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Abstract

This study was undertaken to evaluate the use of ontology-based semantic mapping (OS-Mapping) 

in chemical toxicity assessment. Nineteen chemical-species phenotypic profiles (CSPPs) were 

constructed by ontologically annotating the toxicity responses reported in more than seven 

hundred published studies of ten chemicals on six vertebrate species. The CSPPs were 

semantically compared to more than 29000 publicly available phenotypic profiles of genes, KEGG 

(Kyoto Encyclopedia of Genes and Genomes) pathways, and diseases based on a cross-species 

phenotype ontology. OS-Mapping was shown to differentiate chemical toxicities among 

themselves as well as within and across species. It also revealed cases of chemical by species 

interactions. In addition to confirming similar MOAs (mechanisms of action) for a few chemicals, 

OS-Mapping also generated novel insights into the MOAs underlying some seemingly different, 

yet phenotypically similar, classes of chemicals. The nature of a unified cross-species phenotype 

ontology and its representation of diverse knowledge domains allowed the construction of a 

complete phenotypic continuum for the 17α-ethynylestradiol_fathead minnow across the 

biological levels of organization, which complemented a similar one derived from the 

Comparative Toxicogenomics Database but based primarily on 17α-ethynylestradiol-induced 

molecular phenotypes. Overall, OS-Mapping has been demonstrated to offer a powerful approach 

to help bridge the gap between the molecular and non-molecular phenotypes of chemicals 

characterized by using high throughput or traditional omics methods and their apical endpoints of 

greater regulatory relevance, which are typically phenotypes found at the higher levels of 

biological organization. OS-Mapping also enables comparative toxicity assessment among 

chemicals, both within and across species. Furthermore, the semantic analysis of phenotypes can 

reveal additional novel MOAs for some well-known chemicals and discover candidate MOAs for 

chemicals that are less molecularly characterized. A full phenotypic continuum based on OS-

Mapping will also be conducive to the future development of adverse outcome pathways. As 

phenomics continues to advance and the ontological annotation of literature becomes more 

automated, the power of OS-Mapping will be further enhanced.
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1. Introduction

A shift toward a new paradigm in toxicology is well underway, one that is moving away 

from animal testing and toward an approach with a greater focus on in vitro, short term in 
vivo, and in silico tests; high-throughput screening; and toxicity pathways (NRC, 2007). 

Contemporary advances in omics, systems biology, robotics, computational chemistry, and 

bioinformatics have been instrumental in the evident progress that has been made under this 

new paradigm. Programs such as the US Tox21 and EPA’s ToxCast (Merrick et al., 2015; 

Richard et al., 2016) have screened thousands of chemicals for biological effects using 

biochemical- or cell-based assays and identified numerous molecular targets of potential 

interest. Transcriptomics, proteomics, and metabolomics-based studies of chemical 

exposures in both laboratory and field settings have also proliferated, resulting in the 

determination of many impacted genes, proteins, metabolic pathways, other non-molecular 

phenotypes, and the subsequent discovery of some novel molecular mechanisms of action 

(MOAs) for these chemicals and the development of their biomarkers. From these efforts, 

many powerful bioinformatic approaches for mining high-dimensional omics data in large 

volumes have also emerged.

Several daunting challenges remain during this paradigm shift. First, high-throughput 

screenings and omics studies of chemicals focus primarily on molecular phenotypes. Due to 

the enormous complexity of the phenotypic space and the many-to-many relationships 

commonly found in genotype-phenotype mapping (Houle et al., 2010), it is difficult to 

connect molecular phenotypes with their higher level apical endpoints such as anomalies in 

development, mating behavior, organ size/histopathology, reproduction, and mortality. 

Second, although some of these non-molecular phenotypes are characterized and recorded as 

descriptive texts in such studies, they are not readily computable for integrated analysis with 

molecular data. Third, toxicological studies are most likely conducted on a few model 

species; it is generally difficult to map and integrate phenotypes from a test species to other 

species of greater environmental and health concerns. Clearly, to realize the full potential of 

the new toxicology paradigm, a strategy to address these barrier issues needs to be 

developed.

Phenomics is the systematic study of the phenotypic responses of an organism on a genome-

wide scale, which are determined by the complex interactions of its genotypes and 

environmental conditions. Phenomics adds a new dimension to the discipline of systems 

biology, which is largely founded on traditional omics. The term is sometimes used 

interchangeably with high-throughput phenotyping. Among the most high-profile phenomics 

projects to date is perhaps the one led by the International Mouse Phenotyping Consortium 

(Brown et al., 2018), in which mouse genes are systematically mutated and phenotyped by 

using a wide range of technologies. These phenotypes are described as free text and are then 

made computable by annotating them with the appropriate ontology terms. With numerous 
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domain ontologies developed in recent years, phenomics coupled with ontology-based 

knowledge representation is increasingly being adopted by the scientific community as an 

approach to dissect complex traits, to better understand genetic variations, and to integrate 

phenotypes across biological levels of organization and species boundaries (Washington et 

al., 2009; Houle et al., 2010; Mungall et al., 2010; McMurry et al., 2016; Brown et al., 

2018). As such, it should also help to fill the gap between the molecular and non-molecular 

phenotypes generated from traditional omics platforms and the apical endpoints of greater 

regulatory significance. The numerous phenomics projects underway are responsible for the 

abundant and increasing amount of phenotypic information now available across a wide 

range of species and knowledge domains (Smith et al., 2007; http://www.obofoundry.org; 

http://www.informatics.jax.org).

