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c-fos Controls the “Private Pathway” of Light-Induced Apoptosis of

Retinal Photoreceptors
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White light (5 klux for 2 hr) induces apoptosis of rod photore-
ceptors in wild-type mice (c-fos */™) within 24 hr, whereas rods
of c-fos knock-out mice (c-fos ~/7) are protected (Hafezi et al.,
1997b).

The range of this protection was tested by analyzing retinas
of c-fos */* and c-fos ™/~ mice up to 10 d after exposure to
threefold increased light intensities (15 klux for 2 hr). In c-fos /"~
mice, rods were unaffected, whereas they were destroyed in
c-fos ™'+ mice. After light exposure, mitochondrial damage in
rods was observed exclusively in c-fos */* mice. Electroretino-
grams recorded 48 hr after exposure revealed a decrease of all
components in c-fos */* mice but indicated no light-induced
loss of function in c-fos /~ mice. Thus, in c-fos ~/~ mice,
light-induced apoptosis is blocked or its threshold is elevated
more than threefold.

Increased activity of the transcription factor activator
protein-1 (AP-1) in retinas of light-exposed c-fos */* mice indi-

cated an acute contribution of AP-1 to apoptosis induction.
AP-1 activity increased already during exposure and peaked
~6 hr thereafter, coinciding with the appearance of major mor-
phological signs of apoptosis. Activated AP-1 mainly consisted
of c-Fos/Jun heterodimers. In c-fos /=~ mice, AP-1 activity
remained unchanged, indicating that no other Jun- or Fos-
family member could substitute for c-Fos. Like damaging light,
N-methyl-N-nitrosourea (MNU) induced AP-1 containing c-Fos
in c-fos */* mice and did not induce AP-1 in c-fos ™/~ mice. In
contrast to light, however, MNU induced apoptosis in rods of
c-fos =/~ mice. Thus, c-Fos is essential for a specific premito-
chondrial “private apoptotic pathway” induced by light but not
for the execution of apoptosis induced by other stimuli.
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Apoptosis is the gene-regulated, energy-dependent suicide of
individual cells. In contrast to necrosis, cells dying by apoptosis
do not affect the adjacent tissue. Apoptosis is involved in mor-
phogenesis and tissue remodeling (programmed cell death) and
in the removal of surplus, diseased, or malignant cells. Apoptosis
also implies the secondary and therefore “unwanted” death of
cells after ischemia reperfusion or excitotoxic lesions (Hender-
son, 1996; Uren and Vaux, 1996; Jacobson et al., 1997; Stefanis et
al., 1997).

Apoptosis is the main mechanism of cell loss in induced (Abler
et al., 1996; Hafezi et al., 1997a) or inherited retinal degeneration
(Portera Cailliau et al., 1994; Wong, 1997, Remé et al., 1998) in
animal models, and it may represent the mechanism of cell death
in many human retinal diseases. Excessive light may enhance the
progression and severity of human age-related macular degener-
ation and perhaps some forms of retinitis pigmentosa (Cruicks-
hanks et al., 1993; Simons, 1993; Cideciyan et al., 1998). Likewise,
several animal models with inherited retinal degeneration show
an increased susceptibility to light damage compared with control

Received June 23, 1999; revised Oct. 8, 1999; accepted Oct. 12, 1999.

This work was supported by the Swiss National Science Foundation (Ziirich,
Switzerland), the Bruppacher Foundation (Ziirich, Switzerland), and the Ernst &
Berta Grimmke Foundation (Disseldorf, Germany). We thank G. Hoegger, C.
Imsand, and K. Munz for skilled technical assistance.

Correspondence should be addressed to A. Wenzel, University Hospital Ziirich,
Department of Ophthalmology, Frauenklinikstrasse 24, CH-8091 Ziirich, Switzer-
land. E-mail: awenzel@opht.unizh.ch.

Dr. Marti’s present address: Department for Clinical Research, Inselspital, Uni-
versity of Bern, Murtenstrasse 35, CH-3010 Bern, Switzerland.

Copyright © 1999 Society for Neuroscience 0270-6474/99/200081-08$15.00/0

animals (summarized in LaVail et al., 1999). Exposure to exces-
sive levels of white light induces photoreceptor apoptosis, thus
providing an excellent model to analyze degenerative photore-
ceptor loss (Remé et al., 1995).

