resuspended in 1 ml of lysis buffer containing 25 mM

HEPES pH 7.2, 2% SDS and protease inhibitors (complete mini.,
EDTA-free; Roche). Cells were lysed by sonication: 6 pulses, 10 s
each, at 75% amplitude.

E. coli cell culture was harvested at 0.5 OD and spun down at 4,000
RCF for 20 min at 4 °C. The pellet containing about of 650 �g of total
protein was resuspended in 1 ml of lysis buffer containing 8 M Urea,
2 M Thiourea, 50 mM HEPES pH 7.2, 2% SDS, 5 mM DTT. Cells were
lysed by sonication: 10 pulses, 30 s each, at 75% amplitude.

Two hundred microliters of HeLa lysate was reduced with 5 mM

DTT for 20 min at 60 °C. Further, both samples - 200 �l of HeLa lysate
and 200 �l of E. coli lysate were alkylated with 15 mM N- Ethylma-
leimide (NEM) for 30 min at room temperature. The excess of NEM

1 The abbreviations used are: BACIQ, Bayesian approach to confi-
dence intervals for protein quantitation; RNC, relative nuclear concen-
tration; FDR, false discovery rate; TMT, tandem mass tag; TMT-MS3,
multinotch MS3 analysis of TMT samples; TMTc�, complement re-
porter ion quantification method; ANOVA, analysis of variance ; NEM, N-
ethylmaleimide; BCA, bicinchoninic acid; Lys-C, lysil endopeptidase;
EPPS, 4-(2-Hydroxyethyl)-1-piperazinepropanesulfonic acid; RCF, rel-
ative centrifugational force; LMB, leptomycin B; Exp1, Exportin-1.
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was quenched with 5 mM DTT for 10 min at room temperature in both
samples. Next, 200 �l of lysate were methanol-chloroform precipi-
tated as previously described (26). Protein concentration was deter-
mined using the bicinchoninic acid (BCA) protein assay (Thermo
Fisher). The samples were resuspended in 6 M guanidinium chloride in
10 mM EPPS pH 8.5 with a subsequent dilution to 2 M guanidine
chloride in 10 mM EPPS pH 8.5 for digestion with Lys-C 20 ng/�l
(Wako, Japan) at room temperature overnight. Further the samples
were diluted to 0.5 mM Guanidine Chloride in 10 mM EPPS pH 8.5 and
digested with Lys-C 20 ng/�l, and TMT 10 ng/�l at 37 °C overnight.
The digested samples were dried using a vacuum evaporator at room
temperature and taken up in 200 mM EPPS pH 8.0. 10 �l of total
E. coli or human peptides were labeled with 3 �l of TMT 20 �g/�l.
TMT reagents were dissolved in anhydrous Acetonitrile. TMT samples
were labeled for 2 h at room temperature. Further, labeled samples
were quenched with 0.5% Hydroxylamine solution (Sigma, St. Louis,
MO) and acidified with 5% phosphoric acid (pH�2) with subsequent
spin at 16,000 RCF for 10 min at 4 °C. The samples were dried using
a vacuum evaporator at room temperature. Dry samples were taken
up in HPLC grade water and stage tipped for desalting (27). The
samples were resuspended in 1% formic acid to 1 �g/�l and 1 �g of
each sample was analyzed with the MultiNotch MS3 approach (9).

The samples were labeled with the desired mixing ratios: 1.0:1.0:
1.0:1.2:1.2:1.2 for E. coli, and 1.0:1.0:1.0:1.0:1.0:1.0 for HeLa
(Fig. 6A).

LC/MS Analysis—1 �l per sample were analyzed by LC-MS.
LC-MS experiments were performed on Orbitrap Fusion Lumos
(Thermo Fischer Scientific). The instrument was equipped with Easy-
nLC 1200 high pressure liquid chromatography (HPLC) pump
(Thermo Fischer Scientific). For each run, peptides were separated on
a 100 �m inner diameter microcapillary column, packed first with
�0.5 cm of 5 �m BEH C18 packing material (Waters) followed by 30
cm of 1.7 �m BEH C18 (Waters). Separation was achieved by apply-
ing 4.8–24% acetonitrile gradient in 0.125% formic acid and 2%
dimethyl sulfoxide over 120 min at 350 nL/min at 60 °C. Electrospray
ionization was enabled by applying a voltage of 2.6 kV through a
microtee at the inlet of the microcapillary column. The Orbitrap Fusion
Lumos was using a MultiNotch-MS3 method (9).The survey scan was
performed at resolution of 120k (200 m/z) from 350 Thomson (Th) to
1350 Th, followed by the selection of the 10 most intense ions for CID
MS2 fragmentation using the quadrupole and a 0.5 Th isolation win-
dow. Indeterminate and singly charged, and ions carrying more than
six charges were not subjected to MS2 analysis. Ions for MS2 were
excluded from further selection for fragmentation for 90 s. MS3 spec-
tra were acquired in the Orbitrap with 120 k resolution (200 m/z) and
simultaneous precursor selection of the five most abundant fragment
ions from the MS2 spectrum. The TMTc� experiments were per-
formed as previously described with 0.4 Th isolation window on an
Orbitrap Fusion Lumos (8).

