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In the visual cortex of the cat and ferret, it is established that
maturation of orientation selectivity is shaped by experience-
dependent plasticity. However, recent experiments indicate that
orientation maps are remarkably stable and experience-
independent. We present a model to account for these seem-
ingly paradoxical results. In this model, a scaffold consisting of
non-isotropic lateral connections is laid down in horizontal
circuitry before visual experience. These lateral connections
provide an experience-independent framework for the devel-
oping orientation maps by inducing a broad orientation tuning
bias in the model neurons. Experience-dependent plasticity of
the thalamocortical connections sharpens the tuning while the
preferred orientation of the neurons remains unchanged. This

model is verified by computer simulations in which the scaffolds
are generated both artificially and inferred from experimental
optical imaging data. The plasticity is modeled by the BCM
synaptic plasticity rule, and the input environment consists of
natural images. We use this model to provide a possible expla-
nation of the recent observation in which two eyes without
common visual experience develop similar orientation maps.
Finally, we propose an experiment involving the disruption of
lateral connections to distinguish this model from models pro-
posed by others.
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Rearing experiments have established that synaptic connections
in the geniculocortical pathway are highly plastic during early
postnatal development. A classical example of this plasticity is the
binocular properties of neurons (Wiesel and Hubel, 1962, 1965;
Mioche and Singer, 1989). Plasticity of orientation selectivity,
however, is a more complex phenomenon. Although some orien-
tation selectivity is present at birth, further development of
orientation selectivity is guided by visual experience. It is clear
that dark rearing prevents the normal development of orientation
selectivity at eye opening in both cats (for review, see Frégnac
and Imbert, 1984) and ferrets (Chapman and Stryker, 1993).

The effect of rearing animals in visual environments with a
restricted set of orientations has been controversial. Most exper-
iments have found that more cells become selective to the orien-
tations prevalent in the environment (Hirsh and Spinelli, 1970;
Pettigrew, 1974; Blakemore and Van-Sluyters, 1975; Rauschecker
and Singer, 1981; Sengpiel et al., 1999) (but see Stryker and
Sherk, 1975).

Recently, investigators have shown that orientation maps are
present in binocularly deprived animals at eye opening (Chap-
man et al., 1996; Gödecke et al., 1997; Crair et al., 1998) and that
orientation maps are stable throughout the critical period (Chap-
man et al., 1996; Gödecke et al., 1997). Furthermore, a dramatic
optical-imaging/reverse suture experiment (Gödecke and Bon-
hoeffer, 1996) has shown that two eyes without common visual
experience develop similar orientation maps.

The central question addressed in this paper is, how can we
reconcile these two apparently contradictory findings about the
plasticity of orientation selectivity in the visual cortex? On one
hand, there are strong indications that orientation selectivity
shows experience-dependent plasticity. On the other, orientation
maps seem stable throughout development and are laid down
independent of visual experience.

We have formulated a model that accounts for these seemingly
paradoxically results. Our major hypothesis is that a network of
lateral connections in the visual cortex forms a scaffold that sets
the orientation map, produces broadly tuned cells, and biases the
development of orientation selectivity. The orientation selectivity
then develops through experience-dependent modifications of the
feedforward synaptic connections.

The structure of lateral connectivity assumed in the model is
based on several experimental observations. It has been estab-
lished that long-range excitatory horizontal connections link to-
gether subsets of neurons that share similar orientation prefer-
ence (Ts’o et al., 1986; Gilbert and Wiesel, 1989; Weliky and
Katz, 1994; Ruthazer and Stryker, 1996). This is known as
modular specificity. In addition, individual neurons receive input
from other neurons whose receptive fields are displaced along an
axis in visual space that corresponds to their preferred orienta-
tion (Bosking et al., 1997; Schmidt et al., 1997) (see Fig. 1a). This
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is known as axial specificity. In contrast, there is no indication that
short-range connections (below ;500 mm) have any specificity. In
our model, two neurons must satisfy both the modular and axial
conditions to be connected. Structured lateral connections have
been shown to exist in layers II–III of visual cortex; we assume
that these neurons interact with layer IV neurons and affect their
responses as well.

To model thalamocortical plasticity, we use the BCM synaptic
modification rule (Bienenstock et al., 1982; Intrator and Cooper,
1992). Because the development of orientation selectivity de-
pends on the existence of a patterned visual environment, we
have used a natural image environment (Law and Cooper, 1994).

The key elements of our model are as follows: (1) nonisotropic,
long-range lateral connectivity, based on axial and modular spec-
ificity, provides an experience-independent scaffold that deter-
mines the orientation map organization; and (2) plastic feedfor-
ward connectivity provides the experience-dependent component
of map development that determines the sharpness of the orien-
tation tuning.

We show that this scaffold model can account for both the
observed stability of an orientation map and the experience-
dependent plasticity of single cells. To this end, we reproduce and
explain the results of the reverse suture experiment of Gödecke
and Bonhoeffer (1996). Finally, we propose an experiment that
could serve to distinguish the scaffold model from models pro-
posed by others.