Recently, it was shown that rod photoreceptors of mice lacking
the c-Fos component of the transcription factor activator
protein-1 (AP-1) (c-fos /") are resistant to light (5 klux for 2 hr)
that induces apoptosis in wild-type (c-fos */*) mice (Hafezi et al.,
1997b). The basis for this protection and the role of c-Fos in
light-induced rod apoptosis are primarily unknown. Rods in
retinas of c-fos ~/~ mice are functional and, during a period of
light exposure sufficient to induce apoptotic death of rods in
wild-type mice, can absorb similar amounts of photons as rods of
wild-type mice (Kueng-Hitz et al., 2000). However, light-induced
apoptosis only occurs in c-fos */* mice. This suggests that an
acute lack of c-Fos in light-induced apoptosis, rather than deficits
in rod function induced by its lack, provide the basis for the
resistance in c-fos ~/~ mice.

To test this assumption and to analyze the role of c-Fos in
light-induced apoptosis of rods, (1) the intensity of the damaging
light was increased threefold to reveal whether the lack of c-Fos
resulted in an elevated threshold or even a complete inhibition of
apoptosis, (2) the postexposure period was extended to test
whether the onset of apoptotic processes was delayed in c-fos '~
mice, (3) retinal function of light-exposed mice was recorded by
electroretinography to reveal whether the conservation of rod
morphology reflects the conservation of function, (4) the DNA
binding activity of AP-1 was examined to test c-Fos function
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during apoptosis, and (5) N-methyl-N-nitrosourea (MNU), a
potent inducer of photoreceptor apoptosis (Yuge et al., 1996;
Nambu et al., 1997), was applied to analyze whether apoptosis of
rods in c-fos '~ mice is impaired in general or more specifically
after light exposure.

MATERIALS AND METHODS

All procedures concerning animals adhered to the Association for Re-
search in Vision and Ophthalmology statement for the use of animals in
ophthalmic and vision research. c-fos ¥/~ or c-fos */* breeding pairs
(129sv/C57Bl/6) were obtained from The Jackson Laboratory (Bar Har-
bor, ME). Mice were kept under a 12 hr (6:00 A.M. to 6:00 P.M.)
light/dark cycle (60 lux at bottom of cages). For experiments, offspring at
the age of 4-8 weeks were used. Reagents were obtained from Sigma-
Aldrich Corp. (St. Louis, MO) if not indicated otherwise.

Light-exposure. Before light exposure, animals were dark-adapted for
16 hr overnight. The pupils of the animals were dilated under dim red
light (1% Cyclogyl, Alcon, Cham, Switzerland; and 5% Phenylephrine,
Ciba Vision, Niederwangen, Switzerland), and the mice were exposed to
diffuse white fluorescent light (UV-impermeable diffuser; TLD-36
W/965 tubes; Philips, Hamburg, Germany) for 2 hr (lights on at 10:00
A.M.) with an intensity of 60 lux (habitat intensity), 5 klux, or 15 klux in
cages with a reflective interior. After light exposure, animals were
analyzed immediately or after a period in darkness.

Microscopy. Tissue preparation was performed as described previously
(Hafezi et al., 1998). Briefly, eyes were enucleated and fixed in 2.5%
glutaraldehyde in 0.1 M cacodylate buffer, pH 7.3, at 4°C overnight. For
each eye, the superior central and the inferior central retina adjacent to
the optic nerve were trimmed, washed in cacodylate buffer, incubated in
osmium tetroxide for 1 hr, dehydrated in increasing ethanol concentra-
tions, and embedded in Epon 812. For light microscopy, sections (0.5 pwm)
were prepared from the lower central retina (most affected in our light
damage model), counterstained with methylene blue, and analyzed using
an Axiophot microscope (Zeiss, Oberkochen, Germany). For electron
microscopy, sections (50-60 nm) were prepared from the lower central
retina and contrasted with 4% uranyl acetate in 50% EtOH and 2.6%
lead nitrate in 1 M NaOH. Sections were analyzed using a Hitachi 7000
electron microscope (Hitachi, Tokyo, Japan).

Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick
end labeling assay. Eyes were fixed in 2% paraformaldehyde for 2 hr at
4°C, followed by dehydration and paraffin embedding. Terminal deoxy-
nucleotidyl transferase-mediated biotinylated UTP nick end labeling
(TUNEL) was performed with modifications using the in situ cell death
detection kit (Boehringer Mannheim, Mannheim, Germany) on 5 um
paraffin sections. DNA strand breaks were labeled with fluorescein and
visualized with a FITC filter as described by Hafezi et al. (1998).

DNA fragmentation analysis. Retinas were removed rapidly through a
slit in the cornea and frozen in liquid nitrogen. Total retinal DNA was
extracted as described previously (Hafezi et al., 1997b). Total DNA (10
ung) was analyzed on a 1.8% agarose gel. DNA was visualized at 254 nm
by staining with SYBR GREEN (Molecular Probes, Leiden, The Neth-
erlands) and compared with a 100 bp DNA ladder (Amersham Pharma-
cia Biotech, Uppsala, Sweden).