MS Data Analysis—A suite of software tools developed in the Gygi
Lab was used to convert mass spectrometric data from the Thermo
RAW file to the mzXML format, as well as to correct erroneous
assignments of peptide ion charge state and monoisotopic m/z (28).
We used RawFileReader libraries from Thermo, version 4.0.26 to
convert the raw files into mzXML file format. Assignment of MS2
spectra was performed using the SEQUEST algorithm v.28 (rev. 12)
(29) by searching the data against the appropriate proteome refer-
ence dataset acquired from UniProt (Escherichia coli (strain K12) with
Proteome ID UP000000625, Organism ID 83333, Protein count 4267
and downloaded on Nov 26, 2017; Homo Sapiens (human) with
Proteome ID UP000005640, Organism ID 9606, Protein count 71599
and downloaded on April 29, 2018) (30) including 114 common con-
taminants like human Keratins and Trypsin (uploaded on PRIDE with
the identifier PXD012285). This forward database component was

followed by a decoy component which included all listed protein
sequences in reversed order (31). Searches were performed using a
20-ppm precursor ion tolerance, where both peptide termini were
required to be consistent with Trypsin or Lys-C specificity, while
allowing one missed cleavage. Fragment ion tolerance in the MS2-
spectrum was set at 0.02 Th (TMTc�) or 1 Th for MutliNotch-MS3.
NEM was set as a static modification of cysteine residues
(�125.047679 Da), TMT as a static modification of lysine residues and
peptides’ N termini (�229.162932 Da), oxidation of methionine resi-
dues (� 15.99492 Da) as a variable modification. An MS2 spectral
assignment false discovery rate of 0.5% was achieved by applying
the target decoy database search strategy (31). Filtering was per-
formed using a Linear Discriminant analysis with the following fea-
tures: SEQUEST parameters XCorr and unique � XCorr, absolute
peptide ion mass accuracy, peptide length, and charge state. For-
ward peptides within three standard deviation of the theoretical m/z of
the precursor were used as positive training set. All reverse peptides
were used as negative training set (28). Linear Discriminant scores
were used to sort peptides with at least seven residues and to filter
with the desired cutoff. Furthermore, we performed a filtering step on
the protein level by the “picked” protein FDR approach (32). Protein
redundancy was removed by assigning peptides to the minimal num-
ber of proteins which can explain all observed peptides, with above
described filtering criteria (33, 34). For the MS3 method, we only
included the peptides that were observed with the isolation specificity
of at least 75%. Isolation specificity is defined as the fraction of target
ion intensity compared with the total ion intensity in the precursor ion
isolation window visible in the MS1 spectrum (9, 11, 19). We did not
use isolation specificity filtering for the TMTc� method, as co-isola-
tion of other peptides does not perturb the measurement results for
this method (8). TMTc� data were analyzed as previously described
(8). To correct for pipetting errors in the synthetic experiments, we
normalized the signal such that the median peptide ratio between two
channels corresponds to the desired mixing ratios.

Implementation of BACIQ—We developed a hierarchical Beta-Bi-
nomial model to assign confidence to the estimate of protein ratio in
different conditions. The model and the inference was implemented
using Stan (36), specifically the Python flavor. Stan’s sampling func-
tionality was used to execute Monte-Carlo Markov Chain to obtain a
sample from the posterior distribution over parameters of the model.

The source code for BACIQ in the Python flavor is available via
GitHub: https://github.com/wuhrlab/BACIQ.

RESULTS

Peptide Measurements Map to Coin-flips—Let us begin by
discussing the measurement of peptides that are labeled with
isobaric tags encoding two different conditions (e.g. case and
control) (Fig. 1A). With multiplexed proteomics we can mea-
sure the relative abundance of peptides among multiple con-
ditions. For the sake of simplicity, we will discuss the two-
condition case for most of the paper, but all our approaches
and the provided code can be generalized to the multi-con-
dition case. Once peptides from different conditions are la-
beled with isobaric tags, they are combined into one test tube,
in which we have a “true ratio” of peptide abundances across
conditions. The aim of the proteomic experiment then is to
recover this “true peptide ratio” and assign confidence to the
measurement. During MS analysis, the peptides get ionized
and fragmented. On fragmentation, respective fragments of
the isobaric tag are released, encoding the different condi-
tions. The relative abundance of the ions encoding the differ-
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ent conditions is used to quantify the relative abundance of
the peptides in the two conditions (Fig. 1B). However, the
limited number of ions by which measurements are performed
introduce measurement errors because of ion-statistics.