The emergence and widespread application of biological ontologies over the last two 

decades largely coincided with the omics revolution because of the growing necessity to 

conceptualize, represent, share, and compute this enormous amount of biological 

knowledge, including phenotypes, across domains and species (Gruber 1995; Ashburner et 

al., 2000). An ontology represents a knowledge domain, such as those of omics, anatomies, 

behavior, disease etc., by a set of predefined web ontology language (OWL) constructs and 

standard vocabulary (Bard and Rhee, 2004). Such a representation standardizes knowledge 

and makes it accessible to both human and machine inferencing. In addition to pre-

composed ontology classes, that is, sets of objects with common attributes originally created 

by ontology developers, complex phenotypes from phenomics projects can be post-

composed into custom ontology classes during annotation by selecting terms from reference 

domain ontologies using Entity-Quality (EQ) syntax (Washington et al., 2009; Mungall et 

al., 2010; Hoehndorf et al., 2011; Gkoutos et al., 2017).

Ontologies covering a wide variety of biological domains have many applications, including 

genome annotation, interpretation of omics findings, knowledge integration across species 

and biological levels of organization, information retrieval, and semantic computing (Bard 

and Rhee, 2004; Hoehndorf et al., 2015). An ontology is intrinsically a directed acyclic 

graph, one in which nodes represent ontology classes and edges denote their subsuming 

relationships. The information content (IC) of a node is determined by its relative position in 

the graph: a node with more parent nodes and fewer leaf nodes (i.e., farther away from the 

root node) has higher IC, thus being more specific and informative. Two nodes are 

semantically more similar to each other when they share more information, as reflected by 

the greater IC of their most informative common ancestor (MICA). Subgraphs of an 

ontology, each representing the phenotypic profile of a chemical, a gene, a pathway, a 

disease, or other entities of interest by a group of ontology nodes, can be compared to one 

another for semantic similarities based on various arithmetic manipulations of their 

underlying ICs. An implicit assumption of this approach of ontology-based semantic 

mapping (OS-Mapping; Washington et al., 2009) is that, when two such subgraphs are 

similar, their associated chemicals, genes, pathways, or diseases must share convergent 

biological mechanisms (Gkoutos et al., 2017).

Although originated from and largely driven by applications in biomedical sciences 

(McMurry et al., 2016), OS-Mapping could potentially facilitate chemical toxicity 
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assessment as well. To date, one of the most pressing issues in this area continues to be the 

need to efficiently evaluate the toxicities of numerous chemicals. Bridging the gap between 

molecular and non-molecular phenotypes from high-throughput screening/omics studies and 

the apical endpoints of relevance should facilitate that effort. Comparative assessments of 

multiple chemicals of their toxicity responses both within and across species will further 

advance model species-based toxicology as well. In many ways, OS-Mapping appears to 

represent an ideal approach to implement these types of integrated analysis of toxicological 

data, as a unified, multi-domain, multi-species ontology can be formed by merging a wide 

range of public bio-ontologies relevant to toxicology. These include ontologies of gene, 

protein, chemical, cell, disease, behavior, phenotypes, and importantly, both species-specific 

and universal anatomies (http://obofoundry.org). After subsuming relationships are 

established among various classes in the unified ontology by using a reasoner, a type of 

software tool for inferencing, a semantic analysis can be conducted among individual nodes, 

or subgraphs of multiple nodes associated with the biological entities of interest. The nature 

of this unified multi-domain, multi-species ontology allows chemical toxicities and their 

biology to be dissected both within and across species.

The goals of this pilot study were to evaluate OS-Mapping for its potential applications in 

chemical toxicity assessment and to demonstrate its value as a computational approach to 

complement current omics technologies widely used in studying chemical exposures. If 

proven successful, OS-Mapping would allow a vast amount of non-molecular phenotypes 

from phenomics projects across several species to inform chemical toxicity assessment in 

the future. The specific aims of this study were to: 1) build a number of custom chemical-

species phenotypic profiles (CSPPs), each of which would summarize multiple published 

exposure studies for a specific chemical and vertebrate species using post-composed 

ontology classes; 2) assemble a comprehensive collection of publicly available phenotypic 

profiles (hereafter referred to as “profiles”) for human, mouse, and zebrafish, with each 

profile associated with a gene, a biological pathway, or a disease; 3) develop a Java 

application for the semantic analysis of ontology classes and profiles via OS-Mapping; and 

4) assess the performance of OS-Mapping in dissecting chemical toxicities by comparing 

CSPPs against themselves, and against the assembled public target profiles. During semantic 

analysis, each CSPP or profile containing multiple ontology classes is effectively an 

equivalent of an ontology subgraph.