MATERIALS AND METHODS
We simulated receptive field (RF) development in a binocular, single-
layer striate cortex. The simulation consisted of a set of preprocessed
input images and a two-dimensional array of cells. These cells were
connected to the images through a set of modifiable synapses correspond-
ing to geniculocortical synapses and to each other through a set of
nonmodifiable synapses corresponding to intracortical lateral connectiv-
ity. For a single simulation iteration, a random location from a random
image provided the input. The activity of each cell was calculated in two
stages. First, the activity attributable to the geniculocortical feedforward
component was calculated. Then, activity attributable to the lateral
component was added. Synaptic strength was then modified on the basis
of the total activity. At the conclusion of the simulation, sine-wave
grating stimuli were used in place of natural images for calculating
orientation maps, similar to those used in optical imaging experiments.
The model we propose is not intended to be a complete model of
experience-dependent plasticity in visual cortex. Rather, we have in-
cluded those elements that seem essential to explain the set of results we
wish to account for.

Input images. Our model of the visual environment consists of a set of
12 natural images of 256 3 256 pixels scanned at a resolution of 256 gray
scales as in Shouval et al. (1996). To make the visual environment more
orientation-invariant, we added 36 additional images that were generated
by rotating the original 12 by 45, 90, and 135°. To approximate retinal and
LGN processing (Linsenmeier et al., 1982), these images were prepro-
cessed by a center-surround difference-of-Gaussians (DOG) filter with
center radius of 1 pixel and surround radius of 3 pixels.

To simulate monocular deprivation experiments, preprocessed images
for the deprived eye were replaced by random noise, uniformly distrib-
uted in the range [20.5, 0.5].

Feedforward connectivity. Each cortical cell received input from a
circular region of diameter 14 pixels. The RF center for each neuron was
shifted with respect to its immediate neighbors in both the horizontal and
vertical directions by 1⁄2 pixel. Initially, all feedforward synaptic weights
were randomly distributed in the range [0.1, 0.2]. The activity of the kth
neuron attributable to feedforward connectivity was:

ck
0 5 O

l

mk l dl ,

where dl represents the activity of the l th input neuron, mkl represents
the synaptic weight connecting the l th input neuron to the kth cortical
cell, and the sum is taken over the 14-pixel-diameter input neighborhood.

Lateral connectivity. Because we do not have explicit information about
the complete lateral connectivity in the visual cortex, we inferred the
connectivity using the following procedure. First, we created a map of
the axes of the neurons in the network. For reasons explained below, this
axial map can be thought of as a schematic representation of lateral
connectivity of the network and has a strong influence over the final
orientation map. We generated this map using the field analogy model
(Wolf et al., 1994). This model assumes that the cortical map is an
optimally smooth map with a predetermined set of singularities. A
singularity is a point of a discontinuity in the orientations around, which
the orientations change by 180°. We set the singularities on a square grid
with alternating polarities. The singularity locations were then randomly
shifted from the grid, and then the map was generated. We used a varying
number of singularities, ranging from 49 to 81. The random shifts were
chosen from a uniform distribution [2a, a] independently in the x and y
directions. The values of a were between 2 and 3.

Next, we operated on the axial map to generate the lateral connectiv-
ity. Long-range lateral connectivity was determined by two conditions,
both of which had to hold for two neurons to be connected (Fig. 1a).
First, if two neurons, 1 and 2, had similar preferred orientation, they
satisfied a comodularity condition. Specifically, if the preferred angles f1
and f2 of two neurons as set by the schematic differed by less than a
critical angle fcrit , then they were comodular. We used fcrit 5 28°.
Second (see Fig. 1a and Results), if the line connecting the center of the
RF of neuron 1 to neuron 2 was nearly parallel to the other neuron 2
preferred orientation, then the axial condition was satisfied for the
connection from neuron 2 to neuron 1. Specifically, for each neuron, a
straight band of half-width sw and half-length sl was extended along its
axis. Any other neuron that falls in this band satisfied the axial condition.
We used sw 5 3 neurons and sl 5 32 neurons. We also established a
radially symmetric short-range connectivity. A neuron was connected to
all other neurons with a radius less than rshort. We chose rshort 5 4
neurons.

We then normalized the lateral weights by counting the number of
connections each neuron received from other cortical neurons and set-
ting each of the incoming weights to the reciprocal of this number. Thus,
(kLik 5 1 for each i.

The activation of the ith neuron attributable to lateral connectivity was:

n5O
k

Liks(ck
0),

where ck
0 represents the feedforward activity of the kth cortical neuron, as

above, s is a sigmoidal activation function with a lower saturation limit
of 21 and an upper saturation limit of 100, Lik represents the synaptic
weight connecting the kth cortical cell to the ith cortical cell, and the sum
is taken over the set of lateral connections described above.

Therefore, the total activity of the ith cell in the network was:

ci 5 sS O
j

mijdj 1 O
k

Liks~ck
0!D , (1)

where the term on the left represents the activation attributable to
feedforward input. dj represents the activity of the jth input neuron, and
mij are the synaptic weights connecting cortical neuron i to input neuron
j. The sum is taken over the 14-pixel-diameter input neighborhood. The
term on the right represents the combined influence of all the lateral
connections. The output is bounded by the sigmoidal function s.