We will be describing model parameters in terms of “true
peptide fraction”, instead of “true peptide ratio”. Because the
relationship between “fraction” and “ratio” is invertible, we
can easily transfer the estimates and confidence intervals
obtained for the “true peptide fraction” into “true peptide
ratio” using the change of variables (37). The process of
estimating the “true peptide fraction” and assigning confi-
dence to the estimate is analogous to evaluating the coin’s
fairness � - the underlying probability of getting say Heads, on
observing (�, �) number of Heads and Tails respectively in
n � � � � coin tosses. For an individual peptide this trans-
lates to estimating the probability distribution of “true peptide
fraction” �, on observing (�, �) number of ions for two chan-
nels out of n total ions with which this peptide is measured.
Using the Bayesian approach, the probability of true peptide
fraction �, given the observed data �D � ��, �	
 can be written
as follows:

P���D � ��, �	
 � P�D � ��, �	��
P��


With binomial likelihood and a conjugate prior of Beta (0, 0)
(see Supporting Information for the justification on choice of
likelihood and prior), the posterior probability is,

� Bin�D � ��, �	�n, �
 Beta���0,0


� ���1 � �
��0�1 �1 � �
0�1

� ����1
�1 � �
���1


With appropriate normalizing constant, this posterior has an
analytical form of Beta, where (�, �) are the shape parameters
(Fig. 1C) (38). As expected, confidence intervals tend to be
wider for measurements with lower ion count (Fig. 1D).

Isobaric tags are most commonly read out in the Orbitrap
mass analyzer, where the raw signal divided by the Fourier
transform-noise is proportional to the ion-count (39).
Throughout the paper we will refer to this read out as “MS-
signal.” To be able to apply the Binomial distribution to the
proteomics data, the challenge is to find the proportionality
constant for converting MS-signal into the number of ions.

Conversion of Mass Spectrometer Signal to Ions—The pep-
tide ratio measurement converges to a true ratio when mea-
sured with high MS-signal. To deduce how MS-signal relates
to confidence, we generated and analyzed a proteomics sam-

FIG. 1. Peptide measurements are analogous to coin-flips: A, Peptides are labeled with isobaric tags encoding the different conditions
case and control (red and blue). Shown are examples for two peptides with the identical relative abundance (true ratio) between case and
control. B, After ionization and fragmentation, the relative signal of fragments produced by the isobaric tag can be used to quantify relative
peptide abundance. These quantification spectra not only contain information about the peptide relative abundance but also the MS-signal.
This signal is proportional to the number of ions. C, The problem of estimating the posterior probability of the “true peptide fraction” � becomes
identical to the estimation of a coin’s fairness, given a certain number of head and tail measurements. The probability of “true peptide fraction”
� is a beta distribution with �, � as the shape parameters, where �, � represent the number of ions in the two channels. D, Intuitively, the fewer
ions we measure the more the measured peptide ratio tends to divert from the true ratio between case and control. A higher ion-count (top
row) results in a tighter probability distribution than a low ion-count (bottom row). For more than two cases this approach can be generalized
with a Dirichlet distribution.
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ple in which all peptides are labeled with the identical 1:1 ratio.
To this end, we mixed the TMT-NHS ester solutions with the
desired ratio before adding peptides for labeling. In this ex-
periment, measurement distortions are predominantly be-
cause of ion statistics. The peptides were analyzed with TMT-
MS3 or via the complement reporter ion approach (TMTc�)
on an Orbitrap Lumos (8, 9). Fig. 2A presents a scatter plot in
which each point represents a single peptide from a TMT-
MS3 dataset of a total of �10k quantified spectra. The ob-
served peptide fraction of the signal converges to an asymp-
totic value, just like the observed fraction of Heads in a
sequence of coin-tosses converges to a true fraction with the
increasing number of tosses. The functional form of the con-

vergence of the true fraction of Heads (fairness) with n coin
tosses is represented with coefficient of variation of a Bino-
mial distribution (�1 � �/n�, where � is the underlying fair-
ness of the coin (‘probability of getting Heads’) (see Support-
ing Information). To treat the continuous MS-signal as a proxy
for the number of coin flips, we fit a single parameter m, as a
multiplier to an MS-signal s where n � ms to the data binned
on the MS-signal (Fig. 2B). When we perform this analysis on
an Orbitrap Lumos for a TMT-MS3 experiment with 50K mass
resolution, we observe a conversion factor of 2.0. Interest-
ingly, the conversion factor differs when we repeat the equiv-
alent experiment on a different instrument (Orbitrap Elite), with
different resolutions, or methods for data acquisition (Table I).

