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Abstract

Speech-in-noise perception is a major problem for users of cochlear implants (CIs), especially 

with non-stationary background noise. Noise-reduction algorithms have produced benefits but 

relied on a priori information about the target speaker and/or background noise. We developed a 

recurrent neural network (RNN) algorithm for enhancing speech in non-stationary noise and 

evaluated its benefits for speech perception, using both objective measures and experiments with 

CI simulations and CI users. The RNN was trained using speech from many talkers mixed with 

multi-talker or traffic noise recordings. Its performance was evaluated using speech from a novel 

talker mixed with novel noise recordings of the same class, either babble or traffic noise. Objective 

measures indicated benefits of using a recurrent over a feed-forward architecture and predicted 

better speech intelligibility with than without the processing. The experimental results showed 

significantly improved intelligibility of speech in babble noise but not in traffic noise. CI subjects 

rated the processed stimuli as significantly better in terms of speech distortions, noise 

intrusiveness and overall quality than unprocessed stimuli for both babble and traffic noise. These 

results extend previous findings for CI users to mostly unseen acoustic conditions with non-

stationary noise.

I Introduction

Despite great advances in cochlear implant (CI) technology and the benefits that these 

provide, users of CIs still encounter difficulties understanding speech in noisy environments, 

especially with non-stationary backgrounds, such as competing speech or traffic. CI users 

struggle more than normal-hearing (NH) listeners in these conditions, partly due to a 

decreased ability to make use of temporal fluctuations in the background noise (Stickney et 
al., 2004; Cullington and Zeng, 2008). Furthermore, the spectral resolution that a CI can 

deliver is limited by the use of a small number of electrodes whose outputs interact due to 

current spread (Carlyon et al., 2007; Oxenham and Kreft, 2014). In addition, CI listeners 

have poor sensitivity to the temporal fine structure of sounds (Moore and Carlyon, 2005), 

and this may limit their ability to perceptually segregate speech from interfering sounds. As 

a result, CI users rely strongly on slowly-varying temporal-envelope information and this 

makes them especially susceptible to the effects of modulated, or non-stationary, interfering 

noise (Cullington and Zeng, 2008; Fu et al, 2013). Previous studies have shown improved 
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speech intelligibility (SI) for speech in fluctuating noise using directional algorithms, but 

these depend on the assumption that the target speech and masking noise are spatially 

separated (Wouters and Vanden Berghe, 2001; Hersbach et al., 2012). In addition, such 

algorithms usually require the user to face the target talker, which is not always possible. 

Here we describe and evaluate a single-microphone algorithm that operates without spatial 

information and that can be applied in conjunction with directional algorithms in CI speech 

processors (Hersbach et al., 2012).

Conventional single-microphone speech enhancement algorithms, such as those used in 

current CIs, are based on statistical signal processing methods that include spectral 

subtraction and wiener filtering (Boll, 1979; Scalart and Filho, 1996). These have been 

shown to improve the intelligibility of speech in stationary noise for CI users (Loizou et al., 
2005; Dawson et al., 2011; Mauger et al., 2012) and for NH listeners using CI simulations 

(Bolner et al., 2016; Lai et al., 2017). Data-based algorithms using machine-learning (ML) 

techniques such as deep neural networks (DNN) or gaussian mixture models (GMM) were 

successful for speech in non-stationary, multi-talker babble and achieved significant SI 

improvements for NH (Kim et al., 2009; Bentsen et al., 2018), hearing-impaired (HI; Healy 

et al., 2013; 2015; 2019; Chen et al., 2016; Monaghan et al., 2017; Bramslow et al., 2018) 

and CI listeners (Hu and Loizou, 2010; Goehring et al., 2017; Lai et al., 2018). 

Improvements of more recent approaches over earlier ones have been mainly driven by two 

factors: the use of more powerful DNN-based regression systems instead of classification 

systems, and the use of a ratio mask instead of a binary mask as the training target (Madhu 

et al., 2013; Bentsen et al., 2018). However, all of these algorithms made use of some a 
priori information about the target speech and/or interfering noise by using the same target 

speaker (Lai et al., 2018; Chen et al., 2016), background noise (Goehring et al., 2017) or 

both (Kim et al., 2009; Hu and Loizou, 2010; Healy et al., 2013; 2015; 2019; Goehring et 
al., 2017; Lai et al., 2017; Bramslow et al., 2018; Bentsen et al., 2018) for the training and 

testing of the algorithm.

While the results of these studies are promising, in practice the application to CI speech 

processors requires an algorithm to generalize to acoustic conditions that were not presented 

during the training. Unfortunately, performance has been found to drop substantially for 

unseen testing data evaluated with objective intelligibility predictors (May and Dau, 2014; 

Chen and Wang, 2017) and for a speaker-independent over a speaker-dependent system 

evaluated with CI users (Goehring et al., 2017). Recent computational studies provide 

evidence that the generalization performance of DNNs to unseen speakers or background 

noise can be improved by using recurrent neural network (RNN) architectures (Weninger et 
al., 2015; Chen and Wang, 2017; Kolbaek et al., 2017). These differ from feed-forward 

architectures by using recurrent connections as well as feedback and gate elements to add 

temporal memory to the network (Graves et al., 2013). One of the most successful RNN 

architectures is the “long short-term memory” (LSTM) RNN architecture that uses four 

gates to accumulate information about past input and state data and learns to manage this 

information over time (Hochreiter and Schmidhuber, 1997; LeCun et al., 2015). RNN-

LSTM algorithms have shown improved generalization using objective measures, but have 

not been evaluated in listening studies with CI users. However, similar types of LSTM-

RNNs have recently been shown to provide benefits for speech-in-noise perception for HI 
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listeners (Bramslow et al., 2018; Keshavarzi et al., 2018; 2019; Healy et al., 2019), and they 

represent a promising way for improving performance for CI users in conditions with non-

stationary noise that was not included in the training data.

In addition to the requirement for generalization to unseen conditions, a constraint for the 

practical use of ML-based algorithms in CI devices is a processing delay below about 10-20 

ms, to avoid subjective disturbance during speech production and to limit audio-visual 

asynchrony (Stone and Moore, 1999; Goehring et al., 2018; Bramslow et al., 2018). Most of 

the studies described above used non-causal signal processing by providing future frames to 

the input of the neural network (for example, Healy et al., 2013; 2015; 2019; Chen et al., 
2016). This could not be done in a hearing device due to the excessive delay it would 

introduce. Other studies have used causal signal processing without future frames to stay 

within the tolerable range of delays (Bolner et al., 2016; Monaghan et al., 2017; Goehring et 
al., 2017; Bramslow et al., 2018).

Another constraint is that current CI devices have limited computational power and memory. 