We have made several simplifying assumptions about the structure of
the cortical network. For example, thalamic projections terminate pri-
marily in layer IV, whereas long-range lateral interactions are between
layer II and III neurons. Our model has only one layer; thus a model
neuron is assumed to represent a subnetwork of neurons spanning
different layers.

Learning rule. We used BCM synaptic modification to simulate synap-
tic plasticity. This rule specifies that for postsynaptic activity (c) larger
than a threshold (um ), synapses are potentiated [long-term potentiation
(LTP)], whereas for values of c smaller than um they are depressed
[long-term depression (LTD)]. Furthermore, to stabilize synaptic
weights, the threshold (um ) moves in time as a monotonically increasing
function of the history of postsynaptic activity.

This rule has been shown to produce receptive fields similar to those
found in the visual cortex (Law and Cooper, 1994; Shouval et al., 1997)
and is in agreement with deprivation experiments (Blais et al., 1999;
Rittenhouse et al., 1999). In addition, there is direct experimental evi-
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dence for BCM synaptic modification from LTP and LTD data on the
cellular level in visual cortex as well as other cortical areas, in different
species and for different ages (Kirkwood and Bear, 1994; Kirkwood et
al., 1996). The synaptic modification rule chosen must be able to develop
oriented receptive fields in a natural image environment as well as repro-
duce the results of monocular deprivation and reverse suture; otherwise it
could not be used for the simulations carried out in this work.

A synaptic plasticity rule that depends only on the presynaptic activity
would converge to the mean of the input, thus for a stationary environ-
ment the receptive fields produced would be uniform and nonoriented.
Therefore, such a rule cannot be used. It is therefore necessary to use a
rule that depends at least on the second-order statistics of the input. It
should be noted that the choice of the BCM rule is not crucial to our
results; it is likely that other synaptic modification rules, which can
produce binocular orientation-selective receptive fields and replicate
deprivation experiments, such as reverse suture for a reasonable visual
environment, would produce similar results.

We used a modified version of the quadratic BCM learning rule
(Bienenstock et al., 1982; Intrator and Cooper, 1992; Law and Cooper,
1994; Blais et al., 1998), with a variable learning rate of the form

ṁij 5
h

u i
ci~ci 2 um!dj ,

where, as above, dj represents the activity of the jth input cell, ci
represents the activity of the ith cortical neuron, and ṁij represents the

rate of change of the synaptic weight from the jth input cell to the ith
neuron. In addition to the input and output activities, the magnitude of
this rate of change depends, in broad terms, on the difference between
the output activity of the cell and a variable threshold um. The scaling
constant h represents a learning rate.

ui is expressed in the integral form as:

u i~t! 5 t È t

e
~t2t9!

t ~ci~t9!!2dt9,

where t is the time constant for the temporal average. That is, the rate
at which the threshold itself changes depends on the difference between
the threshold and the square of the activity of the cell. In these simula-
tions, we chose the value of h 5 0.01/(RF size) and t 5 1000. The
simulations are qualitatively robust to a range of parameters, and we
chose these values to optimize run times.

This learning rule has stable fixed points as shown analytically for a
single cell (Bienenstock et al., 1982; Intrator and Cooper, 1992) and
networks (Castellani et al., 1999), as well as in simulations with natural
images (Law and Cooper, 1994; Shouval et al., 1997).

Parallel processing. The simulation was implemented on a Paragon
XPS/5 parallel computer (Intel, Beaverton, OR) with 128 processors.
Most of the simulations were executed using 64 processors. The prepro-
cessed image data were replicated on each processor. For each iteration,
processors used a synchronized random number generator to select a

Figure 1. Modular–axial connectivity in
visual cortex. a, I, Both neurons have a
similarly oriented connectivity axis (co-
modular), but their axes are not aligned, so
the two neurons will not be connected. II,
Although neuron 1 lays on the axis of neu-
ron 2 (axial), the connectivity axes of these
two neurons have significantly different ori-
entations and will not be connected. III,
These two neurons are comodular and lie
on each other’s axis; they are therefore re-
ciprocally connected. b, Map of the orien-
tations of the connectivity axes for a 64 3
64 neuron network. Orientation is indicated
by color. This map, along with the modular–
axial connectivity rule, specifies long-range
lateral connectivity within the cortex. c, Ex-
amples of lateral connectivity patterns for
two representative neurons.
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subimage and without interprocessor communication calculated feedfor-
ward activity for a subset of the neurons. The vector representing this
intermediate activity for all neurons was collected onto all processors
using an all-to-all broadcast. Each processor then calculated, for its
subset of neurons, the activity attributable to lateral connectivity and the
total activity. Then the feedforward synaptic weights were modified. A
sparse matrix representation of the lateral connectivity was used to speed
processing. Periodically (typically every 100,000 iterations), the state of
the simulation was archived in a checkpoint file.

Selectivity measure. We quantitatively evaluated the degree of orienta-
tion selectivity for each neuron. At the conclusion of the simulation, the
final checkpoint file was transferred to a serial processor for evaluation.
For each cell, a tuning curve at the optimal spatial frequency was
generated as a 24-dimensional vector TC. The tuning curve was Fourier-
transformed to give the vector ;TC. An orientation selectivity measure
was defined as S 5 u ;TC(2)u/ ;TC(1). This is similar to a measure used
experimentally (Chapman and Stryker, 1993).