FIG. 2. Conversion of MS-signal into counts and assigning confidence to the measurement of a single peptide. A, We generated a
sample in which all peptides are labeled with two different TMT-tags and mixed with identical �1:1 ratio. When we plot the observed peptide
ratio in one channel versus the summed MS-signal in both channels, measurement with higher MS-signal asymptotes to true underlying fraction
(dashed line). B, Assuming ion-statistics is the dominant noise source, we can fit the coefficients of variation (CVs) and obtain the conversion
factor of MS-signal to the number of ions or pseudo-counts. The data shown was obtained on an Orbitrap Lumos with 50K mass resolution.
Our best estimate for the conversion factor is 2.0. C, Plot of the probability distributions of the “true peptide fraction” for the three examples
color-coded to correspond to three peptide data points in sub-figure (A) D, Histogram of the upper and lower bound values for the 95%
confidence intervals. The observed percentage of peptides for which the true answer is outside of the 95% confidence interval is 2.0% and
2.5% respectively for over- and under-estimation, which are symmetric and in good agreement with the expected total 5%.

Bayesian Confidence Intervals for Multiplexed Proteomics

2112 Molecular & Cellular Proteomics 18.10



Makarov et al. previously reported that this conversion factor
should scale inversely with the square-root of the Orbitrap
resolution (39). Our measurements are in rough agreement
with this prediction. When we increase resolution from 15K to
120K on the Lumos we expect the conversion factor to reduce
by 2.8-fold, we observe a 3.5-fold decrease. We suspect that
the different conversion factors on different instruments is
because of differences in Orbitrap electronics and data pro-
cessing. For a limited number of cases, we have repeated
these measurements for various instruments of the same
model and obtained very similar results suggesting that for a
given instrument model and resolution the conversion factors
are invariant. We observe slightly smaller conversion factors
for TMTc� data into apparent counts compared with TMT-
MS3 data. This is most likely because of some additional
noise that is introduced during the deconvolution process of
the complement reporter ion clusters (8, 10). Based on previ-
ous reports (39), we likely underestimate the number of actual
ions by a small factor. Nevertheless, the good fit to the data
(Fig. 2B) indicates that the conversion into pseudo-counts
allows us to model the relationship between mass spectrom-
eter signal and measurement noise because of ion-statistics.
Importantly, this calibration step only must be performed once
for any type of instrument and is conveniently supplied here
for two commonly used mass spectrometers at various res-
olutions (Table I).

Assigning Confidence Intervals for Individual Peptides—
With the conversion factor at hand, we can convert the MS-
signal into the number of ions and calculate the confidence
associated with the “true peptide fraction” with Beta distribu-
tion as derived above. Fig. 2C illustrates the posterior prob-
ability of true-peptide fraction for three peptides at the various
levels of total MS-signal as color-coded in Fig. 2A. A higher
signal gives a tighter distribution.

We next verify that the confidence intervals obtained agree
with observations. Computing the 95% confidence intervals
we expect that the true answer will lie outside of the confi-
dence interval �5% of the time and will be symmetrically split

between over and under estimation. Indeed, Fig. 2D shows
that we overestimate 2.0% of the time and underestimate
2.5% of the time. We repeated this demonstration for pep-
tides labeled in different ratio and obtained consistent results,
showing that beta distribution indeed is a good general model
for expressing confidence for single peptide measurements
(supplemental Fig. S2).

Only Considering Ion Statistics Produces Inadequate Con-
fidence Intervals on the Protein Level—So far, we have shown
that we can adequately express the confidence intervals for
peptide measurements. If ion statistics was the only source of
noise, we could sum up all counts from peptides mapped to
a protein and express confidence intervals at the protein level.
This approach works well for the above designed synthetic
experiment, where all peptides in a mixture were labeled
together and show the exact same ratio (supplemental Fig.
S3). However, in real experiments, other factors like differ-
ences in digestion efficiency, labeling problems, erroneous
peptide-to-protein assignment, post-translational modifica-
tions, chemical interference, and so forth might produce sig-
nificant additional noise. To test whether only considering
ion-statistics is valid for multiplexed proteomics measure-
ments, we revisited our previous publication of nucleocyto-
plasmic partitioning in the frog oocyte (13) (Fig. 3A). We ob-
serve that the relative nuclear concentration (RNC) [Nuc]/
([Nuc]�[Cyto]) measurements for peptides for one protein
disagree with each other. This is shown by the mutual exclu-
siveness of the confidence interval for the two extreme pep-
tides of one protein (Fig. 3B). Moreover, when we evaluate the
confidence based on the sum of all the peptides mapped to a
protein, we observe that the probability distribution is unjus-
tifiably narrow (Fig. 3B). This suggests that besides ion-sta-
tistics, other significant sources of error contribute to the
errors in proteomics measurements and we must take these
sources into account to adequately express confidence inter-
vals at the protein level.