Furthermore, the speech processor of CI devices is worn behind the ear of the user and 

therefore is limited in terms of battery power. While this may improve in the future, the use 

of highly complex ML architectures with millions of parameters and extensive acoustic 

feature-extraction methods is unlikely to yield a practical solution for next-generation CI 

devices. We focussed on using a real-time-feasible, low-complexity architecture with a small 

number of layers and processing units in conjunction with simple acoustic features similar to 

those extracted by CI speech processors, to facilitate the practical application of the 

algorithm in future CI devices.

We used an RNN-based algorithm to process speech in noise and assessed its benefits in 

terms of speech perception with CIs in two listening experiments. The main research 

question for both experiments was whether an RNN can generalize to an unseen speaker and 

noise condition over a range of signal-to-noise ratios (SNRs) that are relevant for CI users. 

Initially, two objective SI prediction methods were used to optimize and evaluate the RNN. 

The first experiment evaluated performance of the RNN for speech in babble using CI 

vocoder simulations presented to NH listeners (Oxenham and Kreft, 2014; Grange et al., 
2017; Fletcher et al., 2018). Two simulated amounts of current spread were used to simulate 

CI users with electrodes positioned close to or far from the stimulated neural elements, in an 

attempt to model the variability that characterizes the CI population, and to evaluate its 

effects on the benefits of RNN processing over no processing. The second experiment 

measured CI users’ speech-in-noise performance for two realistic noise scenarios, multi-

talker babble and traffic noise. In addition, subjective speech quality ratings were collected 

to determine if CI users preferred the RNN processing over no processing. For both speech 

intelligibility and quality comparisons with CI users, an ideal noise-reduction condition was 

included, for which the speech and background noise were available separately, to evaluate 

the theoretical upper limit of benefits that could be obtained with the algorithm.
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II Algorithm Description

A Signal processing and RNN architecture

The RNN-based single-microphone algorithm is illustrated schematically in Fig. 1. The 

input signal was the unprocessed (UN) speech in noise that was obtained by adding the 

speech to the noise:

x t = s t + n t (1)

where t is time, x is the speech in noise, s is the clean speech, and n is the noise. The input 

signal was segmented into 20-ms frames with 10-ms overlap between successive frames, 

giving 320 samples per frame at a sampling rate of 16 kHz.

Acoustic features were extracted from each frame by calculating the energy of an FFT-based 

gammatone filterbank (Patterson et al., 1995) consisting of 64 channels equally spaced on 

the ERBN-number scale (Glasberg and Moore, 1990), with center frequencies from 50 to 

8000 Hz. The gammatone features were obtained using Hanning-windowed frames. We 

chose these simple features because of the low computational requirements and based on a 

comparison study where gammatone features were only slightly inferior to a 

computationally much more complex feature set (Chen et al., 2014). The acoustic features 

were scaled to have zero mean and unit variance by subtracting the mean and then dividing 

by the standard deviation calculated across the whole set of training data. The target data for 

training the RNN were the ideal ratio masks (IRM) that were calculated by passing the 

speech and noise signals separately through the 64-channel gammatone filterbank and 

calculating the wiener gain in the time-frequency domain for each frame j and frequency 

channel m:

IRM j . m = S2 j . m
S2 j . m + N2 j . m

(2)

where S(j,m) and N(j,m) are the magnitudes of s(t) and n(t) in the mth channel of frame j, 
respectively. The soft gain function applied by the IRM was chosen here over the ideal 

binary mask (IBM) because it generally leads to better speech quality and intelligibility 

(Madhu et al., 2013). The IRM also provides more precise information about the local SNR 

in each time-frequency (T-F) segment than the IBM during the training of the algorithm. It 

has the additional advantage that no threshold criterion has to be chosen or adapted, in 

contrast to the IBM.

The RNN consisted of an input layer, two hidden LSTM layers with 128 units, followed by a 

fully connected layer with 64 sigmoidal units as the output layer. The LSTM processed a 5-

timestep input where each timestep was related to acoustic features extracted from a single 

frame of the input signal (noisy speech); steps 1, 2, 3, 4, and 5 corresponded to successive 

frames j-4, j-3, j-2, j-1, and j, respectively. We selected this architecture based on previous 

Goehring et al. Page 4

J Acoust Soc Am. Author manuscript; available in PMC 2020 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



studies using HI listeners (Keshavarzi et al., 2018; 2019). The RNN estimated the IRM for 

frame j as its output (estimated ratio mask, ERM).

The ML-frameworks TFlearn and Tensorflow were used to construct, train and test the RNN 

(Abadi et al., 2016; Tang, 2016). The “adam” algorithm (Kingma et al., 2015), a method for 

stochastic optimization, was used as the training algorithm, with the goal of minimizing the 

mean square error (MSE) between the ERM and IRM. The learning rate was set to 0.001, 

the batch size was 1024 and otherwise the default settings were used for adam, as specified 

by TFlearn. An early-stopping criterion was used to choose the best-performing model for a 

validation dataset that consisted of about a third of the testing data. Performance for the 

validation dataset did not improve significantly after one presentation of the full training 

dataset (an epoch). Instead, performance decreased with more than two epochs, as indicated 

by an increased MSE between the ERM and IRM when testing at SNRs of 0, 5 and 10 dB 

(the MSE increased by up to 30% for 10 epochs versus 1 epoch of training). This behaviour 

indicated that the RNN was overfitting the training data, which could not be avoided when 

using dropout regularization with a proportion of 20% (Srivastava et al., 2014). It seems 

likely that, because of the large mismatch between training and validation data (different 

speaker, noise recording and partly SNR), multiple presentations of the same training data 

would not improve performance on the validation data. Therefore, we chose to perform only 

one epoch of training to avoid overfitting the training data and to maximise performance for 

the validation data. One epoch of training comprised 3185 parameter updates with gradients 

computed over batches of 1024 frames each (about 2 utterances per batch), but took only a 

few minutes on a modern laptop computer. Performance was found to be very similar for 

several RNN models that were trained on a single epoch each, confirming the robustness and 

efficiency of the adam algorithm. This approach also serves as a proof-of-concept for a 

system that could be quickly re-trained in practice to adapt to a new acoustic environment. 

This could, for example, be performed on a mobile device.