2. Material and Methods

2.1. Ontological annotation of literature and preparation of CSPPs

The US EPA’s ECOTOXicology Knowledgebase (ECOTOX; https://cfpub.epa.gov/ecotox/) 

and its predecessors were created in the early 1980s to collect, compile, and annotate 

literature on single chemical exposure studies on a variety of ecological species, including 

both aquatic and terrestrial animals and plants. The manual annotations of literature by 

ECOTOX curators were made with predefined codes covering various aspects of an 

exposure study, including the life stages of experimental organisms, effect types (genetics, 

morphology, growth, etc.), sites and trends of responses, measurements taken, and the 

Wang et al. Page 4

Toxicology. Author manuscript; available in PMC 2020 January 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

http://obofoundry.org/
https://cfpub.epa.gov/ecotox/


statistical significance of findings (S. File 1, S. File 2). As of September 2016, ECOTOX had 

covered over 1600 vertebrate taxa involving more than 7000 chemicals.

The first step in the preparation of CSPPs was selection of the chemicals and species. To 

ensure that each CSPP would contain a sizeable number of ontology classes, the chemicals 

and species that ranked high in the number of exposure test results in ECOTOX (S. File 1) 

were reviewed and selections were made from those remaining after filtering out statistically 

insignificant and/or phenotypically uninformative mortality-related results. Where possible, 

preferences were also given to those chemicals studied in more than one species to facilitate 

the interspecific comparison of toxicity responses of the same chemicals. Ultimately, ten 

chemicals that had been tested in six vertebrate species that met these criteria were selected 

for ontological annotations: atrazine, bisphenol A, cadmium chloride, chlorpyrifos, copper 

sulfate, cypermethrin, dioxin, 17α-ethynylestradiol, malathion, and Tris(1,3-

dichloroisopropyl) phosphate (TDCPP; Table 1). The six vertebrate species were: carp 

(Cyprinus carpio), zebrafish (Danio rerio), fathead minnow (Pimephales promelas), mouse 

(Mus musculus), rat (Rattus norvegicus), and trout (Onchorhynchus mykiss).

The next step of CSPP preparation was to export and preprocess the annotations of selected 

combinations of chemical and species from ECOTOX (Figure 1A). A text file was exported 

for each chemical and species containing information about the response site, measurements, 

response trend, effect types, statistical significance of test results, organism life stages, and 

the references of original source publications (S. File 2). Statistically insignificant and/or 

mortality-related results were filtered out. A few publications with obvious quality issues or 

without annotatable phenotypes were excluded. After these steps, a non-redundant set of 726 

publications spanning the last several decades was identified for subsequent manual 

annotations using EQ syntax (Figure 1B, 1C). These publications were deemed acceptable 

because they originated largely from peer-reviewed journals and had been previously 

screened by ECOTOX curators. The original annotations in ECOTOX by its predefined 

codes were retained for reference purposes only. These annotations were not used directly in 

the EQ statements because of several considerations: a wide range of granularity in the 

coded responses, frequent omissions of histological details and other findings reported in the 

original publications, and occasional errors. These issues existed primarily because 

ECOTOX was not originally designed for ontological annotations and because ECOTOX 

had evolved over almost four decades under the likely curation of many different individuals 

over its annotation history. Nevertheless, these issues made it difficult to directly incorporate 

ECOTOX annotation codes into EQ statements with high specificity and accuracy.

In its most basic form, EQ syntax describes how an entity (E) such as an anatomical part, a 

biological process, or a biological function, is altered in its quality (Q; Figure 1C; 

Washington et al., 2009; Hoehndorf et al., 2011; Gkoutos et al., 2017). The ontology term 

for an entity is selected from reference domain ontologies such as the Gene Ontology, Cell 

Ontology, and various anatomy ontologies. The quality term comes from the Phenotype And 

Trait Ontology (PATO; http://purl.obolibrary.org/obo/pato.owl). An entity and a quality are 

related to each other by an object property (R) from the Relations Ontology (RO; http://

purl.obolibrary.org/obo/ro.owl). At times, EQ syntax needs to be expanded to include a 

secondary entity, as in E1-Q-E2, where Q denotes a relational quality. For example, 
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“blood_serum(E1) has_quality(R) increased_ concentration (Q) towards (R) glucose (E2)” 

denotes phenotype “raised blood glucose level”. For a more complex phenotype, an entity 

can also be further post-composed, giving rise to a more generalized syntax in the form of 

[E1a-R-E1b]-[Q-QL]-[E2a-R-E2b], where QL is a quality modifier (e.g., PATO_0000460, 

“abnormal”). The post-composition of an entity may extend over multiple levels, which may 

either be nested or parallel to one another. To provide a more accurate annotation, an entity 

term could also be modified by another quality term, as in [E-R-Q]-[Q].

The chemical toxicity responses in the 726 publications selected were manually curated and 

annotated with EQ syntax by using Phenote software (Phenote_1_8_13_windows-

x64_install4j.exe, released 11-29-2012; http://www.berkeleybop.org/index.html). Phenote 

was custom configured, and all user-designated ontologies in Open Biomedical Ontology 

(OBO) format were preloaded into memory during each session to expedite the selection of 

specific and appropriate ontology terms for a given phenotype. Once the annotation work 

was complete for all the selected chemicals/species, their tab-delimited outputs were 

manually checked to ensure that the order of terms in a post-composed entity remained 

unchanged (S. File 3). This step was necessary because Phenote occasionally rearranged 

those terms upon saving and reopening an annotation file. EQ annotations were then 

converted into ontology classes in Manchester syntax (https://www.w3.org/TR/owl2-

manchester-syntax) by using a custom Perl script (Figure 1D, S. File 4), and further into 

RDF/XML format (https://www.w3.org/TR/rdf-syntax-grammar/) by using Protégé (http://

protege.stanford.edu). Each result reported in a publication was in effect annotated into a 

custom ontology class with a distinct ID. All ontology classes constructed for each chemical 

and species were syntactically unique. A CSPP was then prepared consisting of all the 

relevant class IDs associated with a given combination of chemical and species (Figure 1E). 