Confidence Intervals at the Protein Level That Integrate Ion
Statistics and Agreement Among Peptides Mapped to the
Same Protein—The goal is to develop a model that gives out
a probabilistic distribution for the “true protein ratio” for every
protein. Mathematically, achieving the above objective in-
volves calculating the conditional probability of a true protein
ratio given the observed corresponding peptide data—called
the posterior distribution. Bayes theorem lets us model this
distribution by asking the same question in a converse, more
tractable manner that is, what is the likelihood of observing
the peptide measurement data for a given protein ratio? This
likelihood function can be approximated by reviewing the
entire proteomics experiment as a data generating process,
starting with a true protein ratio (Fig. 4). The protein is di-
gested into peptides, which are labeled with isobaric tags.
This process can introduce disagreement among “true pep-
tide ratios” because of the differences in sample handling. We

TABLE 1
Multiplier for the MS-signal to be converted into Binomial event
counts. Shown are the multiplier values for the Orbitrap Lumos or
Orbitrap Elite for TMT-MS3 or TMTc� experiments and various Or-

bitrap resolutions

Instrument Resolution
Multiplier low

m/z TMT
Multiplier

TMTc� (0.4 Th)

Orbitrap Elite 15K 4.5 N/A
Orbitrap Elite 30K 3.3 N/A
Orbitrap Elite 60K 2.5 N/A
Fusion/Lumos 15K 3.4 2.7�

Fusion/Lumos 30K 2.6 2.1
Fusion/Lumos 50K 2.0 1.9
Fusion/Lumos 60K 1.8 1.7
Fusion/Lumos 120K 1.3 1.3

*Extrapolated.
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FIG. 3. Only considering ion-statistics does not produce accurate confidence intervals at the protein level: A, To evaluate the
confidence intervals of peptides from the same protein, we revisited our previously published experiment, where we measured the localization
of proteins between nucleus and cytoplasm in the frog oocyte. B, Blue discs show 50 measured peptides (RNC and MS-signal) assigned to
the Ribosomal Protein L5 (RPL5). We show the beta posterior probabilities for two extreme peptides (leftmost in blue and rightmost in green).
Note that these peptides’ probability distributions are basically mutually exclusive, i.e. the most generous confidence intervals would exclude
each other. Additionally, we show the distribution based on summing up all the peptides together (magenta) which corresponds to unjustifiably
tight confidence. This example illustrates that for the expression of confidence intervals on the protein level, we cannot assume that
ion-statistics is the only source of measurement error in proteomics experiments. Rather, we have to integrate other sources of errors e.g.
because of differences in sample handling.

FIG. 4. Schematic of the data generating process for modeling confidence for proteins with multiple peptide measurements. A,
The “true protein ratio” can be distorted because of differences in sample handling (e.g. digestion and isobaric-labeling) and give rise to
multiple peptides with differing “true peptide ratios”. The peptide ratios for the constituent peptides of a given protein are sampled from
the probability distribution parameterized according to the “true protein ratio” B, Each peptide is measured via the mass spectrometer.
Based on the number of ions used to measure each peptide, the confidence in quantification varies. The observed data is sampled from
a probability distribution given a true peptide ratio, for each peptide separately C, The goal is to infer the underlying true protein ratio
between the conditions and generate confidence using the agreement between multiple peptide measurements and their respective
MS-signals.
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represent this first step as an equivalent of sampling peptide
ratios for the constituent peptides of a given protein from the
probability distribution parameterized according to the “true
protein ratio” (Fig. 4A). In the second step the peptide is
ionized and fragmented and its ratio is measured on the mass
spectrometer. Because of the limited number of ions meas-
ured for each peptide, the observed ratio deviates from the
true peptide ratio. This step can be represented as sampling
the number of ions in one channel from a probability distribu-
tion parameterized over true peptide ratio, for each peptide
separately. Importantly, different peptides are measured with
different MS-signal and therefore with different confidence on
the underlying “true peptide ratio” (Fig. 4B). We have ade-
quately modeled this second step in previous sections. How-
ever, we aim for an approach that integrates ion statistics and
agreement among peptide measurements to estimate the true
protein ratio and the confidence associated with it (Fig. 4C).

For each protein in a two-condition case, the above de-
scription of the entire process can be mathematically repre-
sented as a generative two-level Beta-Binomial model (38):

● The unobserved true peptide fractions �i, where i 
 1,2,3,
. . ., I indexes the number of peptides for the protein, are
sampled from a beta distribution with a, b as the shape
parameters. The shape parameters of a beta distribution rep-
resent pseudo counts. In order to make the true protein frac-
tion a parameter of the model, we used a reparameterization
of the Beta distribution in terms of mean � � a/�a � b
 and
precision 	 � a � b. We assume the target of our estimation
(true protein fraction) to be the mean of the beta distribution
as represented by the parameter (�)

● Given true underlying peptide fraction �i, the number of
ions in one channel �i can be modeled using a Binomial

distribution, with ni representing the sum of counts in the two
channels. Here, �i and ni represent the observed peptide data.