After the network had been trained, the ERM and IRM were used to process the noisy 

speech in each frame (by element-wise multiplication in the T-F domain) so as to attenuate 

T-F segments with low SNR while maintaining segments with high SNR. To avoid extreme 

changes in gain and to preserve an awareness of the acoustic environment, the applied gain 

was limited to values in the range from 0.1 to 1 for both the ERM and IRM:

Y ID j, m = max IRM j, m , 0.1 * X j, m

YPR j, m = max ERM j, m , 0.1 * X j, m
(3)

where YID(j,m) and YPR(j,m) are the magnitudes for the mth channel and frame j of the 

speech in noise after weighting with the estimated and ideal ratio masks, respectively. For 

both YID and YPR, the modified magnitudes from the processed frames were combined with 

the noisy phases of the speech-in-noise signal x(t) to obtain the output signals yID(t) and 

yPR(t), using the overlap-add operation and hanning windowing. The output signals were 

presented acoustically to allow similar testing conditions for NH listeners and CI users. All 

stimuli were equalized to have the same RMS level after the processing.
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B Training and testing data

The speech data used for training the RNN consisted of sentences taken from CSTR VCTK, 

a British-English multi-speaker corpus with a variety of accents (available online from the 

University of Edinburgh, Veaux et al., 2016). We used 100 sentences from each of 80 

speakers (40 female) to obtain a speech training dataset of 8000 sentences in total. The 

multi-talker babble used for training consisted of 25 real-world recordings of various multi-

talker babbles (recorded from cafeterias, canteens, cafes, and shopping malls) obtained from 

Freesound Datasets (Fonseca et al., 2017). Recordings ranged in length from 5 to 81 seconds 

and were concatenated to form the training babble, giving a total duration of about 17 min. 

Traffic noise training data were generated using 25 real-world recordings of various traffic 

noises (recorded on motorways and public streets with cars passing by), also obtained from 

Freesound Datasets and with a total duration of 8.5 minutes. The speech-in-noise data used 

for training were then generated by mixing the speech data (VCTK) with random cuts of 

either the babble or the traffic noise at 5 dB SNR to obtain two separate training datasets, 

one for babble and one for traffic, each with 8000 utterances and a length of about 9 hours. 

This SNR was chosen to represent a challenging condition in which CI users struggle to 

understand speech in babble.

For the first evaluation based on objective measures, the speech-in-noise data used for 

testing the algorithm in babble were generated from the BKB sentences (English, spoken by 

a male talker, Bench and Bamford, 1979) mixed with different multi-talker babble 

recordings at SNRs of 0, 5 and 10 dB. Six babbles with 2, 4, 8, 16, 32 and 64 talkers were 

generated to evaluate the objective measures (section 2.3), using sentences from the TIMIT 

corpus (Garofolo et al., 1993). Each babble had equal numbers of male and female talkers 

and a duration of 1 min. These multi-talker babbles were filtered to have the same long-term 

spectrum as the BKB sentences.

For the test stimuli in the listening experiments, the 20-talker babble from Auditec (St. 

Louis, US) was used, as in previous publications (e.g. Goehring et al., 2017). For the second 

listening experiment, we also used a traffic noise recording (“Traffic02” obtained from 

MusicRadar, available online at https://www.musicradar.com/news/tech/sampleradar-286-

free-real-world-fx-samples-467432, downloaded 20/11/2018). The dataset used for testing 

the RNN algorithm in the listening experiments consisted of 270 sentences (18 lists) from 

the BKB corpus mixed with either the 20-talker babble or the “Traffic02” noise at SNRs 

between -10 and 20 dB (in 2-dB steps). We generated a second set for evaluation with the 

objective measures with these stimuli at SNRs of 0, 5 and 10 dB. It should be noted that the 

RNN was evaluated using a range of SNRs, both higher and lower than used for training. 

Furthermore, all speech and noise recordings used for the objective measures and the 

listening experiments were not part of the training data and there were two separate 

conditions for training and testing two RNNs: one for babble and one for traffic.

C RNN performance evaluation using objective measures

As a preliminary evaluation and to quantitatively compare the performance of the RNN to 

that for previous studies, the RNN was evaluated using two objective SI measures, the short-

time objective intelligibility metric, STOI (Taal et al., 2011), and the normalized-covariance 
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metric, NCM (Holube and Kollmeier, 1996), using utterances from the two objective-

measure datasets. Both NCM and STOI are intrusive SI prediction methods that use the 

clean speech signal as reference for the speech signal under test. The NCM applies a filter 

bank to both signals, extracts the temporal envelope for each filter channel and calculates a 

weighted sum over the normalized covariance (linear correlation) between the envelopes of 

the reference and the test signals in each filter bank channel. The STOI follows a similar 

method but calculates the mean of the linear correlation coefficients between the filter bank 

envelopes of the signals in 384-ms long time frames. NCM and STOI have been used in 

previous studies for predicting the effects on SI of speech enhancement algorithms based on 

time-frequency masks. The first evaluation compared the predicted SI produced by the RNN 

algorithm for speech in babble noise for conditions with different numbers of competing 

talkers in the babble. Twenty BKB sentences from the testing data were mixed with random 

cuts of the six artificially generated multi-talker babbles with between 2 and 64 talkers (2T–

64T) and with the 20-talker babble. Each babble was mixed at SNRs of 0, 5 and 10 dB. Note 

that the 20T babble was not filtered to have the same long-term spectrum as the BKB 

sentences, but was used in its original form, as for the listening experiments.

The results for the speech-in-noise processed with the RNN algorithm (2T-64T) are shown 

in Fig. 2 together with the mean scores (across babble types) for the unprocessed (UN) and 

ideal (IRM) conditions. The RNN processing improved the NCM scores over those for 

condition UN for babble with two or more talkers and improved the STOI scores for babble 

with four or more talkers. For condition UN, the NCM metric predicted an increase in SI 

with increasing number of talkers (from 0.45 for 2T to 0.61 for 64T at 0 dB SNR), whereas 

the STOI metric predicted SI to vary only slightly with the number of talkers (not shown). 

The improvement in predicted SI produced by processing with the RNN increased with 

increasing number of talkers. Both the STOI and the NCM predicted slightly smaller 

improvements for the 20T babble (from Auditec) than for the other babbles, especially at 0 

dB SNR. Overall, these results indicate that the RNN processing generalized well over 

babbles with 8 to 64 competing talkers.

The second performance evaluation compared a feed-forward DNN architecture as used in 

Goehring et al. (2017) and the RNN architecture used here. The number of hidden units and 

layers of the DNN was made to be similar to those for the RNN and the same feature set was 

used. The training data and training procedure were the same as for the RNN. The results for 

speech in the 20T babble are shown in Fig. 3. Scores are expressed as the difference between 

the scores for the speech processed with the RNN (PR) and UN, divided by the maximum 

improvement obtained with the IRM for a given SNR. The NCM metric predicted larger 

improvements in SI for the RNN than for the DNN for all three SNRs, while the STOI 

metric predicted larger improvements for the SNRs of 0 and 10 dB, with similar outcomes 

for the SNR of 5 dB. On average, the relative improvements predicted by STOI and NCM 

were 38% for the DNN and 46% for the RNN, indicating an advantage of the RNN of about 

8 percentage points. It should be noted that the RNN provided the largest benefit over the 

DNN of about 15 percentage points on average for the SNR of 10 dB, which represents a 

condition that is challenging for many CI users (Boyle et al., 2013; Goehring et al., 2017; 

Croghan and Smith, 2018).