Electroretinograms. Full-field electroretinograms (ERGs) were re-
corded from dark-adapted c-fos */* and c-fos '/~ mice and from mice
kept in darkness for 48 hr after exposure to 15 klux for 2 hr. Anesthe-
tized (xylazine, 20 mg/kg, and ketamine, 40 mg/kg, i.p.) animals were
placed on a heating pad (37°C). A silk-AgAgCl electrode was placed on
the center of the cornea of the pupil-dilated left eye, an identical
reference electrode was placed in the mouth, and a platinum ground
electrode was inserted subcutaneously in the tail (Niemeyer and Kueng,
1998). Light stimuli from a halogen source (white light) were presented
as pulses of 20 msec over a range of 6 logarithmic units of intensity (8 X
10% to 8 X 10* cd/m?). A bandpass filter of 0.03-500 Hz was used to
record the a- and b-waves.

Electrophoretic mobility shift assay. Nuclear extracts were prepared as
described previously (Hafezi et al., 1999a). Briefly, one retina was ho-
mogenized in 400 ul of 10 mm HEPES-KOH, pH 79, 1 mm
B-mercaptoethanol, and 1 mm DTT in the presence of protease inhibi-
tors. After incubation on ice for 10 min, the homogenate was vortexed for
10 sec and centrifuged. The pellet was resuspended in 50 ul of 20 mm
HEPES-KOH, pH 7.9, 25% glycerol, 420 mm NaCl, 1.5 mm MgCl,, 0.2
mMm EDTA, 1 mM B-mercaptoethanol, and 1 mMm DTT in the presence of
protease inhibitors and incubated on ice for 10 min. Cellular debris was
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removed by centrifugation at 23,000 X g for 30 min at 4°C. Protein
concentrations were determined using the Bradford protein assay (Bio-
Rad, Hercules, CA) with BSA as standard.

Electrophoretic mobility shift assays (EMSAs) were performed as
described previously (Marti et al., 1994). Briefly, the oligonucleotides
coding for an AP-1-specific (5'-AAG CAT GAG TCA GAC AC-3')
DNA binding sequence [TPA response element (TRE)] were labeled
using polynucleotide kinase (Boehringer Mannheim) and 3?P-yATP
(Hartmann Analytic GmbH, Braunschweig, Germany). For EMSA, 2-5
g (5 pl) of protein of nuclear extract were incubated on ice for 20 min
with 19 ul of 5 mm MgCl,, 0.1 mm EDTA, 0.75 mm DTT, 7.5%
glycerol, and 0.05% NP-40 containing 24 ug of BSA and 2 ug of
poly(dI-dC) (Boehringer Mannheim). Radiolabeled oligonucleotide (1
wnl) was added, and incubation was continued for another 20 min.
Protein-DNA complexes were resolved at 150 V on a 0.75 or 1.5 mm
6% polyacrylamide gel using 0.25X Tris Borat EDTA buffer and
visualized on x-ray film. For competition assays, an excess of unlabeled
(cold) oligonucleotide corresponding to the DNA binding sites of
AP-1, specific protein-1 (SP-1) (5'-TCA CGG GGC GGG TCA A-3"),
and the retinoic acid receptor (RAR) (5'-ATC AGG TCA TGA CCT
TAA-3") was used in combination with labeled AP-1 oligonucleotide.

For antibody interference analyses, rabbit polyclonal antibodies di-
rected against c-Fos (2 ul) or a mixture of antibodies directed against
c-Jun, JunB, and JunD (each 2 ul) (catalog # sc-045, sc-074, sc-052,
sc-046; Santa Cruz Biotechnology, Santa Cruz, CA) were added to
nuclear extracts 20 min before the oligonucleotides.

MNU. To establish a dose-response relationship for MNU, 22, 45, 67,
and 90 mg/kg MNU in 0.9% NaCl were applied in a single intraperito-
neal injection after 16 hr of overnight dark adaptation. Injected animals
were kept in darkness for 72 hr. Their retinal morphology was analyzed
by light microscopy.

For the comparison of MNU retinal toxicity in c-fos and c-fos '~
mice, the effect of a single dose of 45 mg/kg was analyzed 24 and 48 hr
after the injection. For EMSA, c-fos */* and c-fos ~/~ mice were injected
with 45 mg/kg MNU, and retinal nuclear extracts were prepared after 6
hr in darkness.