A total of 19 CSPPs was created from annotating the 726 publications.

2.2. Assembly of profiles from public phenomics data

Profiles were prepared for human, mouse, and zebrafish, the three vertebrate species for 

which public omics data, including phenotypes, is likely the most abundant. All data were 

downloaded on September 15, 2017. For the human profiles, two files were acquired from 

the Human Phenotype Ontology (HP) site (http://human-phenotype-ontology.github.io/

downloads.html, redirected to http://compbio.charite.de/jenkins/job/

hpo.annotations.monthly/lastStableBuild).

The first file, “ALL_SOURCES_ALL_FREQUENCIES_genes_to_phenotype.txt”, 

contained human genes, each of which was annotated with multiple HP terms. A second file, 

“ALL_SOURCES_ALL_FREQUENCIES_diseases_to_genes_to_phenotypes.txt”, linked 

human diseases to both human genes and HP terms. The human diseases were coded with 

either OMIM (Online Mendelian Inheritance in Man) IDs or Orphanet IDs (http://

www.orpha.net/consor/cgi-bin/index.php?lng=EN). The mouse data file, 

“MGI_GenePheno.rpt”, was downloaded from the Jackson Laboratory (http://

www.informatics.jax.org/downloads/reports/index.html#pheno). Each mouse gene in the file 

was linked to multiple Mammalian Phenotype Ontology (MP) terms. The second mouse data 

file, “MGI_Geno_DiseaseDO.rpt”, linked the OMIM disease IDs to MP terms. For the 
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zebrafish profiles, genes linked to Zebrafish Phenotype Ontology (ZP) terms were 

downloaded (https://github.com/Phenomics/zebrafish-phenotype-ontology-build/blob/

master/annot_gene_pos.txt). In addition to the profiles anchored by genes and diseases, 

profiles were also prepared for mouse KEGG (Kyoto Encyclopedia of Genes and Genomes; 

http://www.genome.jp/kegg) pathways by replacing the gene members in each pathway with 

their associated MP terms. A total of 29154 profiles was assembled, including 3498 by 

human genes in HP terms, 12009 by mouse genes in MP terms, 5892 by zebrafish genes in 

ZP terms, 1987 by OMIMs in MP terms (denoted as M_OMIM_digits), 4164 by human 

diseases and disorders in HP terms (denoted as OMIM_digits), 1272 by rare diseases in HP 

terms (Orpha_digits), 313 by KEGGs in MP terms, and 19 CSPPs.

2.3. Development of an OS-Mapping Java application

After evaluating a few existing applications available for ontology-based semantic analysis 

(e.g., OwlSim, http://www.berkeleybop.org/software/owlsim; SML Toolkit, http://

www.semantic-measures-library.org/sml/index.php?q=toolkit; GOSemSim, Yu et al., 2010), 

a more streamlined and flexible application, called OS-Mapping.java, was developed in-

house to better meet our needs in analyzing chemical toxicities. As a command line tool, 

OS-Mapping.java relies on several Java packages including OWLAPI (version 4.2.5; 

Horridge and Bechhofer, 2011), Semantic Measure Library (SML, version 0.9.4d; Harispe et 

al., 2014), and various reasoners (Dentler et al., 2011; Kazakov et al., 2011; Mendez, 2012; 

Ceylan et al., 2015). The OWLAPI is a well-known and widely adopted application 

programming interface that provides various functionalities to the creation and manipulation 

of OWL ontologies. The SML works with a preexisting reasoned ontology and provides 

multiple semantic measures for both pairwise and group-wise analyses of ontology classes. 

A reasoner examines ontology axioms (statements about classes, individuals, or properties) 

for their logical validity (consistency and satisfiability), and then infers subsumption 

relationships among classes. The development of OS-Mapping.java was conducted within 

NetBeans, an integrated development environment (version 8.2; https://netbeans.org).

To evaluate the statistical significance of the semantic similarity scores between a query and 

its target profiles, OS-Mapping.java generates a user-specified number of random profiles of 

the same size as the original query and calculates their similarities against target profiles 

individually. A random profile is formed by sampling all the classes present in a merged 

ontology, which, in the current version of cross-species phenotype ontology (http://

purl.obolibrary.org/obo/upheno/vertebrate.owl; Köhler et al., 2013), number more than 

151000. In effect, a distribution of semantic similarity scores is generated for this query 

against each of the respective target profiles using the same group of random profiles. The 

scores at the top 5% and top 1% maximum range in each ascendingly sorted distribution are 

then selected as the cutoffs for the corresponding pair of query and target profiles. For the 

next query profile, a new set of random profiles is generated based on its size, which is then 

compared against all the target profiles again. The process repeats until similarity score 

cutoffs have been generated for all possible comparisons of query-target profiles. A pair of 

query and target profiles would be declared significantly similar to each other if its similarity 

was greater than its associated cutoffs. Although informative, this procedure is 

computationally expensive, particularly when a query has a large size and the number of 
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random profiles grows. In addition, there is a possibility, depending on the query size and 

number of random profiles generated, that some sampled classes in a random profile may be 

correlated to various extents due to the nature of an ontology graph. Such a correlation, 

when it occurs, would violate one of the assumptions of resampling that all individuals in a 

population should have an equal probability to be sampled.