Goehring et al. Page 7

J Acoust Soc Am. Author manuscript; available in PMC 2020 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Several measures of the accuracy of the ERM were also calculated, including the MSE, the 

classification score (HIT-FA score calculated as hit rate, HIT, minus false-alarm rate, FA, 

Kim et al., 2009; Goehring et al., 2017) and the NCM and STOI scores for the RNN-

processed signals used for the listening experiments. The results are shown in Table 1 for 

both babble (20T) and traffic noise and for three SNRs, 0, 5, and 10 dB. Scores are shown 

for the RNN trained using the same class of noise (RNN-B for babble and RNN-T for 

traffic), and for the RNN trained on babble but tested with traffic noise and vice versa. Based 

on the NCM and STOI scores for condition UN, babble was predicted to lead to lower SI 

than the traffic noise by an amount equivalent to a change in SNR of about 5 dB. As 

expected, the RNN models that were trained on a specific type of noise performed best for a 

noise of that type. For cross-testing, RNN-B performed well with traffic noise, with only 

slight decreases in estimation accuracy and NCM and STOI values compared to RNN-T. 

However, the scores for HIT-FA, MSE and NCM for speech in babble processed with RNN-

T were all substantially worse than for babble processed with RNN-B. This suggests that 

training the RNN using a more difficult noise type (babble) can lead to good generalization 

to an easier noise type (traffic), but the converse is not the case. In general, the objective 

measures indicated good estimation performance in terms of HIT-FA scores, with acceptable 

levels of FA (<20%, Hu and Loizou, 2010) and large improvements for conditions RNN-B 

and RNN-T over condition UP, as predicted by NCM and STOI. The RNN processing often 

led to at least 50% of the improvement that the IRM achieved.

III Listening Experiment 1: CI Simulations

A Subjects

Ten native speakers of British English (5 female, with an average age of 35 yrs and a range 

of 20 to 61 yrs) with self-reported normal hearing were tested. The subjects were blinded as 

to which condition was being presented and were unaware of the goal of the experiment 

until after testing was complete. Subjects were not used to listening to CI simulations based 

on vocoder processing. The study was part of a larger research program that was approved 

by the National Research Ethics committee for the East of England. Before commencing, 

subjects gave their informed consent and were informed that they could withdraw from the 

study at any point.

B CI simulation and listening procedure

All stimuli were processed using the SPIRAL vocoder to simulate CI processing (Grange et 
al., 2017). SPIRAL decouples the analysis and carrier stages of the vocoder processing and 

combines a continuous mixture of envelopes from the analysis filters with a large number of 

carrier tones to simulate current spread and/or neural degeneration along the cochlea. It has 

been argued that the SPIRAL vocoder provides a more accurate simulation of the perceptual 

effects of current spread on speech perception than traditional noise-band or tone vocoders 

(Shannon et al., 1995; Oxenham and Kreft, 2014), and that resulting speech scores more 

accurately match those obtained from CI listeners (Grange et al., 2017; Fletcher et al., 2018). 

We used 16 analysis filter bands within SPIRAL to represent the 16 electrode channels in 

CIs from Advanced Bionics (AB, Valencia, US), and used two current decay slopes of -8 

and -16 dB/oct to simulate the effects of current spread observed with typical CIs (Oxenham 
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and Kreft, 2014). The evaluation stimuli (each at SNRs from -10 to 20 dB) were processed 

with the SPIRAL vocoder using a sampling rate of 16 kHz and were presented to the left ear 

of the subjects using Sennheiser HD650 circumaural headphones (Sennheiser, Wedemark, 

Germany) connected to an Roland Quad-Capture external soundcard (Roland, Hamamatsu, 

Japan). The setup was calibrated with a KEMAR Artificial Head (GRAS, Holte, Denmark) 

and HP3561A Signal Analyzer (Hewlett-Packard, Palo Alto, US) to give a presentation level 

of 65 dB SPL using a noise stimulus with the same long-term spectrum as the target speech. 

Testing was performed in a sound-attenuating room.

To let the subjects acclimatize to the CI simulation, the test started with the presentation of 

10 practice sentences in quiet, 10 sentences in babble and unprocessed (UN), and 10 

sentences in babble processed with the RNN algorithm (PR) at 10 dB SNR, with the text 

presented on a screen (and equally split between current spread settings of -8 and -16 dB/

oct). Next, a 1-up, 1-down adaptive procedure (MacLeod and Summerfield, 1990) was used 

to measure the speech reception threshold (SRT) at which 50% of the sentences in babble 

were understood correctly. A trial was deemed correct if all three keywords in that sentence 

were correctly repeated by the subject. The starting SNR was -4 dB, which was chosen to 

give low intelligibility, and the step size was 2 dB. The first sentence from a randomly-

chosen list was repeated until it was correctly understood before the remaining 14 sentences 

from that list were presented in random order. The average SNR used with the last 10 

sentences was taken as the SRT for that run. If the adaptive procedure called for an SNR 

below -10 dB, the SNR was kept at -10 dB, but the adaptive track continued (this was never 

the case for conditions UN and PR, but it did happen for IRM during the testing). There 

were two processing conditions (UN, PR) and two current spread simulations (-8, -16 dB/

oct), giving four conditions in total. Three runs were performed for each condition, giving 12 

runs in total. The order of the 12 runs was randomized for each subject. Note that only the 

20T babble was used, as the objective measures predicted this to be more difficult than the 

traffic-noise condition.

C Results

Figure 4 shows individual results for the ten subjects and the group average for conditions 

UN and PR and both simulated current spread values. As expected, the SRTs were lower 

(better) for the -16 dB/oct condition than for the -8 dB/oct condition, by 4.7 dB for condition 

UN and by 6.2 dB for condition PR. For the simulated current spread of -16 dB/oct, the 

average SRT was 7.3 dB for condition UN and 4.4 dB for condition PR. All ten subjects 

showed lower SRTs for PR than for UN, the difference ranging from 1.5 to 4.5 dB. For the 

simulated current spread of -8 dB/oct, the average SRT was 12 dB for condition UN and 

10.6 dB for condition PR. All subjects but one showed better speech reception for condition 

PR than for condition UN, the difference ranging from –1.0 to 2.8 dB. A two-way, repeated-

measures analysis of variance (ANOVA) was conducted with factors processing condition 

(UN and PR) and simulated current spread (-8 dB/Oct and -16 dB/Oct). There were 

significant effects of processing condition [F(1,9) = 43.6, p < 0.001], simulated current 

spread [F(1,9) = 93.8, p < 0.001] and a significant interaction [F(1,9) = 5.9, p = 0.022]. Post-

hoc tests with Bonferroni correction for each of the two simulated current spread settings 
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showed significant differences between UN and PR for both -8 dB/Oct [t(9) = 3.3, p = 

0.009] and -16 dB/Oct [t(9) = 8.8, p < 0.001] current spreads.