+/+

RESULTS

Light microscopy after exposure to 15 klux

Immediately after lights off

Compared with retinas of dark-adapted c-fos™" mice, retinas of
c-fos 7/ mice, analyzed immediately after 2 hr of exposure to 15
klux of white light, showed condensed rod inner segments (RIS)
and disarranged and vesiculated rod outer segments (ROS).
These initial signs of light damage were confined to the central
retina. Some rods already displayed apoptosis as indicated by
condensed nuclear chromatin. Retinas of ¢-fos ~/~ mice showed
light-induced lesions, such as vesiculation of ROS, which were
absent in dark-adapted c-fos ~/~ retinas. Contrary to c-fos /"
mice, condensation of RIS or nuclear chromatin was rarely seen
in c-fos '~ retinas (Fig. 1).

+/+

Forty-eight hours after lights off

The outer nuclear layer (ONL) of c-fos "'" mice was dramatically
reduced in thickness. Most of the remaining rod nuclei displayed
condensed chromatin. RIS and ROS were entirely disintegrated,
and cystic spaces adjacent to the retinal pigment epithelium (PE)
were observed. The PE contained large amounts of phagosomes,
most likely indicating the uptake of apoptotic bodies, resulting
from the decay of photoreceptors. In contrast, almost no loss of
photoreceptors was observed in c-fos /~ mice, and the signs of
acute light damage, such as ROS vesiculation, had mostly disap-
peared. Only few condensed RIS and nuclei containing con-
densed chromatin indicated the preceding light exposure (Fig. 1).

+/+

Ten days after light exposure

Retinas of c-fos*’* mice lost the entire ONL in the central
retinal area. Large darkly stained bodies, presumably containing
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Figure 1. Light microscopy of retinal sections from c-fos */* (top panel)

and c-fos ~'~ (bottom panel) mice: after dark-adaptation (dark), immedi-
ately after exposure to 15 klux for 2 hr, and 48 hr and 10 d after light
exposure. Retinas of dark-adapted c-fos */* and c-fos =/~ mice displayed
comparable photoreceptor morphology. Immediately after exposure to 15
klux of white light, ROS showed vesiculation (white arrowheads) in both
genotypes, and few RIS appeared condensed (black arrowhead). Forty-
eight hours after light exposure, ROS and RIS of c-fos * mice had
disintegrated, and the majority of rod nuclei in c-fos */" mice showed
condensed nuclear chromatin (arrow). Although few condensed RIS
(black arrowhead) and darkly stained rod nuclei (arrow) indicated the
preceding light exposure, ROS appeared recovered in c-fos ~/~ mice 48 hr
after light exposure. In both genotypes, the presence of phagosomes (*) in
the PE indicated the uptake of ROS fragments. Ten days after light
exposure, the ONL of c-fos ¥/ mice was amputated, and the INL was in
close proximity to the swollen PE. In contrast, photoreceptor and PE
morphology in c-fos ~/~ mice were normal. Stained with methylene blue.
Scale bar, 25 um.

degradation products of photoreceptors, separated the inner nu-
clear layer (INL) from the PE. In c-fos /= mice, ROS had
recovered completely within the regular ROS renewal cycle, and
retinas of light-exposed c-fos /~ mice were indistinguishable
from control retinas after 10 d (Fig. 1).

Detection of light-induced photoreceptor apoptosis
Forty-eight hours after light exposure (15 klux for 2 hr), DNA
fragmentation was detected in the ONL of the central retina of
c-fos * mice by the TUNEL method. Internucleosomal DNA
fragmentation was demonstrated by gel electrophoresis of retinal
DNA (DNA ladder). No TUNEL signal or DNA ladder was
observed in c-fos ~/~ retinas (Fig. 2).

Electron microscopy after exposure to 5 and 15 klux
Electron microscopy of RIS from dark-adapted c-fos /" and
c-fos ~'~ mice showed mitochondria with regular morphology.
Immediately after exposure to 5 or 15 klux for 2 hr, mitochondria
in RIS of c-fos ™/ mice were distinctly swollen and contained
disrupted cristae. In contrast, the morphology of mitochondria in
RIS of c-fos '~ mice was virtually unaffected (Fig. 3).

ERG after 15 klux

Luminance-response functions of full-field ERGs in c-fos
mice 48 hr after exposure to 15 klux for 2 hr revealed markedly

+/+
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*and c-fos '/
mice 48 hr after exposure to 15 klux for 2 hr. Left, Phase-contrast image
of TUNEL staining in paraffin sections of both genotypes revealed DNA

Figure 2. Test for DNA fragmentation in retinas of c-fos */

fragmentation (white stain) exclusively in the ONL of c-fos */* mice. Right,

Electrophoresis of retinal DNA produced the typical DNA ladder only in
c-fos*'" mice (lane 2). No internucleosomal DNA fragmentation was
detected in c-fos ~/~ mice (lane 3). Lane I, 100 bp DNA standard. OPL,
Outer plexiform layer; IPL, inner plexiform layer; GCL, ganglion cell
layer.

decreased mean amplitudes of the a- and b-wave compared with
untreated c-fos */* animals. The reduction of the mean values of
both parameters was ~50%. In contrast, the mean a- and b-wave
amplitudes in c-fos ~/~ mice after light exposure were comparable
with those in untreated c-fos ~/~ animals (Fig. 44-D).