All the unobserved parameters (�, 	, �1, �2, . . . �I) are mod-
eled by a joint probability distribution conditioned on the
observed data. Because each of the peptide measurements
are independent from each other, the probability distributions
for every peptide can be modeled separately and multiplied
together. Fig. 5 represents the graphical model.

Based on the graphical model, for a single protein, the
Beta-Binomial model is implemented as follows

P��, 	, �1, �2 . . . �I��1, �2 . . . �I
 � P��
P�	


�
i
1

I

P��i��, 	
 P��i�ni, �i


Where we set the priors (Please see the Supporting Infor-
mation for the justification of priors used) and likelihood dis-
tributions as follows: -

P��
 � Uniform�0,1


P�	
 � Exponential�0.05


P��i��, 	
 � Beta��i��, 	


P��i�ni, �i
 � Bin��i�ni, �i


We marginalize the latent variables to get the posterior
distribution of � conditioned on observed data D, P���D
. The
estimated value of the true protein fraction � is given by the
median of the posterior distribution P���D
 and the uncertainty
associated with this estimate is given by the confidence in-
tervals derived from P���D
.

FIG. 5. Mathematical model for estimating the protein fraction and its confidence: The entire data generation process can be adequately
described with the Beta-Binomial process (or Dirichlet -Multinomial process for more than two cases). To draw the parallel with figure 4, we
consider the two condition three peptide case. We assume an underlying beta-distribution with mean � and precision 	 representing the
probability distribution of true protein fraction, from which peptide fractions �i for the constituent peptides of a given protein are sampled. Given
a true underlying peptide fraction �i, we can sample the number of ions in a channel �i from Binomial distribution. Each peptide is independently
sampled from its respective binomial distribution with the true peptide fraction of �i and total number of ions ni.
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The maximum-likelihood estimate (MLE) of these distri-
butions is not available in a closed form, thereby making the
problem analytically intractable (40). One approach would
be to numerically search for an MLE and estimate the cur-
vature of the likelihood function from the Hessian at the MLE
using the asymptotic normality (41). Unfortunately, however,
this approach did not turn out to be numerically robust (not
shown). A robust alternative approach is accomplished us-
ing Monte-Carlo Markov Chain (MCMC) methods imple-
mented in statistical inference language Stan (see Support-
ing Information) (36). Essentially, it consists of exploring the
space of possible protein ratios, computing the likelihood of
observed peptide data given a guess at the protein ratio and
assembling a large set of plausible ratio samples to use its
histogram as posterior probability representation. Please
refer to Materials and Methods section for the download link
to the software.

Validation of BACIQ by Comparing to Existing Approaches—
We produced a standard containing peptides with different
labeling ratios. We asked how reliable our approach was in
distinguishing proteins, which show different expression lev-
els (increase by 20%) and proteins that are unchanged. We
mixed equal amounts of human proteins across six samples
with E. coli proteins in different mixing ratios in triplicates (Fig.
6A). Thus, ideally all E. coli proteins should be identified as
“differentially expressed” on a background of uniformly ex-
pressed human proteins. This synthetic experiment simulates
an essential application of having the complete probability
distribution, where confidence intervals can be used to prior-
itize the follow-up targets of a proteomic experiment.

We first compared BACIQ to the widely used t-tests on
replicate measurements. Crucially, although the t test requires

at least one repeat, our method can be applied to a single
experiment, as well as two and three repeats by merely com-
bining measurements. As shown in Fig. 6B, even using no
replicates our method outperforms the t test-based classifi-
cation with two repeats for the most relevant false positive
(FP) rates. For the same number of replicates, BACIQ outper-
forms the t test for all FP-rates. Using three replicates, BACIQ
achieves a close to perfect distinction. Similar outperfor-
mance of BACIQ over the t test can also be observed for
1.1-fold and 1.4-fold changes (supplemental Fig. S5A and
S5B).

We then compared our model to a recent Bayesian model
(compMS) that assigns confidence to the multiplexed pro-
teomics measurements by accounting for agreement among
peptides but ignoring ion statistics (19). The compMS model
shares variance across all the proteins. For a fair comparison,
we modified BACIQ to also pool the variance across proteins
(Please see the Supporting Information for partially pooled
Beta-Binomial model). ROC curves indicate that BACIQ out-
performs the compMS model (Fig. 6C). We are currently not
convinced that sharing peptide variance across proteins can
be rigorously justified outside the synthetic case of ratio
standards. We therefore have conservatively chosen to use
the BACIQ without pooling variance across proteins for the
rest of this paper. As a control in supplemental Fig. S6 we
show that BACIQ does not show any significant improvement
in point-measurement accuracy and is comparable to other
approaches in the detection of trivial large fold changes (sup-
plemental Fig. S5C). In conclusion, BACIQ is a powerful tool
to detect comparatively small expression differences even in
the absence of replicates.