Circular correlation. The circular correlation between two maps was
calculated in the following manner. For each corresponding pair of
neurons in the two maps the circular correlation for that pair of neurons
was set as:

CC~i, j! 5 cos~2@a~i, j! 2 a9~i, j!#!, (2)

where a(i, j) and a9(i, j) are the preferred orientations for pair of neurons
with coordinates i, j in the two maps, respectively. We then create a
circular correlation matrix with the same dimensions as that of the maps.
The average over all pixels is the circular correlation between two
different maps.

Optical maps. Optical maps were provided to us by A. K. Parshanth.
The methods for extracting the maps are similar to those of Everson et
al. (1998). The maps were cropped to a square and represent 3.5 3 3.5
mm 2 of cortex. The map is displayed rotated such that the horizontal
direction is approximately the horizontal in visual space.

RESULTS
Description of connectivity
Ideally, we would like to use a lateral connectivity pattern directly
extracted from experimental observations; however, such data are
not available. Instead, we qualitatively approximate the lateral
connectivity in visual cortex in a manner that is consistent with
experimental results.

To generate the lateral connectivity pattern, we first created a
schematic of an axial tuning map. By this, we mean a map that
dictates the axis for each neuron. This axis, we will see below,
also effects the preferred orientation of each neuron. The sche-
matic map is set either by the theoretical field analogy model
(FAM) (Wolf et al., 1994) or from optical imaging data. A typical
schematic, created by the FAM model, which has 64 3 64 neurons
and 64 singularities (pinwheels), is presented in Figure 1b. We
can use the number of singularities per square millimeter to set
the scale of the simulations in millimeters rather than pixels. In
different simulations, the number of singularities ranged from 49
to 81. Experimental data for cats indicate that the singularity
density is ;1.2 singularity/mm2 (Bonhoeffer and Grinvald, 1993).
This implies that we simulate networks with physical dimensions
in the range ;6.5 3 6.5–8.5 3 8.5 mm2. These schematics were
then used as a basis for determining the modular–axial connec-
tivity pattern used in the simulations. Figure 1a illustrates how
the lateral connections for the network were determined. If two
neurons have the same preferred orientation (comodular), but
neuron 2 does not lie on the axis of neuron 1, they will not be
connected (Fig. 1a, I). Two neurons that do not have similar
orientations are not connected, even if neuron 1 lies on the axis
of neuron 2 (Fig. 1a, II). Note that the axial component is
nonsymmetric: neuron 1 lies on the axis of neuron 2 but neuron
2 does not lie on the axis of neuron 1. Neurons are connected only
if they lie on the same axis and have a similar preferred orienta-

tion (Fig. 1a. III). When two neurons satisfy both the axial and
modular requirements, they will both be connected to each other;
thus the axial modular connectivity rule is symmetric.

Examples of the incoming lateral connections to two neurons
in this network are shown in Figure 1c. The connectivity map
used was binary; that is, for each possible neuron–neuron pair, a
connection was either present or absent. These connectivity pat-
terns were normalized such that the incoming connection
strengths to a neuron were proportional to the reciprocal of the
number of connections it received.

Naı̈ve networks and normal rearing
Each of the neurons in our model was assumed to have a recep-
tive field center that is shifted with respect to the receptive field
of its neighbors. This shift creates a retinotopic map in the cortex.
Because of nonisotropic lateral connections and the shift in re-
ceptive field centers, there is a component of orientation selec-
tivity that is entirely of cortical origin, even if the thalamocortical
projections are random or uniform.

To show how nonisotropic lateral connectivity and shifted
receptive fields create orientation selectivity, we give a simple
numerical example with four neurons (Fig. 2). The activity of
each neuron is the sum of its feedforward input and the inputs it
receives from its neighbors (Eq. 1). In this example, we assume
that neurons 1 and 4 are connected with a connection strength of
1 (L14 5 L41 5 1). All other connections are assumed to be zero.
The feedforward connections of each neuron are assumed to be
uniform (m 5 1). When a light bar overlaps the feedforward

Figure 2. Lateral connectivity can create an orientation bias. A simple
example is shown with four neurons that have nonoverlapping receptive
fields. We assume each neuron has a single feedforward weight of strength
1. A–C, Oriented bar stimuli with three different orientation. The text at
the bottom indicates the activity in response to each of the bars.
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portion of the receptive field, the input value is 1 (d 5 1). When
it does not overlap, the value of the input is 0 (d 5 0). Three
distinct conditions A, B, and C are compared in this example,
each representing a bar with a different orientation. We use
Equation 1 to calculate the activity of neuron 1 for each of the
different conditions. As shown in Figure 2, the bar with the same
orientation as the connections produces the largest response in
the cell. This would not occur if the receptive fields of the
connected cells were completely overlapping.