When conducting an analysis, OS-Mapping.java takes a single configuration file (S. File 5) 

at the command line as the input argument to specify such analysis parameters as a starting 

root ontology, a set of query and target profiles, and the choices among seven reasoners, ten 

information content measures, 22 pairwise, and 13 group-wise semantic similarity measures. 

A preexisting reasoned ontology could be provided in lieu of the root ontology. Each profile 

contains four required fields, in the following order: a profile ID, a profile definition, an 

ontology class ID, and an ontology class definition (Figure 1E). Additional fields in a profile 

are ignored. A profile could be anchored by a gene, disease, biological pathway, chemical, 

or any other biological entities of interest. Common reasoners supported include Hermit, 

Pellet, Elk, Jfact, Snorocket, Jcel, and Born (Dentler et al., 2011; Kazakov et al., 2011; 

Mendez, 2012; Ceylan et al., 2015).

2.4. Semantic similarity measures

The following four measures implemented in SML were selected for this study based on the 

previous evaluation of their performance on comparing gene products (Pesquita et al., 2009): 

1) information content, “ICI_SANCHEZ_2011” (Sanchez et al., 2011); 2) pairwise 

similarity between two OWL classes, “SIM_PAIRWISE_DAG_NODE_LIN_1998” (Lin, 

1998); 3) direct group-wise measure, “SIM_GROUPWISE_DAG_GIC” (Pesquita et al., 

2007); and 4) indirect group-wise measure, “SIM_GROUPWISE_BMA” (Pesquita et al., 

2008). They are defined as follows:

1. “ICI_SANCHEZ_2011”

IC μ = − log
leaves μ

A μ + 1
max_leaves + 1

Where IC (μ) denotes information content for class node μ; leaves (μ), the number of leaf 

nodes below μ; A (μ), the number of parental nodes above μ; and max_leaves, the number of 

leaf nodes below the root. A class with more parental nodes and fewer leaf nodes has a 

greater IC.

2. “SIM_PAIRWISE_DAG_NODE_LIN_1998”

sim μ, v =
2 × IC MICAμ, v

IC μ + IC v
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Where MICAμ,v denotes the most informative common ancestor of the two nodes. The 

numerator measures the commonality between the two nodes, while the denominator 

measures their respective distances from MICA.

3. “SIM_GROUPWISE_DAG_GIC”

simGIC A, B =
∑i = 1

N IC ti)

∑ j = 1
M IC t j)

Where ti=1-N and tj=1-M are the terms in the intersection and union of group A and B.

4. “SIM_GROUPWISE_BMA”

simBMA A, B = 1
2

1
N ∑

i = 1

N
maxSi j + 1

M ∑
j = 1

M
maxSi j , 1 ≤ j ≤ M; 1 ≤ i ≤ N

Where groups A and B have size N and M, respectively, and Sij is a pairwise similarity 

matrix with N rows and M columns for all possible class pairs between A and B based on a 

semantic measure, in this case, “SIM_PAIRWISE_DAG_NODE_LIN_1998”. simBMA 
represents the average of the best row scores (A compared to B) and best column scores (B 

compared to A) in the similarity matrix for groups A and B.

2.5. OS-Mapping analysis

A merged and reasoned ontology was prepared during the semantic analysis of the 19 CSPPs 

against a total of 29154 target profiles (Figure 2A). The beginning root ontology was set as 

the vertebrate.owl (as of February 5, 2018), a cross-species phenotype ontology 

encompassing HP, MP, and ZP. It, in turn, imported many other domain ontologies in 

anatomy, behavior, cell, chemical, disease, gene, pathology, phenotypes, protein, relations 

etc. These domain ontologies had different release dates; for example, the imported ro.owl 

was released on April 12, 2015 while the hp.owl was released on January 26, 2018. Also 

imported were the custom ontology classes constructed from the EQ annotations of toxicity 

phenotypes (“19 chemical-species.owl”) and the external reference ontology terms contained 

therein (“OS-Mapping.import.owl”). The latter was generated online by using OntoFox 

(Xiang et al., 2010) with appropriate terms from individual reference ontologies as top-level 

sources and additional import options of “includeAllIntermediates” and 

“includeAllAxiomsRecursively”. Once all the ontologies were imported and merged into a 

single ontology, it was reasoned with Elk reasoner, a widely recognized high performer on 

large ontologies (Kazakov et al., 2012). The resultant ontology graph (sampled in Figure 2B, 

2C), containing over 151000 classes and 1.7 million logical axioms, enabled the SML 