FIG. 6. Validating our method with a differential expression experiment. A, Six samples were prepared by mixing material from two
species as follows. Six identical human samples (i.e. proportions across 6 channels were 1.0: 1.0: 1.0: 1.0: 1.0: 1.0) were mixed with an E. coli
sample in two sets of three as shown (i.e. proportions across 6 channels were 1.0: 1.0: 1.0: 1.2: 1.2: 1.2). A mixture of peptides from the two
proteomes was analyzed by LC-MS. B, Comparison of our method with a one tailed t test to detect significantly changing proteins. BACIQ can
detect statistically significant changes without replicates, whereas the t test requires replicates. ROC plot indicates that our method is superior
to the t test when the same number of replicates are used. Even without replicates, our method (red) nearly outperforms the t test with two
replicates (dashed yellow). We achieve close to perfect detection of the significantly changing proteins by using the BACIQ analysis with three
replicates (blue). C, A comparison of our method (with pooled variance across proteins) with the compMS. BACIQ outperforms compMS, the
method that ignores ion statistics in assigning confidence.
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Re-analyzing Subcellular Relocalization Data With BACIQ
Increases Detection of Significant Responders to Leptomycin
B by �2-fold—To assess BACIQ under real-world scenarios,
we reanalyzed a previously published proteomic dataset that
investigated the change of subcellular localization on Lepto-
mycin B (LMB) addition (13). Leptomycin B is a highly potent
and specific inhibitor of Exportin-1 (42), which is responsible
for the transport of proteins out of the nucleus into the cyto-
plasm. On treatment, we expect substrates of Exportin-1 to
move toward the nucleus (Fig. 7A) because of competing
transport with importins or because of passive diffusion
through the nuclear pore. Importantly, in this data set, we can
use hundreds of proteins small enough to diffuse through the
nuclear pore to normalize for equivalent amounts of nuclear
and cytoplasmic material (supplemental Fig. S7).

On comparing the median relative nuclear concentration
(RNC) of control and drug treated samples, we observe that
most of the proteins do not show any obvious shift. Proteins off
the diagonal show apparent movement toward the nucleus or
cytoplasm (Fig. 7B). Fig. 7C shows RNC distributions from the

Beta-Binomial model of the control (blue) and drug treated
(orange) samples for three different proteins. Naively, as we did
in our previous publication, one could rank proteins by the
magnitude of their movement toward the nucleus as likely Ex-
portin-1 substrates. BACIQ, however, not only allows us to
consider the magnitude of movement but assign probability to
the movement using the RNC distributions of control and drug
treated samples.

In large scale datasets the probability assigned to a single
discovery is not particularly meaningful as thousands of hy-
potheses are tested. We must therefore apply a multiple hy-
potheses correction procedure. In the discussed experiment,
we can use movement toward the cytoplasm on LMB treat-
ment as a conservative noise model. Indeed, we observe that
the p values of the probabilities of the cytoplasmic movers
follow a uniform distribution, which is expected under the
assumption of true null (supplemental Fig. S8) (43). We used
the standard Benjamini Hochberg multiple hypothesis correc-
tion procedure to assign q-values to the probability of move-
ment (44). The Probable RNA polymerase II nuclear localiza-

FIG. 7. Re-analysis of subcellular movement on Exportin-1 inhibition with BACIQ. A, On inhibition of Exportin-1 with Leptomycin B (LMB)
we expect Exportin-1 substrates to move toward the nucleus. We compared the RNC in control and drug treated samples to identify the
proteins that confidently shift toward the nucleus regardless of initial nucleocytoplasmic distribution. B, A scatterplot indicating the shift in RNC
post LMB treatment. Most proteins seem unaffected by the treatment. The proteins above the diagonal indicate movement toward the nucleus
and those below the diagonal indicate movement toward the cytoplasm. C, The raw peptide data and probability distributions of RNC for three
different proteins (shown as discs in B). The blue curve represents the probability distribution of RNC before adding the drug and the orange
curve represents the probability distribution of RNC after adding the drug. With our approach, we can detect the movement toward the nucleus
of as little as 1%. D, Applied to the entire dataset BACIQ detects 750 putative Exportin-1 substrates (612 unique gene symbols) at 5% false
discovery rate. With identical FDR, BACIQ extracts �2� more proteins as significantly moving compared with our previously published naive
analysis. E, Venn diagram shows the overlap in unique gene symbols of the LMB responders at 5% FDR from this study with Cargo database
based on Exportin-1 affinity experiments (Kirli et al.), and a database curated from literature (NESDB). The overlap with both databases is highly
significant with p values of 5.5 e-29 (Kirli et al.) and 3.1e-6 (NESDB) based on hypergeometric test.
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tion protein, SLC7A6OS, is one of our topmost hits with a
median RNC shift of 0.53 and a q-value of 7.0 e-9 (supple-
mental Table S1).