AP-1 DNA binding activity after light exposure

AP-1 DNA binding activity in EMSA was specific as shown by
competition experiments with unrelated unlabeled oligonucleo-
tides (Fig. 54). AP-1 DNA binding activity in nuclear extracts of
c-fos *'* retinas was strongly increased after 1 hr of light exposure
(5 klux) and reached a peak of activity between lights off and
6-12 hr thereafter (Fig. 5B). In contrast, AP-1 DNA binding
activity in nuclear extracts of c-fos /~ mice remained virtually
unchanged after light exposure (5 klux) compared with untreated
c-fos 7'~ mice (Fig. 5C). After exposure of c¢-fos ™" mice to 60
lux, only a very small increase in AP-1 DNA binding activity was
observed (Fig. 5D).
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Figure 3. Electron micrographs of RIS of c-fos */* and c-fos '~ mice

after dark adaptation (dark) and after 2 hr of exposure to 5 or 15 klux.
The morphology of RIS and their mitochondria was comparable in
dark-adapted animals of both genotypes. After light exposure, morphol-
ogy remained unaffected in c-fos ~/~ mice. In c-fos */* mice, light exposure
caused the condensation of RIS (arrowheads), which contained swollen
mitochondria with disrupted cristae (arrows). *, ROS; Scale bar, 1 pm.
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Figure 4. Luminance-response functions of full-field ERGs of c-fos */*
(A, C) and c-fos ~/~ (B, D) mice after dark adaptation (black squares) and
48 hr after exposure to 15 klux for 2 hr (white squares). No reduction of the
mean a- and b-wave was caused by light exposure in c-fos ~/~ animals, both
were markedly reduced in c-fos /* mice after 48 hr. c-fos *'*, No light,
n = 8, mean * SD; c-fos /7, no light, n = 8, mean — SDj c-fos */*, after
light, n = 7, mean * SDj c-fos /™, after light, n = 7, mean + SD.

Complex composition of light-induced AP-1

Adding an anti-c-Fos antibody to nuclear extracts of c-fos
retinas 6 hr after exposure to 5 klux (peak of activity) led to an
almost complete disappearance of the AP-1-specific band in
EMSA. The AP-1-DNA complex was partially supershifted and
partially competed by the anti-c-Fos serum. Likewise, the addi-
tion of a mixture of three Jun-specific antibodies (c-Jun, JunD,
and JunB) resulted in an almost complete competition for AP-1
DNA binding. This indicates that the complex consisted mainly of
c-Fos/Jun heterodimers. Addition of rabbit nonimmune serum or
unrelated antisera (data not shown) had no effect on the intensity
of the AP-1-specific band, demonstrating the specificity of the
immunoreaction (Fig. 5E).

+/+

Induction of apoptosis by N-methyl-N-nitrosourea
MNU dose-dependently induced photoreceptor degeneration in
c-fos *'* mice. At a dose of 22 mg/kg, no morphological damage
was detected, whereas 45 mg/kg induced a distinct degeneration
in photoreceptors and PE. With increasing doses of MNU (67
and 90 mg/kg), the destruction of the ONL and the PE was more
pronounced and appeared accelerated (Fig. 64).

In contrast to light exposure, there appeared to be no major
difference between both genotypes after application of a subsatu-
rating dose of MN U (45 mg/kg). Photoreceptors of both c-fos */*
and c-fos ~/~ mice revealed the characteristic features of apopto-
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Figure 5. Electrophoretic mobility shift assays of proteins in retinal
nuclear extracts (NE) obtained from c-fos /" and c-fos '~ mice. 4,
Specificity of the protein-DNA interaction. No shift was observed in the
absence of NE. Among the unlabeled (cold) oligonucleotides tested, only
an excess of the AP-1 binding DNA sequence TRE competed for the
binding to radioactively labeled TRE. *, AP-1-DNA complex; **, free
probe. B, Induction of AP-1 activity by light (5 klux). NEs from c-fos */*
mice were prepared from dark-adapted animals and at different time
points during and after light exposure. C, Analysis of AP-1 activity in
c-fos ™'+ (6 hr after 5 klux) and c-fos ~/~ mice in the same assay. NEs of
c-fos 7/~ mice were prepared from dark-adapted animals (dark), at lights
off (120", and 6 hr thereafter. D, Analysis of AP-1 activity in c-fos /"
mice dark-adapted, at lights off (/20"), and 6 hr thereafter (60 lux). E,
AP-1 DNA binding, 6 hr after light-exposure (5 klux), was inhibited by
antisera (a) directed against c-Fos and a mixture of anti-Jun antisera
(pan Jun: c-Jun, JunD, and JunB). Normal rabbit serum had no effect on
the mobility of the AP-1-DNA complex.