The brightness of each pixel in the pseudocolor maps in Figure

3 codes for the degree of orientation selectivity (The definition of
S, the orientation selectivity measure, is given in Materials and
Methods). Initially, in a naı̈ve network (i.e., an untrained net-
work), there is an orientation bias, which is highly correlated with
the schematic map (Fig. 3a). The low intensity levels show that
these neurons are very broadly tuned. This can be seen more
clearly when we compare tuning curves before and after training
(Fig. 3c) for two of the cells in the network. This holds for the
whole network as shown in Figure 3d, where the bottom surface
depicts the orientation selectivity across the naı̈ve map and the

Figure 3. Effects of training on a network of neurons
with modifiable geniculocortical synapses and static
lateral synapses. Orientation preference for stimuli is
indicated by color, as in Figure 1. Brightness indicates
degree of orientation selectivity: light colors indicate
highly selective cells; dark colors indicate weakly se-
lective cells. a, Orientation selectivity in the naı̈ve
map, using the scaffold of Figure 1a. The generally
dark colors indicate broadly tuned cells. There is a high
level of correlation between this map and the scaffold.
That this initial orientation selectivity is entirely of
cortical origin is apparent from the two representative
feedforward receptive fields displayed below, gray-
scale codes for the strength of thlamocortical connec-
tions: bright represents a strong connection, and dark
represents a weak connection. Initially the thalamo-
cortical weights are random. Arrows indicate the loca-
tions of these cells. b, The same network after 700,000
training iterations. Brighter colors indicate highly selec-
tive cells. The circular correlation between this map
and the schematic displayed in Figure 1a is 0.82.
Below we show the feedforward receptive fields of the
same cells displayed in Figure 2a, after training. c,
Orientation tuning of two cells, before (dashed line)
and after (solid line) training. Cells have a slight ori-
entation bias before training and are sharply tuned
after training. These tuning curves are the basis for
generating the selectivity index (see Materials and
Methods). d, Orientation selectivity for the whole net-
work before and after training. The bottom surface
shows the naı̈ve network, and the top surface shows the
trained network. e, Spatial frequency before and after
training. The bottom surface shows optimal spatial
frequency for the naı̈ve network. All cells in the naı̈ve
network were found to have the lowest spatial fre-
quency for which we tested (0.2 radians per pixel).
After training (top surface) the optimal spatial fre-
quency is greatly increased for all neurons.
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top surface depicts that of the trained map. Initially, S has low
values, typically less than 0.1. Optimal spatial frequency is also
very low in the untrained map (Fig. 3e). For all cells, we found
that the optimal spatial frequency had the lowest value for which
we tested, SF 5 0.2 radians per pixel. After 700,000 iterations
(Fig. 3b), the network has preferred orientations, which are very
similar to the predetermined axis in the schematic (Fig. 1b). To
assess the similarity, we calculated a circular correlation measure
(see Materials and Methods) between the mature map and the
schematic. In this case we find a circular correlation of 0.82
between the schematic and mature maps. The network develops
a high level of orientation selectivity. The receptive field structure
does not keep changing, and the tuning curves do not get sharper,
because the network, as a result of the stable learning rule,
reaches a stable fixed point.

The sharpening of the tuning curves and the increase in opti-
mal spatial frequency are accounted for by the changes in
thalamocortical connectivity. The small grayscale images in Fig-
ure 3,a and b, bottom, represent the thalamocortical connections.
A bright color represents a strong connection, and a dark color
represents a weak connection. These images are similar but not
identical to receptive fields as extracted by reverse correlation
(Jones and Palmer, 1987). Before training (Fig. 3a), the thalamo-
cortical connections are random. During training they evolve to
highly organized structures that exhibit elongated subregions of
alternating signs (Fig. 3b) reminiscent of simple cells in visual
cortex.

Thus, the main effects of training are increased orientation
selectivity, an increase in the preferred spatial frequency, and at
most a modest change in orientation preference. Because the only
modifiable synapses in our simulation are the geniculocortical
synapses, these changes are mediated solely by this set of
connections.

To obtain biasing of the network toward the direction of the
scaffold, we have used a modular–axial connectivity scheme. The
axial component of the connectivity pattern is essential for ob-
taining these results. We have previously shown, using simula-
tions on a smaller scale, that an axial component alone can be
sufficient (Goldberg et al., 1999).

Extension to real maps
The simulation in Figure 3 was performed for an artificial sche-
matic map. We tested to see whether similar results could be
obtained with lateral connectivity inferred from real optical im-
aging maps. We created a schematic from optical imaging maps
(data provided by A. K. Prashanth in Udi Kaplan’s laboratory;
Everson et al., 1998). The imaged section of cortex (Fig. 4a) used
to create the scaffold has dimensions of 3.5 3 3.5 mm2. The

parameters used are essentially identical to those used with the
artificial schematic; however, because the map represents a
smaller section of cortex, the connections here will have a non-
symmetric structure at a shorter range. The simulated network
map after 700,000 iterations (Fig. 4b) was similar to the original
with a circular correlation of 0.78 between the inferred schematic
and the mature map. This is within the range of results obtained
for artificial maps and significantly .0, which is the circular
correlation between two random maps. We performed the same
procedure for one other map obtained from optical imaging and
obtained similar results. Thus, we have established that the effect
of the scaffold is not an artifact of the artificiality of the maps. For
the remainder of this paper we use the artificial maps, because
they are bigger, depend on long-range lateral interactions, have
parameters we can control, and are easier to generate.