But BACIQ can detect much more subtle changes. Among
the newly assigned movers, BACIQ assigns highly significant
q-values of 1.0 e-4 to Nuclear export mediator factor, (NEMF)
with 3.8% movement toward the nucleus. Even a change of
subcellular localization as small as 1% results in a q-value of
0.025 for the 40S ribosomal protein S10, (RPS10) (Fig. 7C).

With an estimated false discovery rate (FDR) of 5%, we
detect �750 putative Exportin-1 substrates, accounting for
612 unique gene symbols. Importantly, by reanalyzing previ-
ously published data with our newly developed statistical tool
we discover �2x more significant LMB responders (Expor-
tin-1 substrates) as compared with our previous naïve analy-
sis at an identical FDR (Fig. 7D). The Görlich and Chook
groups identified Exportin-1 substrates in orthogonal ap-
proaches using either an affinity assay (45) or by curating a list
from the literature (46). Our list of putative Exportin-1 sub-
strates above the 5% FDR threshold exhibits a highly signif-
icant overlap with both these resources (p values 5.5 e-29 and
3.1 e-6 respectively, hypergeometric test) (Fig. 7E). Although
there is still substantial disagreement among the three com-
pared studies the overlap seems encouraging and might point
toward an emerging consensus of Exportin-1 substrates. We
believe the overlap is particularly meaningful because of the
drastically different approaches by which these data sets
were created.

DISCUSSION

We have shown how a hierarchical Beta-Binomial model
can be used to adequately reflect uncertainty in quantitative
multiplexed proteomics measurements. We presented the
method and the implementation of a modeling pipeline which
can assign confidence for both an individual peptide and
multiple peptide proteomic measurements. We demonstrated
how to estimate a calibration multiplier for a given instrument
and mass resolution and then use that multiplier to convert a
continuous MS-signal value into event counts suitable for
Beta-Binomial modeling. Although we demonstrate our ap-
proach in this paper for two condition scenarios, the entire
framework can also be applied to multicondition cases using
Dirichlet-Multinomial distribution. We validated our approach
on the peptide and protein levels in synthetic samples for
which we knew the true answer (Fig. 2, 6). To evaluate BACIQ
in a real-world scenario we re-analyzed a previously published
dataset of subcellular localization movement on inhibition of
Exportin-1 with Leptomycin B. Without having to perform any
additional experiments we increased the number of highly
confident Exportin-1 substrates by �2�. The mathematically
rigorous integration of ion-statistics with concordance among
different peptide measurements mapped to the same protein
allowed us to confidently identify movement of some proteins
by �1% toward the nucleus as significant at 5% FDR. The

comparison with resources from other groups allowed us to
independently validate this approach (45, 46) and points to-
ward an emerging consensus on Exportin-1 substrates.

So far, we have only tested the BACIQ approach for data
acquired with TMT-MS3 and TMTc�. We expect that with
some adaptations BACIQ might be adequate for MS1-based
labeled quantitative proteomics methods like SILAC or reduc-
tive methylation (47, 48). The systematic error associated with
MS2-based multiplexed measurements will lead to inade-
quate confidence intervals for the underlying true protein ra-
tios (11). Nevertheless, despite these erroneous measure-
ments, we suspect that BACIQ could still be useful for the
prioritization of systematic changes in an experiment. Al-
though TMT-MS3 methods mitigate these systematic errors
to some extent, the measurements still are distorted toward a
1:1 ratio. Additionally, the proteomics data suffers from errors
in peptide identifications, which directly impacts the quantifica-
tion. There have been various attempts to model these errors
(49, 50). Bayesian methods provide a natural framework to
integrate the above sources of errors and expand the model. In
summary, we anticipate that our new statistical tool, BACIQ will
be highly valuable for researchers wanting to identify significant
changes in proteomics studies and help to optimize the alloca-
tion of valuable resources for follow up studies.
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10. Wühr, M., Haas, W., McAlister, G. C., Peshkin, L., Rad, R., Kirschner, M. W.,
and Gygi, S. P. (2012) Accurate multiplexed proteomics at the MS2 level
using the complement reporter ion cluster. Anal. Chem. 84, 9214–9221

11. Ting, L., Rad, R., Gygi, S. P., and Haas, W. (2011) MS3 eliminates ratio
distortion in isobaric multiplexed quantitative proteomics. Nat. Methods
8, 937–940

12. Wenger, C. D., Lee, M. V., Hebert, A. S., McAlister, G. C., Phanstiel, D. H.,
Westphall, M. S., and Coon, J. J. (2011) Gas-phase purification enables
accurate, multiplexed proteome quantification with isobaric tagging. Nat.
Methods 8, 933–935
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