D Discussion

The results were consistent with the predictions of the objective measures and showed 

substantial mean benefits in SRT of between 1.4 and 2.9 dB for speech in 20T babble. There 

were significant effects of the simulated current spread, with higher SRTs (worse 

performance) for the -8 dB/Oct spread and a larger benefit of the RNN processing for the 

-16 dB/oct spread. While the former effect was expected due to the greater spectral smearing 

produced by the -8 dB/oct spread, the latter effect was somewhat surprising, as it may 

indicate that the RNN processing would be less beneficial for CI listeners with lower 

spectral resolution. However, the most likely explanation for the reduced benefit of the RNN 

processing with the greater current spread is the fact that with this spread some listeners 

struggled to understand the speech even without babble. This explanation is supported by the 

observation that the two subjects who performed worst in condition UN (S8, S9) also 

received the smallest benefit (S9) or even a degradation of performance with PR (S8). In 

contrast, the two subjects with the best performance in condition UN (S1 and S3) showed 

substantial benefits in SRT of 1.9 and 2.5 dB. It is likely that the simulated spread of -8 

dB/oct is more suitable for simulating CI users who struggle with speech understanding in 

quiet than for simulating CI users who mainly struggle when noise is present. For the 

simulated current spread of -16 dB/oct, the average SRT for condition UN was 7.3 dB 

(ranging from 5.9 to 8.7 dB), which is consistent with SRTs obtained with well-performing 

CI users (e.g. 6.7 dB for the same 20T babble in Goehring et al., 2017; 7.9 dB for a 4T 

babble in Croghan and Smith, 2018). Our SRTs are also consistent with those of Grange et 
al. (2017), who reported that for speech-shaped noise a current spread setting of -16 dB/oct 

yielded SRTs with SPIRAL that matched those found for CI users.

IV Listening Experiment 2: CI Users

A Subjects

Ten post- or peri-lingually deafened native speakers of British English were tested (6 female, 

mean age of 65 yrs with a range from 49 to 74 yrs). Subjects were unilaterally implanted 

users of an AB HiRes 90K cochlear implant with a minimum of 3 years of experience with 

their device (mean duration of implant use of 5.5 yrs). During testing, the subjects listened 

only with their implanted ear. If a subject usually wore a hearing aid in the other ear, it was 

taken off during the experiment. Prior to the experiment, the most recent clinical map was 

obtained for each subject (usage experience with the current maps ranged from 10 months to 

2 years). Demographic and device information for the subjects is given in Table 2.

The study was part of a larger research program that was approved by the National Research 

Ethics committee for the East of England. Before commencing, subjects gave their informed 

consent and were informed that they could withdraw from the study at any point. Subjects 

were paid for taking part and reimbursed for travel expenses.
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B Technical setup and study design

The acoustic stimuli were presented via a Harmony speech processor (AB) that was battery 

powered and worn by the subject during the listening tests. The stimuli were delivered to the 

subject using an external USB soundcard (Roland UA-55 Quad-Capture USB, Hamamatsu, 

Japan) that was connected to the auxiliary (AUX) input port of the processor with an audio 

cable provided by AB, and with the input from the microphone disabled. The use of a 

clinical AB speech processor for this part of the experiment ensured that the stimuli did not 

exceed limitations in output current and comfortable listening levels, as specified in the 

individual clinical map of the subject. The most recent clinical map of the subjects was used 

and adaptive pre-processing functions were switched off (e.g. adaptive noise reduction). 

Most subjects used a HiRes Optima-S strategy but S5 used a HiRes-S Fidelity 120 strategy. 

Subjects were allowed to take breaks when required and the whole testing procedure took 

about 2.5 hours.

Initially, the input to the speech processor was adjusted to the most comfortable level using a 

randomly chosen sentence in quiet. The level was then kept constant. An adaptive procedure 

similar to that for Experiment 1 was used to measure the SRT. There were three processing 

conditions (UN, PR, IRM) and two noise conditions (babble and traffic noise), giving six 

conditions in total. The two noise conditions were tested in two separate blocks whose order 

was counterbalanced across subjects. Three runs were performed for each condition. The 

order of the nine runs per block was randomized for each subject.

After the speech intelligibility measurements were completed, a subjective quality rating 

procedure was used, in accordance with ITU-T P.835 (Hu and Loizou, 2008). Subjects were 

asked to rate the stimuli in terms of speech distortions (SD), background noise intrusiveness 

(NI) and overall speech quality (OQ). Subjects used a graphical user interface (GUI, 

programmed in MATLAB, Mathworks, Natick, US) that allowed them to play a sentence in 

noise by clicking on one of three cursors (numbered 1-3), one for each processing condition 

(UN, PR, IRM). The task was to place the three cursors on continuous scales arranged 

horizontally in the GUI window (with labels left and right: for SD, ‘Not distorted’ to ‘Very 

distorted’; for NI, ‘Not intrusive’ to ‘Very intrusive’; for OQ, ‘Bad quality’ to ‘Excellent 

quality’). For each trial, with a given sentence in noise, the subject had to position each of 

the three cursors in each of the three types of scale, giving nine judgments per trial. For 

every trial, the initial locations of the cursors within the scales were chosen randomly and 

the scales were assigned to a range of arbitrary units from 0 to 100, with higher scores 

reflecting better ratings. In total, each subject completed 20 trials, based on 20 sentences 

drawn from the BKB corpus and mixed with either babble or traffic noise (10 sentences per 

noise, equally split between SNRs of 10 and 4 dB). The subjects were blinded as to which 

condition was being presented and which condition was associated with each cursor.

C Results

Figure 5 shows box plots of the SRTs for the three processing conditions for speech in 

babble (left) and traffic noise (right). Overall performance was best for condition IRM, with 

SRTs of –8.0 and -8.6 dB (close to the minimum of -10 dB) in babble and traffic noise, 

respectively, and worst for condition UN, with SRTs of 7.9 and 2.8 dB, respectively. The 
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RNN algorithm (PR) led to improvements in SRTs relative to condition UN by 3.4 and 2 dB 

for babble and traffic noise, respectively.

A two-way, repeated-measures ANOVA was conducted with factors processing condition 

(UN, PR and IRM) and noise type (babble, traffic). There were significant effects of 

processing condition [F(2,18) = 273.2, p < 0.001] and noise type [F(1,9) = 53.3, p < 0.001] 

and a significant interaction [F(2,18) = 14.6, p < 0.001]. Mauchly’s test showed no violation 

of sphericity for any of these effects. Bonferroni-corrected post-hoc tests revealed highly 

significant differences between all three pairs of processing conditions (UN vs PR: p = 

0.006, UN vs IRM: p < 0.001, PR vs IRM: p < 0.001).