Reverse suture
If the scaffold can bias the development of the map, it should in
a similar fashion bias an orientation map that develops indepen-
dently in both eyes. We performed simulations of the type of
reverse suture experiments performed by Gödeke and Bonhoeffer
(1996) (Fig. 5). We initialized the thalamocortical connections for
both left and right eye channels independently from a random
distribution and then ran a monocular deprivation (MD) training
phase in which one eye received a natural image environment and
the other eye received noise. Orientation maps through both eyes,
after this phase, are presented in Figure 5a, top. As expected, the
thalamocortical connections for the eye receiving patterned input
developed strong orientation selectivity, whereas the selectivity in
the connections from the contralateral eye were substantially
weaker.

We then ran a reverse suture (RS) phase in which the eye that
previously received patterned input received noise, and the pre-
viously deprived eye received a patterned input. We ran the
reverse suture phase for 1 million iterations. After training, the
orientation selectivity in the newly deprived eye decayed, whereas
the orientation selectivity in the formerly deprived eye increased
(Fig. 5a, bottom). Despite the fact that the two eyes never expe-
rienced common visual input, the maps obtained from the left eye
after monocular deprivation (Fig. 5a, top lef t) and from the right
eye after the reverse suture phase (Fig. 5a, bottom right) are very
similar. The circular correlation between these maps was 0.87.
These results are agreement with the experimental results of
Gödecke and Bonhoeffer (1996).

To verify that this is not a special case, we repeated this
procedure for eight different artificial maps. To illustrate that this
does not occur only for maps that have similar statistics, we chose
maps with a varying number of singularities. We calculated the

Figure 4. Scaffold created from optical imaging maps. a,
Section of an optical imaging map (data courtesy of A. K.
Parshanth and U. Kaplan; Everson et al., 1998). This map was
used as a schematic for a scaffold. b, The mature map ob-
tained using the schematic in Figure 3a. The circular corre-
lation between the maps in a and b is 0.78. Color code as in
Figure 1.
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circular correlation (Eq. 2) between the left eye after MD and the
right eye after RS among all of these maps (Fig. 5b). The diagonal
values show the circular correlations for the same simulation, and
the off-diagonals give the circular correlations between maps

obtained in different simulations. The within-simulation correla-
tion values are high (all .0.68 with a mean of 0.81 and SD of
0.05). In contrast, the off-diagonal elements are all close to zero
(mean, 0.04; SD, 0.05), which is what we would expect for totally
uncorrelated maps.

Disruptions
Other models could also account for these experimental results.
For example, there could be an initial orientation bias in the
thalamocortical connections that is similar for both eyes. We
suggest an experiment to distinguish our model from this possi-
bility. We propose to rear cats monocularly from birth and then
perform reverse suture as in the Gödecke and Bonhoeffer (1996)
experiment. At the end of the MD phase, the maps are imaged,
and small, paired, parallel cuts are made in the cortex to disrupt
the long-range horizontal connections. At the end of the reverse
suture phase the orientation maps that developed in the contralat-
eral eye are imaged.

We expect, if the scaffold model is correct, that orientation
maps that develop in the contralateral eye will be disrupted in a
particular manner. Specifically, we expect that the changes in the
orientation maps will be correlated with the orientation of
the cuts. If the paired cuts disrupt long-range connections along
the line of axial specificity, orientation selectivity will be dis-
rupted in the region between the cuts. However, if the paired cuts
are made orthogonal to the line of axial specificity, orientation
selectivity in the region between the cuts will not be disrupted at
all. That is, in the latter case, we will observe that nearly identical
orientation selectivity will develop in the maps for both eyes but
not in the former case. Our expectations stand in sharp contrast
to what one would expect if a built-in thalamocortical bias, similar
in both eyes, determines final orientation preference. In this case,
one would expect few changes in the MD or RS maps, regardless
of the orientation of the cuts.

Figure 6 illustrates a simulation of this experiment. In Figure
6a, we display the map after the MD stage from the open eye. In
Figure 6b, and c, we display the maps at the end of the RS phase.
In Figure 6b cuts were made along the line of axial specificity for
the central red region and have strongly disrupted the horizontal
connections. Thus, after reverse suture, they alter the preferred
orientation of the cells affected. To quantify the strength of this
effect, we calculated the circular correlation for each pixel, between
the region of interest in the maps in Figure 6a and b. The corre-
lation map, within the region of interest, displayed in Figure 6a,
right, shows that there is a large difference between these maps.

Cuts made at a similar distance to the horizontally tuned cells
after the MD phase orthogonal to the line of axial specificity have
a very different effect. In this case, the orientation selectivity that
develops in the RS eye (Fig. 6c) is nearly identical to the map that
developed in the MD eye (Fig. 6a), and the correlation map (Fig.
6c, right) contains almost no large values.