Engine to conduct semantic analysis. In this graph, multiple classes contained in a CSPP 

query are represented by a set of nodes (Figure 2D, solid circles), while target profiles are 

various combinations of selected nodes in different sizes. In effect, when OS-Mapping 

compares a CSPP to target profiles, semantic similarities are calculated for groups of nodes 

of interest pairwise, as shown in a simplified sample output (Figure 2E).
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To determine if a pair of query and target profiles was statistically similar to each other, the 

parameter “GENERATE_SIM_SCORE_DISTRIBUTION” was turned on along with 

“NUM_SIMULATED_GRPS” set at 500 (S. File 5). In other words, for each such pair, P0.05 

and P0.01 cutoffs (i.e., P-value ≤ 0.05, ≤ 0.01) were determined based on its unique 

distribution of 500 ascendingly sorted similarity values, which were calculated from 500 

random profiles against the target profile under analysis. Those query-target profiles with 

similarities greater than their respective P0.05 cutoffs were retained for further consideration. 

All analyses were conducted on the US EPA ATMOS Linux cluster (Intel E5–2697A 2.6 

GHz processors), taking a combined total of 3158 CPU hours.

Several follow-up analyses were also conducted. The scope of coverage of mammalian 

phenotypes by the CSPPs was estimated as follows. First, the MP terms having pairwise 

similarities to the custom ontology classes in each CSPP ≥ 0.7, 0.8, or 0.9 were identified. 

Each set of MP terms was then treated as seeds to extract their superclasses (i.e., parental 

classes) in mp.owl using the Robot tool (http://robot.obolibrary.org). The phenotypic 

coverage of each CSPP was measured by the number of the 27 categories of high level MP 

phenotypes (http://www.informatics.jax.org) present in its associated superclasses. To 

determine the relationships of the CSPPs, their similarities were evaluated in the software 

Cytoscape (http://cytoscape.org). A complete phenotypic continuum across biological levels 

of organization was constructed for the 17α-ethynylestradiol_fathead minnow by organizing 

its top ten matched chemicals, genes, KEGG pathways, and diseases. Additional best 

matched phenotypes at the levels of biological processes, cell, tissue/organ, and organism 

were also identified from the five highest scoring HP/MP/ZP terms based on the pairwise 

similarity between the individual classes in the 17α-ethynylestradiol_fathead minnow and 

all the classes present in the target profiles. For comparison, a similar phenotypic continuum 

was also constructed for 17α-ethynylestradiol based on the information available as of July 

2018 in the Comparative Toxicogenomics Database (CTD; http://ctdbase.org/).

3. Results

In this study, we assembled a total of 19 CSPPs containing nearly 4000 ontology classes that 

were manually annotated and constructed from chemical toxicity responses (Figure 1). 

These CSPPs were semantically compared to each other to identify chemicals that showed 

similar toxicities, as well as compared against a broad array of over 29000 target profiles 

corresponding to genes, KEGG pathways, and diseases to highlight potential MOAs (Figure 

2A, S. File 6). To evaluate the performance of OS-Mapping as a phenotype-oriented 

approach to dissect chemical toxicities, we will first focus on the relationships revealed by 

the CSPPs in general. We will then examine the CSPP corresponding to 17α-

ethynylestradiol phenotypes observed in the fathead minnow in more detail to evaluate the 

mechanistic information provided by OS-Mapping. Unless specified otherwise, a statement 

about genes, pathways, chemicals, diseases, and their mutual similarities refers to their 

respective profiles.

The CSPPs appeared to have a good coverage of the 27 categories of high level mammalian 

phenotypes (Figure 3). As expected, the lower threshold of minimum similarities between 

the MP terms and the custom ontology classes in each CSPP resulted in a greater coverage 
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of the phenotypes, as the effect of retaining more MP terms initially was the extraction of 

more superclasses/phenotypic categories. The coverages were 95%, 85%, and 77%, 

respectively, when the minimum similarities were set at 0.7, 0.8, and 0.9. The coverage 

reached 100% when the minimum similarity was lowered to 0.5. The evaluation of 

individual MP terms mapped to the custom ontology classes from the CSPPs at various 

similarities suggested that the minimum threshold of 0.7 was sufficiently high for assessing 

the mammalian phenotypic categories covered by the CSPPs. It is notable that the category 

of mortality/aging was the least covered here because mortality responses were deemed 

uninformative and omitted during the ontological annotations of the published studies. The 

rat-based CSPPs tended to have a better coverage overall. The CSPPs representing the 

fewest phenotypic categories were cypermethrin_carp (21) and TDCPP_zebrafish (22).

The CSPPs mapped to a wide range of target profiles, with their specificities varying by 

more than 100-fold as measured by the number of hits (Table 1). Most of the CSPPs 

resembled one another to some degrees, as indicated by the number of other similar CSPPs 

mapped. A majority (3702/4462 = 83%) of the CSPP-mapped genes was from mouse, with 

the remainder split between human and zebrafish genes. Ultimately, the CSPPs were mapped 

to approximately 21% (4462/21399) of the genes under study. By species, these percentages 

were 31% (3702/12009) for mouse, 12% (422/3498) for human, and 6% (338/5892) for 

zebrafish, respectively. The CSPPs also matched to approximately 16% (1181/7423) of the 

diseases. Individually, cypermethrin_rat, malathion_mouse, and atrazine_mouse had the 

highest number of hits, whereas TDCPP_zebrafish, atrazine_zebrafish, copper 

sulfate_fathead minnow, and bisphenol A_zebrafish had the fewest hits. This trend was 

observed across species in genes, pathways, and diseases. The size of a CSPP did not appear 

to be correlated with its number of mapped targets (r = 0.41).