sis 24 hr after injection. ROS showed vesiculations, RIS were
condensed, and the vast majority of nuclei in the ONL displayed
chromatin condensation. The PE was swollen but still viable.
Forty-eight hours after injection, the number of rod nuclei in the
ONL was reduced, and ROS and RIS were destroyed. In addition,
the PE showed intracellular cystic spaces. Although not studied
systematically, these signs of degeneration appeared slightly more
distinct in retinas of c-fos '~ mice.

The positive TUNEL assay and the presence of a DNA ladder
confirmed that photoreceptors of retinas treated with MNU died
by apoptosis (Fig. 6B). TUNEL-positive nuclei in the PE were
detected very rarely, possibly indicating that PE cells may die by
a mechanism different from apoptosis.

AP-1 DNA binding activity after injection of MNU
Intraperitoneal injection of MNU (45 mg/kg) increased AP-1
DNA binding activity in retinas of c-fos ™" mice but not in
c-fos '~ mice 6 hr after the injection (Fig. 7). Increased AP-1
DNA binding activity in c-fos */" mice lasted for at least 24 hr
(data not shown).

DISCUSSION

After exposure to high doses of light, retinal function and mor-
phology were preserved in c-fos ~/~ mice but were dramatically
disturbed in c-fos */* mice. In c-fos /" mice, an increasing AP-1
DNA binding activity paralleled early phases of apoptosis. No
increase in AP-1 activity was observed in retinas of mice lacking
c-Fos. Consequently, an essential apoptotic pathway could not be
initiated by light in c-fos =/~ mice. However, the lack of c-Fos did
not inhibit apoptosis in general because apoptosis of rods could
be induced by MNU in c-fos ~/~ mice. Thus, c-Fos seems to be
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Figure 6. A, MNU induces degeneration of photoreceptors in a dose-
dependent manner. Retinas were prepared 72 hr after MNU injection.
Only doses higher than 22 mg/kg induced morphological damage to
photoreceptors and PE. With increasing doses, damage became more
severe and appeared accelerated. (The 90 mg/kg panel is a montage. At
this dose of MNU, the ONL consistently was separated from the PE
resulting in a large space between both layers.) B, Induction of apoptosis
in the retina of c-fos " and c-fos '~ mice by a single intraperitoneal
injection of MNU (45 mg/kg). Retinas were prepared 24 or 48 hr after
injection. Light microscopy revealed severe damage to ROS and, at 48 hr,
to the PE (arrows). Large cystic spaces were present, and nuclei of rods
showed condensed chromatin (arrowheads) at both time points. The ONL
was strongly positive for the TUNEL stain, and the presence of internu-
cleosomal DNA fragmentation was indicated by the appearance of the
typical DNA ladder. Scale bar, 25 pwm.

specifically involved in the “private pathway” of light-induced
apoptosis.

Range of protection against light-induced apoptosis in
c-fos '~ mice
Apoptosis is a process that proceeds within an individual cell. In
light damage, absorption of photons by rhodopsin is the trigger
for apoptosis (C. Grimm, A. Wenzel, F. Hafezi, S. Yu, T. M.
Redmond, C. E. Reme, unpublished observation). Rods of
c-fos*'* and c-fos '~ mice absorb similar amounts of photons
during a light exposure to 5 klux for 60 min (Kueng-Hitz et al.,
2000). Whereas rods of wild-type mice undergo apoptosis after
this treatment (A. Wenzel C. Grimm, F. Hafezi, C. E. Remé,
unpublished observation), those of c-fos '~ mice survive. Thus, a
decreased photon catch capacity is not the basis for the observed
protection.

After exposure to a threefold higher intensity (15 klux for 2 hr)
and prolonged postexposure periods, no photoreceptor apoptosis
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Figure 7. MNU induces retinal AP-1 activity only in wild-type mice. No
increase in AP-1 DNA binding activity after MNU was detected in
c-fos '~ mice. Nuclear extracts (2.5 ug) from saline-injected and MN U-
injected (45 mg/kg) mice were analyzed 6 hr after the treatment.

was observed in ¢-fos '~ mice. This indicates that apoptosis in
these mice cannot be induced by light or that the threshold for its
induction is elevated at least threefold. The possibility of alter-
nate c-Fos-independent pathways, which might induce apoptosis
with a delay can be ruled out; 10 d after light exposure, no cell loss
or signs of apoptosis were observed in c-fos '~ mice.