The performance of the RNN algorithm was assessed further by comparing the SRTs for 

conditions UN and PR without including the IRM condition. The individual SRTs for 

conditions UN and PR are shown in Fig. 6. For the babble, all subjects performed better with 

PR than with UN, with a mean benefit of 3.4 dB. For the traffic noise, results were mixed, 

with six subjects showing benefits with PR and four subjects showing worse SRTs. A two-

way, repeated-measures ANOVA was conducted with factors processing condition (UN and 

PR) and noise type (babble and traffic). There were significant effects of processing 

condition [F(1,9) = 72.5, p = 0.002] and noise type [F(1,9) = 86.8, p < 0.001] but no 

significant interaction [F(1,9) = 2.6, p = 0.144]. Post-hoc tests with Bonferroni correction for 

each of the two noise types showed a significant difference between conditions UN and PR 

for babble [t(9) = 7.2, p < 0.001] but not for traffic [t(9) = 1.9, p = 0.077].

The results of the subjective rating procedure are shown in Fig. 7 for each processing 

condition and noise type. Mean scores were higher for condition PR than for condition UN 

for all conditions, with improvements ranging from 17 to 50 units for babble and from 12 to 

33 units for traffic noise. The improvements were larger for NI than for SD. The benefits for 

OQ were intermediate. Condition IRM was always rated highest, with improvements over 

UN from 23 to 55 units for babble and from 21 to 59 units for traffic noise. The magnitude 

of the improvements for IRM over UN was similar across the different types of rating. For 

both PR and IRM, there were smaller benefits in terms of SD at 4 dB SNR, due to better 

ratings for condition UN.

A four-way, repeated-measures ANOVA was conducted with factors rating scale (SD, NI 

and SQ), SNR (4 and 10 dB), processing condition (UN, PR and IRM) and noise type 

(babble and traffic). To reduce the effects of the bounded range of the rating scores, for 

statistical analysis the scores were transformed using the rationalized arcsine transform 

(RAU; Studebaker, 1985). Following this transform, the scores for each condition were 

approximately normally distributed. There were significant effects of SNR [F(1,9) = 24.9, p 
= 0.001], processing condition [F(1.1,10.1) = 35.5, p < 0.001, using the Greenhouse-Geisser 

correction for a violation of sphericity] and noise type [F(1,9) = 45.7, p < 0.001] and 

significant interactions between rating scale and processing condition [F(1.9,17.9) = 8.0, p = 

0.004] and between SNR and processing condition [F(1.5,13.7) = 16.5, p < 0.001]. No 

further effects were significant. For the main effect of processing condition, post-hoc tests 

with Bonferroni correction showed significant differences between conditions UN and PR (p 
= 0.002), UN and IRM (p < 0.001), and PR and IRM (p = 0.001).
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D Discussion

The results for CI subjects showed significant improvements in SRTs with the RNN 

processing over condition UN for the babble but not for the traffic noise. SRTs improved 

with the RNN processing for all CI subjects for the babble noise, but only for 6 out of 10 

subjects for the traffic noise. SRTs were generally higher for the speech in babble than for 

the speech in traffic noise, with a mean difference of 5.1 dB for the unprocessed stimuli. 

This may partly explain the observed difference in outcomes, as the RNN algorithm is likely 

to introduce more estimation errors at lower SNRs. Furthermore, the traffic noise was highly 

non-stationary, with very slow modulations of amplitude (e.g. the sound of a car or bus 

passing by) and this led to strongly time-varying masking of the speech. The local SNR was 

likely to be strongly negative for the more masked parts of the speech, resulting in large 

estimation errors of the RNN algorithm and therefore no benefits or even some degradation 

of speech intelligibility for those parts. This effect may have been exacerbated by the high 

SNR of 5 dB used for training of the RNN algorithm. This was chosen beforehand based on 

typical performance with the babble background, but it was less appropriate for the easier 

traffic noise background.

The subjective ratings showed that, relative to condition UN, the RNN processing gave 

significant benefits in terms of less speech distortion, less intrusiveness of the background 

noise and better overall speech quality, for both babble and traffic noise. These benefits were 

larger for the babble background than for the traffic noise background, consistent with the 

SRTs. While there were substantial improvements of between 12 and 55 units for PR over 

UN, the IRM condition was rated best in all comparisons, reflecting the limited accuracy of 

the ERM. Improvements in subjective ratings were larger for noise intrusiveness than for 

speech distortions by about a factor of 2. This indicates that the RNN algorithm was 

successful in reducing the background noise while keeping speech distortions at tolerable 

levels. However, the RNN algorithm led to smaller benefits in terms of speech distortions for 

the lower SNR than for the higher one, due to better ratings of speech distortions for 

condition UN. This may have occurred because of larger estimation errors at the lower SNR, 

leading to speech distortions with the RNN that were more comparable to those for 

condition UN. It may also have occurred because some CI subjects struggled to “hear out” 

the speech signal from the background at the lower SNR with condition UN and therefore 

gave ratings of less distortions of the speech than for the higher SNR.

The results for condition IRM showed large improvements of about 10-20 dB in the SRTs 

for both backgrounds and for all subjects. This shows that - in theory - there is room for 

further improvements in SRT using the RNN or similar approaches, via improved accuracy 

of the ERM. It should be noted that a maximum attenuation of 20 dB was applied for 

condition IRM (and for PR) and this could have limited the benefits of condition IRM at 

very low SNRs. This limit could be changed easily, or even optimized for different acoustic 

environments and/or user preferences. In addition, the processed stimuli for conditions PR 

and IRM were re-synthesized using the phase information from the noisy speech and this 

introduces distortions. This problem could be avoided if the RNN algorithm were integrated 

into the speech processor of a CI device and applied directly to the CI filter bank envelopes, 

so as to avoid the re-synthesis of the signals that was done here. Even with these potential 
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limitations in the IRM condition, all subjects reached the lowest possible SNR of -10 dB 

during at least one adaptive track. This further supports the IRM as a strong target for RNN 

training, since it can provide very large improvements in SI and SQ for CI subjects.

V General Discussion

The results of experiment 2 indicate that the speech-in-babble perception of CI users was 

improved using the RNN algorithm. There were significant improvements of the SRTs, with 

improvements up to 2.9 dB for NH subjects listening to CI simulations (experiment 1) and 

3.4 dB for CI subjects. The performance of the CI subjects for speech in babble was typical 

for the CI population, with a mean SRT for condition UN of 7.9 dB (similar to SRTs 

reported by Goehring et al., 2017 and Croghan et al., 2018). There was also a mean 

improvement of 2 dB in CI users' SRTs for speech in traffic noise, but this was not 

statistically significant and some CI subjects performed worse with the RNN algorithm than 

without, by up to 1.2 dB. However, for the CI subjects, SRTs for speech in traffic noise were 

significantly lower than for speech in babble noise, by about 5 dB. Therefore, the CI users 

would have less need for noise reduction when the background was traffic noise.