A possible problem with the proposed experiment is that such
cuts, despite their small size (;1 mm), could damage blood
vessels in the region of interest. Such reduction in the blood flow
could reduce the intrinsic signals used in optical imaging, thus
making the results harder to observe. It might therefore be
necessary to find a less-invasive alternative to cuts that would
similarly alter the lateral connectivity. Another possible problem
is that by chance the new map may develop an orientation similar
to the undisrupted map. This, however, should happen only in a
small fraction of the experiments.

Figure 5. Simulation of reverse suture experiments performed on a
binocular network. a Example of a reverse suture experiment. The
schematic used in this example is the same as Figure 1a. The orientation
maps obtained after the initial 700,000 iteration MD stage are illustrated
above. On the left, a highly selective organized map is shown for the open
eye. On the right, the map imaged from the closed eye is shown. Maps
obtained after the 1 million iteration RS stage are illustrated below. The
newly opened right eye shows a high degree of selectivity and an organi-
zation similar to the map imaged from the left eye after the MD phase.
The circular correlation between these two maps is 0.87. b, Circular
correlations between left eye after MD and right eye after RS. Simula-
tions were run for eight different schematics that differed in the number of
singularities (49–81) and their random displacement (see Materials and
Methods). On the diagonal the correlations between left eye after MD
and right eye after RS for the same scaffold are displayed. In the
off-diagonal the correlations between maps with different schematics are
displayed.
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DISCUSSION
Experimental evidence concerning plasticity of orientation selec-
tivity in visual cortex poses an apparent dilemma. There are
strong indications that orientation selectivity of single cells in
visual cortex is experience-dependent and dependent on synaptic
plasticity. On the other hand, preferred orientation seems very
stable. Moreover, preferred orientation is identical for both eyes,
even if they never experience common visual input.

To account for this, we propose that a scaffold is embedded in
the structure of the long-range lateral connectivity. Its structure
determines the initial orientation preference observed in animals
with no visual experience and accounts for the stability in the
orientation maps that develop in eyes with no common visual
experience. The scaffold model is consistent with the broadly
tuned, low-spatial frequency orientation selectivity seen in very
young animals (DeAngelis et al., 1993). It is also consistent with
the observation that orientation selectivity increases with visual

experience, without markedly changing orientation preference
(Chapman et al., 1996; Gödecke et al., 1997). According to this
view, plasticity operates primarily on the thalamocortical syn-
apses. Thus, adult orientation selectivity is determined by the
thalamocortical connections. This too is consistent with experi-
mental results (Ferster et al., 1996; Chung and Ferster, 1998).

There is evidence that the development of clustered lateral
connections, in ferret, starts before eye opening (Durack and
Katz, 1996), although the refinement of these connections occurs
synchronously with the maturation of receptive fields after eye
opening. Furthermore, it has been shown that the early phase of
development of long-range connections is not prevented by enu-
cleation (Ruthazer and Stryker, 1996). These findings are consis-
tent with our assumption that the structure of the lateral connec-
tivity is laid out at eye opening and is the substrate of orientation
selectivity at eye opening. We have not considered plasticity of
the lateral connections in the present model; however, we do not

Figure 6. Proposed experimental test for the scaffold
hypothesis. We expect that the location and orientation
of small cuts would affect the layout of the orientation
map that develops during the reverse suture phase. a,
Trained map after MD, as in Figures 2b and 4a. Before
RS, selective small cuts are made to the cortical surface,
disrupting lateral connections. After RS, the maps are
imaged. b, Black lines indicate two cuts designed to sever
many of the horizontal lateral connections to a region
preferring horizontal orientations (red). The cuts cre-
ated a significant difference in the preferred orientation
after RS. On the right a circular correlation map, in a
region of interest, between the uncut map (Fig. 5a) and
the cut map is shown. Small values are indicative of
significantly different preferred orientations. c, Control
experiment, in which two cuts do not disrupt the hori-
zontal connections. In this case, we anticipate a much
smaller change in the orientation map, indicated by the
absence of small values in the correlation map.
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exclude this possibility. It could indeed be the case that the
structure we assumed for the lateral connectivity develops con-
currently and interacts with the development of structure in the
thalamocortical pathway. However, even if lateral connections are
not entirely static, our present model can still account for the
results of Gödecke and Bonhoeffer (1996), because the lateral
connections developed during the initial MD phase would be in
place during the RS phase to bias the development of the con-
nections to the second eye.

Plasticity of orientation selectivity in visual cortex is quite
controversial. There has been a long-standing dispute about the
degree of orientation selectivity at eye opening. Hubel and Wiesel
(1963) claimed that orientation selectivity right after eye opening
is nearly identical to orientation selectivity in adults. In contrast,
Barlow and Pettigrew (1971) claimed that there is almost no
orientation selectivity immediately after eye opening. Other re-
search supports the intermediate view that there is some degree
of orientation selectivity at eye opening, although fewer cells are
orientation-selective, and those that are more broadly tuned than
in adults (Blakemore and Van-Sluyters, 1975; Buisseret and Im-
bert, 1976). An extensive reverse correlation study has recently
shown that there is orientation selectivity after eye opening;
however, both spatial and temporal properties of cells develop
after eye opening (DeAngelis et al., 1993). Spatial tuning reaches
adult levels at ;4 weeks of age, whereas temporal properties keep
developing beyond 8 weeks. The reverse correlation technique
requires a large amount of data, therefore, weakly responsive
cells had to be eliminated from the sample. Thus the sample they
produce might be somewhat biased, and actual orientation selec-
tivity might be lower than they report, especially in the younger
animals.