Importantly, in c-fos ~/~, mice the excessive absorption of pho-
tons clearly induced threshold lesions, which were confined to
ROS. However, the damage was reversible, and affected cells
were able to regain morphology and function completely. In
contrast, the ONL in the central retina of c-fos /" mice was
practically amputated 10 d after exposure to 15 klux, and total
retinal function, as determined by a-wave (photoreceptor func-
tion) and b-wave (inner retinal function) recordings, was reduced
by ~50%. Because light damage mainly affected the central
retina, the remaining electrical activity may have been triggered
by photoreceptors in the periphery. In conclusion, the transition
from reversible to irreversible light-induced damage culminating
in cell death appeared to depend on functional c-Fos.

It might thus be speculated that rods of c-fos ™" mice would be
able to survive light exposure and regain function if apoptosis
could be blocked. Consequently, therapeutic interference at the
level of apoptosis after light damage or other stimuli inducing
photoreceptor apoptosis might be beneficial and even rescue
vision.

c-Fos is indispensable for the induction of AP-1 by
damaging light

The time course of biochemical and morphological changes in
retinas after exposure to 5 klux for 2 hr indicates a function of
c-Fos in the private pathway of light-induced apoptosis. As soon
as after 60 min in light, the activity of AP-1 in c-fos */* mice
increased. This increase clearly preceded the major synchronized
burst of apoptosis (Fig. 1) (Hafezi et al., 1997b). In retinas of
c-fos ~/~ mice, AP-1 activity remained consistently low. In addi-
tion, exposure of wild-type mice to 60 lux for 2 hr induced only a
very weak increase in AP-1 activity. In both cases, apoptosis did
not occur. Thus, it appears likely that transcriptional activity of
AP-1 sufficient to influence the expression of apoptosis-related
genes may only be induced after exposure to damaging light
doses. The potential pro-apoptotic gene products presumably act
at the premitochondrial level (see below). However, preliminary
data on the expression of different Bcl-2 family members revealed
no changes in response to light exposure depending on the c-fos
genotype (Grimm et al., 1999).
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From EMSA of retinal nuclear extracts, it is impossible to
identify individual cell types with increased AP-1 activity. Dur-
ing exposure to 5 klux, c-fos mRNA is induced in ganglion cells
first and appears in the ONL 6 hr after light exposure (Hafezi et
al., 1997b). Absence of c-fos transcription in the ONL, however,
does not exclude increasing AP-1 activity in photoreceptors.
Instead, AP-1 activity may be induced at the post-translational
level by phosphorylation of pre-existing Fos or Jun proteins
(Deng and Karin, 1994; Kim and Kahn, 1994).

The dimeric transcription factor AP-1 can be assembled differ-
entially from members of two families of proteins: the Fos-family,
comprising c-Fos, Fra-1, Fra-2, and Fos-B, and the Jun-family,
including c-Jun, Jun-D, and Jun-B (Angel and Karin, 1991). In
the retina of c-fos ™" mice, a large proportion of the light-
induced AP-1 consisted of c-Fos/c-Jun and c-Fos/JunD het-
erodimers (Hafezi et al., 1999a). However, because light damage
in JunD knock-out mice proceeds as in wild-type mice (Hafezi et
al., 1999b), it appears that light-induced apoptosis predominantly
involves activation of AP-1 composed of c-Fos and c-Jun.

In c-fos ~/~ mice, no other member of the Fos- or Jun-family
could substitute for the lack of c-Fos. Indeed, among the AP-1
proteins, c-Fos appears to play a particular role in apoptosis, as
evidenced by studies on castration-induced apoptosis of the pros-
tate. Castration induced similar increases in AP-1 activity in the
prostate of c-fos */* and c-fos ~/~ mice, but apoptosis only oc-
curred when AP-1 contained c-Fos (Feng et al., 1998).

c-fos is not involved in mediating apoptosis induced
by nonlight stimuli

Developmental apoptosis, also referred to as programmed cell
death, in the retina (Young, 1984; Penfold and Provis, 1986;
Blaschke et al., 1998) proceeds primarily unimpaired in the
absence of c-Fos as indicated by the grossly normal retinal mor-
phology and normal, although attenuated, function in c-fos ™/~
mice (Kueng-Hitz et al., 2000). Likewise, the relatively slow
elimination of immature rods by apoptosis in the retinal degen-
eration (rd)-mouse (Caley et al., 1972; LaVail and Sidman, 1974;
Portera Cailliau et al., 1994) is not affected by the lack of c-Fos
(Hafezi et al., 1998). Thus, at least before maturity of the retina,
photoreceptors of c-fos '~ mice are able to undergo apoptosis.