Subjective ratings of the CI group showed significantly lower speech distortions, less 

intrusiveness of the background noise and better overall quality for condition PR over 

condition UN, for both babble and traffic noise. This is an interesting finding and shows that 

CI listeners were sensitive to changes in sound-quality characteristics due to the processing. 

The subjective ratings are consistent with the SRTs and indicate that CI subjects may prefer 

the RNN processing over no processing in terms of subjective quality.

While these results are consistent with improvements in speech reception reported in 

previous studies that evaluated ML-based algorithms for CI users (Hu and Loizou, 2010; 

Goehring et al., 2017; Lai et al., 2018), there were some important differences in the design 

that make the current findings an important confirmation of this approach and extend its 

practical application to more unseen acoustic conditions. Most importantly, the RNN 

algorithm was evaluated on a novel speaker and background noise, neither of which were 

included in the training data, and the algorithm was evaluated for SNRs that were different 

from the single SNR used for training. Despite the “unseen” nature of the talker, background 

and SNR, the RNN algorithm led to a significant 3.4-dB mean improvement in SRT for 

speech in babble for CI users. This is larger than the 2-dB improvement reported for a 

speaker- and noise-dependent DNN algorithm by Goehring et al. (2017). The greater benefit 

found here can be explained by the better generalization performance of RNN over DNN 

approaches, as shown by computational studies based on objective SI predictions (Koelbak 

et al., 2017; Chen and Wang, 2017), and by the larger training dataset and better training 

algorithm than used by Goehring et al. (2017). Direct comparisons with the results of Hu 

and Loizou (2010) and Lai et al. (2018) are more complicated, because they used different 

test noises and they measured percentage correct scores at a fixed SNR, but they also found 

improvements in speech reception for babble noise using CI subjects. In addition, Hu and 

Loizou (2010) and Lai et al. (2018) used the same speaker for the training and testing 

datasets, which further limits the comparability of the results.
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It should be noted that the RNN algorithm here was trained using a range of noises of the 

same type as the test noise, so the RNN can be described as an environment-specific 

algorithm. Many hearing aids and some CIs include some form of scene analysis to identify 

the acoustic environment (May and Dau, 2014; Launer et al., 2016; Lai et al., 2018), and in 

principle such an analysis could be used to determine when processing using the RNN 

algorithm should be activated.

Interestingly, the SRTs for the CI subjects were very similar to the SRTs for the NH subjects 

listening to CI simulations when using the “more focussed” current-spread setting of -16 dB/

oct. Mean SRTs for condition UN were 7.9 and 7.3 dB for CI and NH subjects, respectively, 

while those for condition PR were 4.5 and 4.4 dB, respectively. This indicates that the 

vocoder simulation with the more focussed current spread setting was successful in 

simulating the speech-reception performance of a group of CI subjects when listening to 

speech in babble and in conditions UN and PR. This extends the results of Grange et al. 
(2017), who reported similar SRTs for CI subjects and NH subjects listening to stimuli 

processed with SPIRAL for speech in speech-shaped noise. However, it remains unknown if 

the SRTs would have been similar for simulated and real CI subjects for speech in traffic 

noise. Also, CI simulations cannot readily account for the very large individual differences 

in speech reception that are found for CI subjects.

The objective measures, NCM and STOI, showed that the RNN algorithm trained with the 

set of babble noises generalized better to traffic noise than the other way around. This could 

indicate that training of an RNN using noises that lead to high SRTs leads to better 

generalization than training with noises that lead to low SRTs, and/or it could mean that the 

training dataset for traffic noise did not utilize the full potential of the RNN algorithm, due 

to less variability in the training data. Interestingly, the NCM and STOI metrics predicted an 

SRT difference between babble and traffic noise for condition UN of about 5 dB, which 

corresponds to the difference found in the experiment with CI subjects. Consistent with the 

data, the NCM and STOI metrics predicted that the improvement produced by the RNN 

algorithm relative to condition UN would be smaller for traffic noise than for babble noise 

(10% smaller relative improvement). It should be noted that the NCM and STOI metrics 

were not designed to predict SI for CI listeners. However, the results indicate that the pattern 

of differences between conditions can be predicted for CI listeners to a certain degree, 

perhaps because the metrics are based on the temporal envelopes in different frequency 

bands, and these are the cues that are conveyed to CI listeners. However, the objective 

measures failed to predict the variability found within the CI population and overestimated 

the benefit of the RNN processing for speech in traffic noise.

If a CI user mainly conversed with a few specific people, the performance of the RNN 

algorithm could be further improved by training using speech from those specific people, as 

was shown by Goehring et al. (2017) for a DNN algorithm. Bramslow et al. (2018) argued 

that such a system would be practical for applications in future hearing devices, where users 

could choose spouses, family members and friends and use recordings of their voices to train 

the algorithm. This is feasible in practice because just a few minutes of recorded speech for 

a given speaker seem sufficient for training (Kim and Loizou, 2009; Bolner et al., 2016; 

Goehring et al., 2017; Bramslow et al., 2018). However, this approach would not ameliorate 
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communication difficulties in situations with speakers for whom the RNN was not trained, 

as would be the case for many social and professional situations. These situations can have a 

tremendous impact on a person's career prospects and overall well-being, and avoidance of 

such social interactions due to communication difficulties can lead to mental health 

problems, such as depression or anxiety (Huber et al., 2015; Choi et al., 2016). For 

communication situations with unknown speakers, our speaker-independent approach, 

optimized for a specific acoustic environment, would be more suitable, especially when 

combined with an environmental sound classifier (May and Dau, 2014; Lai et al., 2018), as 

mentioned above. With respect to the external validity of our test setup, CI subjects 

informally described the background noises as sounding realistic and similar to those in 

everyday environments, with comments such as “lots of people talking” or “like being in a 

pub” for the babble and “a car or lorry going past” or ”like being in traffic” for the traffic 

noise. This indicates that the experiment used testing stimuli that were representative of 

everyday listening situations encountered by CI users.

Improving the speech-in-noise performance of CI users is one of the most important 

challenges for research and development of future CI devices, as CI users typically spend 

large proportions of their daily usage time in noisy situations (Busch et al., 2017). The 

results of this study confirm and extend the promising findings of previous studies based on 

ML techniques to ameliorate speech-in-noise difficulties for users of CI devices, and future 

implementations of this approach will hopefully be incorporated in CI devices.