Regardless of the degree of orientation selectivity at eye open-
ing, it is well established that dark rearing or binocular depriva-
tion prevents the normal development of orientation selectivity.
This has been shown for both cats (Imbert and Buisseret, 1975;
for review, see Frégnac and Imbert, 1984) and ferrets using both
electrophysiological (Chapman and Stryker, 1993) and optical
imaging techniques (Chapman et al., 1996). Another striking
example of plasticity of orientation selectivity was provided by
Sur and coworkers (1988), who had shown that when visual
thalamic projections are rerouted into auditory cortex of ferrets,
cells in auditory cortex become orientation-selective.

In another set of experiments animals were raised in artificial
visual environments in which they were exposed to only a re-
stricted set of orientations. Most of these experiments found that
those orientations to which the animals were exposed were over-
represented by cells in their cortex (Hirsh and Spinelli, 1970;
Pettigrew, 1974, Blakemore and Van-Sluyters, 1975). However,
an experiment by Stryker and Sherk (1975) found no difference
between normal animals and those reared in restricted environ-
ments. A similar experiment performed by Stryker et al. (1978)
with a different deprivation methodology did find a difference
between control animals and those raised in a deprived environ-
ment, but the researchers found many “dead zones,” that is, zones
in which no cells responded. This raises the possibility that cells
with an orientation preference not found in the environment do
not change their preferred orientation but instead become unre-
sponsive. Such plasticity is often referred to as permissive plastic-
ity. A recent optical imagining study (Sengpiel et al., 1999), which
uses a deprivation methodology similar to that of Stryker and
Sherk (1975), has shown a significant over-representation of those
orientations that existed in the environment. Furthermore, this

experiment did not observe any dead zones. These recent results
do not lend support to the permissive plasticity hypothesis.

The modular component of the proposed lateral connectivity
has ample experimental evidence (Ts’o et al., 1986; Gilbert and
Wiesel, 1989; Weliky and Katz, 1994; Ruthazer and Stryker,
1996). In contrast, there is less evidence for an axial component;
however, it was found both in tree shrew (Bosking et al., 1997)
and in cat (Schmidt et al., 1997). The disruption experiment we
propose (Fig. 6) could be used to indirectly test the pattern of the
lateral connectivity. If such experiments produce the results we
predict, it would show not only that the lateral connectivity is a
plausible substrate to the scaffold, but also that is has a modular–
axial form. Our work implies that the structure of visual cortex
maps arises from the lateral connectivity. However, it is not clear
what drives the development of the lateral connectivity and which
types of mechanisms are required to organize such intricate maps
of lateral connections. This set of questions, which could be
addressed both experimentally and theoretically, would then be-
come central to the question of visual map organization.

A model proposed by Erwin and Miller (1998) has also been
used to account for the results of Gödeke and Bonhoeffer (1996).
This model assumes that orientation selectivity of thalamocorti-
cal connections is developed before eye opening and is the same
for both eyes. The pre-eye-opening thalamocortical structure is
then the substrate of the orientation selectivity observed at eye
opening. In our model we assume that orientation selectivity at
eye opening is caused by structured lateral connections in layers
II–III, which also influence responses of neurons in layer IV. Our
model assumes that thalamocortical plasticity occurs primarily
after eye opening; we therefore use natural images for training.
The Erwin and Miller (1998) model, in contrast, assumes
thalamocortical connections develop before eye opening and
therefore uses correlated noise as input. The model of Erwin and
Miller (1998) can account for the results of Gödeke and Bonhoef-
fer (1996) by assuming that during the MD phase the structure of
the thalamocortical RF in the deprived eye is not completely
degraded. This remnant structure then biases the development of
the RF during the RS stage. It is reasonable to assume that if the
MD phase would be run longer, this model would predict that the
maps from both eyes will no longer be similar, because the bias to
the thalamocortical RF in the deprived eye would be eliminated.
Another test is the disruption experiment proposed above (Fig.
6). If disruptions of lateral connectivity affect the development of
the map from the second eye, this model would be ruled out,
because it relies on a bias in the thalamocortical projections. If
disruptions do not influence the second eye map, this could either
indicate that remnant thalamocortical bias exists, or that the
scaffold is encoded in short-range lateral connections.

Wolf and coworkers (1996) have proposed that the stability of
the orientation map and, in particular, the results of the Gödecke
and Bonhoeffer (1996) experiment could be explained by the
shape of area 18. They claim that the shape of area 18, in which
these experiments were performed, breaks the symmetry of dif-
ferent orientations and determines the structure of the orienta-
tion map. They predict that these results would not generalize to
area 17. Such an experiment is difficult to perform, because it is
difficult to optically image area 17. However, there is anecdotal
evidence from a single-electrode study (Mioche and Singer, 1989)
that cells in area 17 also tend to develop the same orientation
preference in these conditions.
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