The relationships among CSPPs were complex, as shown in their network with individual 

CSPPs as nodes and edges weighted by their indirect group-wise similarity scores (value 

range 0.0 to 1.0; Figure 4). The same chemicals in different species, for example, 

malathion_mouse vs malathion_rat (0.74), atrazine_rat vs atrazine_mouse (0.71), and 17α-

ethynylestradiol_fathead minnow vs 17α-ethynylestradiol_zebrafish (0.69), were highly 

similar, as expected. In addition, different chemicals, such as chlorpyrifos_carp vs 

atrazine_carp (0.77), atrazine_rat vs malathion_rat (0.74), and malathion_rat vs 

cypermethrin_rat (0.72), mapped to each other very well too. In fact, chlorpyrifos_carp vs 

atrazine_carp achieved the highest similarity score among the CSPPs other than those self-

hits. Overall, these CSPPs tended to segregate into two distinct groups. Atrazine_zebrafish, 

copper sulfate_fathead minnow, bisphenol A_zebrafish, and TDCPP_zebrafish belonged to 

the group with relatively low similarities to others, and the remainder of the CSPPs appeared 

to share much greater similarities among themselves. Zebrafish appeared to be less sensitive 

to the chemicals relative to the other species except when evaluating estrogenic compounds 

(Table 1, Figure 4). Interestingly, atrazine and copper sulfate were present in both groups, a 

strong indication of chemical by species interaction in their toxicity responses. The lowest 

yet still statistically significant similarity was found between malathion_mouse and copper 

sulfate_fathead minnow, at 0.46.
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Given the complexity of chemical-induced toxicity responses, it would be instructive to 

organize them according to their intrinsic biological hierarchy. As a well-studied 

semisynthetic estrogen and endocrine disrupting chemical, 17α-ethynylestradiol provided a 

good sample for this exercise (Figure 5). This CSPP contained 156 custom-constructed 

ontology classes covering phenotypes across multiple biological levels from 34 studies. As 

expected, its semantically mapped targets were also diverse. All the top ten genes were 

involved, to various extents, in some aspects of reproductive biology: gonad development, 

male and female meiosis, endocrine glands, sperm and oocyte production, or infertility, as 

demonstrated by their mutant/allelic analyses (repro15 and repro16, JAX 2004; Ccnb1ip1, 

Dms, Cdk16, Cnot7, Stra8, Immp2l, Tmem203, Ccdc42, http://www.informatics.jax.org). In 

fact, out of the 915 genes mapped to the 17α-ethynylestradiol_fathead minnow, 788 were 

mouse genes linked to high level MP terms, and 89% of them (703/788) were involved in 

reproductive systems (MP_0005389; http://www.informatics.jax.org). In contrast, across the 

mouse genome overall, this value was only 21% (2411/11409). At the pathway level, 

although none of the top ten pathways were significant (P0.05), all were involved in 

reproductive processes and functions as well, according to mutant/allelic analyses of their 

gene members (http://www.informatics.jax.org). The sole significant pathway, mmu00440 

(Phosphonate and phosphinate metabolism), was ranked low by similarity scores (263th out 

of 313), but three of its six gene members were also associated with reproductive system 

phenotypes. Moreover, the top phenotypes mapped by the 17α-ethynylestradiol_fathead 

minnow were also examined at the levels of biological process, cell, tissue/organ, and 

organism by identifying the HP, MP, and ZP terms of the target profiles most semantically 

similar to the individual terms of the 17α-ethynylestradiol_fathead minnow. Not 

surprisingly, almost all those terms related to reproduction overlapped with the profiles of 

genes, pathways, and diseases linked to the 17α-ethynylestradiol_fathead minnow. Among 

the notable biological processes mapped to the 17α-ethynylestradiol_fathead minnow were 

female and male meiosis, spermatogenesis, oocyte maturation, and fertilization. Regarding 

disease, most of the top matches were reproductive disorders. As to the relationships to the 

other CSPPs, in addition to the expected mapping to the 17α-ethynylestradiol _zebrafish 

(0.69), the 17α-ethynylestradiol_fathead minnow also shared substantial similarities to 

several chemicals with seemingly different MOAs, such as atrazine_rat (0.65) and copper 

sulfate_rat (0.63).

A phenotypic continuum for 17α-ethynylestradiol was also constructed by extracting the 

data curated and compiled by the CTD (Figure 6). The CTD mappings of 17α-

ethynylestradiol to GO processes, pathways, most of the diseases, and other chemicals were 

derived from the 17α-ethynylestradiol-gene interactions curated from the literature. The 

17α-ethynylestradiol to phenotypes, as delineated by biological process, cell, tissue/organ, 

and organism, and to the remaining diseases came directly from the literature curation. 