MNU induces apoptosis via the methylation of genomic DNA
(Kokkinakis et al., 1997; Tominaga et al., 1997), and methyl
adducts to genomic DNA of photoreceptors have been detected
in MN U-induced retinal degeneration (Ogino et al., 1993). Here,
MNU was tested as a light-independent stimulus capable to
induce degeneration in mature photoreceptors (Yuge et al., 1996;
Nambu et al., 1997). MNU induced a strong apoptotic response
in photoreceptors of c-fos */* and c-fos ~/~ mice, indicating that
MNU, in contrast to light, involves a pro-apoptotic pathway not
depending on c-Fos. Thus, fully developed rods of c-fos ~/~ mice
are able to undergo apoptosis. Therefore, c-Fos is dispensable for
the “common pathway” of rod apoptosis.

Light exposure and MNU both induced retinal AP-1 activity in
c-fos*'* mice (Figs. 5,7). In both cases, AP-1 contained c-Fos
(Fig. 5 and data not shown). Depending on the system and
stimulus studied, c-Fos may (Feng et al., 1998; Hafezi et al,,
1997b; Pruschy et al., 1997) or may not (Gajate et al., 1996; Hafezi
et al., 1998) be involved in mediating apoptosis. c-Fos may also be
involved in the defense against cell death (Ivanov and Nicolic-
Zugic, 1997) induced by, for example, methylating agents, such as
MNU (Dosch and Kaina, 1996). Thus, in photoreceptors, AP-1
containing c-Fos might have opposite functions depending on the
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stimulus; it mediates light-induced apoptosis but may protect
against MNU. In c-fos ~/~ mice, neither stimulus induced AP-1.
Therefore, the light stimulus could not be mediated to the apo-
ptotic machinery, and the defense against MN U may have been
deficient. Supporting this view, we found preliminary evidence
for more severe morphological lesions in retinas of c-fos ~/~ mice
compared with c-fos */* mice after application of MNU. Inter-
estingly, c-fos ~/~ mouse fibroblasts are hypersensitive to methy-
lating agents (Kaina et al., 1997).

c-fos acts in the private pathway of

light-induced apoptosis

The signaling of pro-apoptotic stimuli involves so-called private
pathways: a multitude of different signal cascades, which may
converge at the level of mitochondria (Kluck et al., 1997a; Green
and Reed, 1998). Release of cytochrome c¢ and/or an apoptosis-
inducing factor (Liu et al., 1996; Susin et al., 1996; Zhivotovsky et
al., 1998) attributable to changes in the mitochondrial membrane
appears to represent a “point of no return” in apoptosis (Mar-
chetti et al., 1996; Zamzami et al., 1995) (but see Jaattela et al.,
1998). Upon their presence in the cytosol, these factors can
trigger the common pathway of apoptosis, involving a tightly
regulated cascade of caspases (Kluck et al., 1997b; Bossy Wetzel
et al.,, 1998; Green and Kroemer, 1998; Thornberry and Lazeb-
nik, 1998). Preliminary evidence indicates that light-induced pho-
toreceptor apoptosis might involve the activation of cytochrome
c-responsive caspases (Chang et al., 1999; Peng et al., 1999). In
contrast to c-fos */* mice, the morphology of mitochondria in
c-fos ~/~ mice appeared unaffected by light exposure. One may
assume that the morphological changes of mitochondria in
c-fos *'* mice reflect their involvement in the induction of apo-
ptosis. Thus, in the absence of c-Fos, the private pathway that
signals the stimulus “excessive light” appears to be interrupted
before mitochondrial morphology is affected.

In conclusion, strong evidence accumulates for an acute and
specific contribution of AP-1 containing c-Fos to the induction of
light-induced apoptosis in rods. Although all collected evidence
strongly supports this model (this work; Kueng-Hitz et al., 2000),
yet undetected subtle changes of retinal development in c-fos ~/~
mice might also contribute to an increased light tolerance.

To further elucidate the molecular aspects of light-induced
photoreceptor apoptosis, it will be important to reveal mecha-
nisms that convert absorption of photons into activation of AP-1
and to identify genes controlled by AP-1 containing c-Fos, which
respond to light. It might then be possible to delineate the private
pathway of light-induced apoptosis, leading from photon absorp-
tion to mitochondrial damage.
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