VI Summary and Conclusions

An RNN algorithm was trained to enhance speech in non-stationary babble and traffic noise 

and shown to provide benefits for speech perception using objective measures and two 

listening experiments, one with CI simulations and one with CI users. The RNN was trained 

using speech from many talkers mixed with real-world recordings of multi-talker babble or 

traffic noise and evaluated using an unknown talker and unseen noise recording of the same 

type as for the training noise, using a range of SNRs. The objective measures indicated small 

benefits of using an RNN over a DNN, and predicted that RNN processing would lead to 

improvements in speech intelligibility. These predictions were confirmed for speech in 

babble by the results of the two listening experiments; mean SRTs across conditions were 

improved significantly by between 1.4 and 3.4 dB. Performance was comparable for the NH 

subjects listening to a CI simulation and for real CI subjects when a CI simulation with a 

current-spread setting of -16 dB/oct was used. However, for traffic noise the RNN did not 

give a significant benefit for the CI subjects. The CI subjects performed better overall for 

speech in traffic noise than for speech in babble. For traffic noise, the low SNRs in the 

region of the SRT meant that the RNN algorithm had to operate under conditions where 

there were likely to be significant errors in the ERM. This may account for the limited 

benefit of RNN processing for speech in traffic noise.

Relative to condition UN, RNN processing led to significant improvements in subjective 

ratings of the CI subjects for speech distortions, noise intrusiveness and overall speech 

quality, for speech in both babble and traffic noise. This indicates that subjects would prefer 

RNN processing over no processing. However, processing using the IRM was always rated 
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as highest, and this IRM processing led to improvements in SRT of 10-15 dB and to 

significantly better speech-quality ratings than with the RNN algorithm, indicating room for 

further improvements in the RNN algorithm.
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Fig. 1. 
Schematic diagram of the RNN algorithm and signal processing framework.
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Fig. 2. 
NCM and STOI scores for seven multi-talker babbles using 2 to 64 different talkers 

(2T-64T) and at 0, 5 and 10 dB SNR. UN, PR and IRM scores are shown for each noise 

condition.
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Fig. 3. 
STOI and NCM scores for speech in the 20T babble at 0, 5 and 10 dB SNR for conditions 

UN, DNN, RNN, and IRM.
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Fig. 4. 
Top: Individual and group mean (M) SRTs for the NH subjects listening to CI simulations 

for conditions UN and PR and the two simulated current spread settings of -8 dB/Oct and 

-16 dB/Oct. The background was 20T babble. Bottom: The difference in SRT between 

conditions UN and PR.
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Fig. 5. 
CI group mean SRTs (circles) and box plots for conditions UN, PR and IRM, for speech in 

babble and traffic noise.
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Fig. 6. 
Top: Individual and group mean (M) SRTs for the CI subjects and conditions UN and PR for 

babble and traffic noise. Bottom: The difference in SRTs between conditions UN and PR.
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Fig. 7. 
Subjective ratings shown as boxplots and mean scores (circles) for speech distortion noise 

intrusiveness, and overall quality for conditions UN, PR, and IRM and for SNRs of 4 and 10 

dB. The backgrounds were babble (columns 1 and 2) and traffic (columns 3 and 4). Lower 

scores indicate more negative ratings (e.g. ‘very distorted’ and ‘bad quality’).
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Table 1

Objective measure scores: HIT-FA alarm rates (with FA scores in brackets), mean square error (MSE) between 

ERM and IRM, and NCM and STOI scores for the RNN algorithms used in the listening experiment, RNN-B 

and RNN-T, and for UN and IRM in both test noise conditions (20-talker babble and traffic noises) and three 

SNRs. The table shows results both for matched-noise (RNN-B in babble, RNN-T in traffic) and unmatched-

noise (RNN-B in traffic, RNN-T in babble) conditions between training and testing.

Tested with babble noise Tested with traffic noise

Metric SNR UN RNN-B RNN-T IRM UN RNN-T RNN-B IRM

HIT-FA (FA) 0 65 (18) 30 (53) 74 (18) 71 (14)

5 78 (9) 46 (42) 80 (10) 77 (9)

10 82 (3) 62 (25) 84 (6) 79 (4)

MSE 0 0.079 0.230 0.064 0.061

5 0.039 0.170 0.037 0.041

10 0.028 0.100 0.028 0.036

STOI 0 0.71 0.77 0.74 0.91 0.82 0.86 0.85 0.94

5 0.82 0.87 0.86 0.94 0.90 0.92 0.91 0.96

10 0.90 0.93 0.92 0.96 0.94 0.95 0.95 0.98

NCM 0 0.55 0.71 0.63 0.92 0.72 0.81 0.79 0.96

5 0.74 0.87 0.82 0.96 0.85 0.91 0.90 0.98

10 0.89 0.95 0.94 0.99 0.93 0.96 0.95 0.99
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Table 2

Subject demographics: sex, age (yrs), etiology of deafness, duration since implanted (yrs), duration of 

deafness (yrs), device type, electrode type, coding strategy, pulse width (μs) and implanted ear.

Subject Identifier Sex Age Etiology of 
deafness

Duration 
implanted

Duration 
of 
deafness

Device Electrode Strategy Pulse 
width

Implanted 
ear

S1 AB25 f 65 Sinus 
infection / 
post-ling.

3 34 Naida
Q90

HiFocus
MS

HiRes
Optima-
S

18 R

S2 AB6 f 70 Unknown / 
Peri-ling.

6 65 Naida
Q70

HiFocus
1J

HiRes
Optima-
S

35 R

S3 AB20 m 73 Unknown / 
post-ling.

3 45 Naida
Q90

HiFocus
MS

HiRes
Optima-
S

29.6 R

S4 AB2 f 59 Possible 
otoxicity / 
post-ling.

3 58 Naida
Q70

HiFocus
1J

HiRes
Optima-
S

31.4 L

S5 AB5 m 76 Otosclerosis / 
post-ling.

9 27 Harmony
90K

HiFocus
1J

HiRes -
S w/
Fidelity 
120

18 L

S6 AB23 f 57 Enlarged 
vestibular 
aqueduct / 
post-ling.

3 58 Naida
Q90

HiFocus
MS

HiRes
Optima-
S

23.3 R

S7 AB24 f 49 Unknown / 
post-ling.

3 4 Naida
Q90

HiFocus
MS

HiRes
Optima-
S

36.8 L

S8 AB3 m 72 Otosclerosis / 
post-ling. 
progression

11 36 Naida
Q70

HiFocus
1J

HiRes
Optima-
S

29.6 L

S9 AB26 f 57 Unknown / 
post-ling.

5 21 Naida
Q70

HiFocus
MS

HiRes
Optima-
S

22.4 L

S10 AB19 m 74 Unknown 3 n.a. Naida
Q90

HiFocus
MS

HiRes
Optima-
S

30.5 L
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