Almost all 17α-ethynylestradiol-gene interactions (98%) in the CTD were based on the 

chemical-induced changes in gene expressions. Overall, many 17α-ethynylestradiol 

phenotypes from the CTD at the levels of cell, tissue/organ, and organism were related to 

immune functions and reproductive biology. This trend was somewhat aligned with the top 

matched 17α-ethynylestradiol genes (e.g., ESR1, ESR2, PGR) and chemicals (e.g., 
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bisphenol A, estradiol), but less clear in the top GO processes, pathways, diseases, and 

phenotypes at the process level.

4. Discussion

OS-Mapping represents a unique approach to the study of chemical toxicities. It 

complements a typical omics study by providing a new perspective of semantically similar 

phenotypes at multiple levels of biological organization. It can also provide information 

about the underlying genotypes and molecular mechanisms of a biological target previously 

characterized only phenotypically. This pilot study explored the toxicological applications of 

OS-Mapping by converting previously published toxicity responses to chemicals into CSPPs 

of multiple ontology classes, and then comparing them semantically to the numerous 

profiles of genes, pathways, and diseases, and to one another, leading to a better 

understanding of the underlying MOAs.

OS-Mapping can differentiate chemical toxicities both within and across species. Given the 

95% average coverage rate of the 27 categories of high level mammalian phenotypes (Figure 

3), the CSPPs should be quite comparable. The fact that CSPPs mapped to more mouse 

genes than human and zebrafish genes is likely just a reflection of the mouse phenome that 

is better characterized. The CSPPs appear to contain both shared and specific toxicity 

responses. The shared responses are indicated by the fact that most of these CSPPs were 

similar to one another to some degree (Table 1, Figure 4). The specificity of CSPPs is 

evident in the wide variation in the number of genes, pathways, and diseases mapped by 

each CSPP. Conceivably, the toxicity responses of a chemical are determined by both its 

MOAs and target species. Perturbations at the higher levels of biological organization and in 

later life stages, on the other hand, may have a homogenizing effect on chemical toxicities, 

making some CSPPs more similar to one another. As to the degree of toxicity, it may be 

reasonable to assume that the more targets a chemical maps to, the more toxic it is. Under 

this assumption, therefore, 17α-ethynylestradiol would be considered more toxic to fish (i.e., 

wider impact) than copper sulfate, atrazine, or TDCPP; malathion would be more toxic to 

mouse than chlorpyrifos. In the meantime, there appear to be interactions between chemicals 

and species as well. Atrazine, thus, appears to be more toxic to rodents than it is to fish. The 

same conclusion could also be made for cypermethrin and copper sulfate. Chlorpyrifos, on 

the other hand, may be more toxic to fish than it is to rodents. And, the difference in toxicity 

to cadmium chloride between fish and rodents appears to be minimal. Overall, these findings 

are largely consistent with the current knowledge of differential species sensitivity to 

chemicals (Belanger et al., 2017).

OS-Mapping can yield novel insights into chemical MOAs. There are several notable pairs 

of highly similar CSPPs: atrazine_carp/chlorpyrifos_carp, atrazine_rat/malathion_rat, 

malathion_rat/malathion_mouse, atrazine_rat/atrazine_mouse, and 17α-

ethynylestradiol_fathead minnow/17α-ethynylestradiol_zebrafish (Figure 4). Although it is 

not surprising to observe similar interspecific toxicity responses for the same chemicals 

(malathion, atrazine, 17α-ethynylestradiol), the apparent MOAs of atrazine (a photosystem 

II inhibitor; Shimabukuro and Swanson, 1969) and chlorpyrifos/malathion 

(acetylcholinesterase inhibitors; Colovic et al., 2013) offer few clues about what underlies 
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their shared toxicity phenotypes. The top contributing phenotypes to the similarity between 

atrazine_carp and chlorpyrifos_carp are acetylcholinesterase activity (brain) and a few key 

indicators of stress and immune physiology (antioxidant activity, alkaline phosphatase 

activity in head kidney/kidney; erythrocyte quantity, nitric-oxide synthase activity, nitric 

oxide level, gene and protein expressions of heat shock protein 70 in spleen). The top KEGG 

pathways mapped to these two CSPPs, although not significant at P0.05, are dominated by 

those related to immune responses (e.g., mmu05340, primary immunodeficiency; 

mmu05332, graft-versus-host disease; mmu05330, allograft rejection; S. File 6). In rodents, 

besides immune responses, the top KEGG pathways mapped to atrazine_rat and 

malathion_rat also include those involved in reproductive systems (e.g., mmu00592, 

mmu04913, mmu00140, P0.05; Figure 5, S. File 6). Therefore, the MOAs underlying 

atrazine toxicity in animals appear to resemble those of organophosphates, a hypothesis at 

least partially supported by the observed synergism between atrazine with both malathion 

and chlorpyrifos in a mixture (Pape-lindstrom and Lydy, 1997).

OS-Mapping enables the construction of a phenotypic continuum for chemical toxicity 

assessment. Two such continuums (Figure 5, 6) for 17α-ethynylestradiol offer contrasting 

views of its toxicities from different perspectives: one based on semantically similar 

phenotypes across biological levels of organization, and the other largely derived from 

molecular phenotypes alone (genes with expressions impacted by 17α-ethynylestradiol), 

except for a small number of higher level phenotypes directly curated from relevant 

literature. In both continuums, higher level phenotypes (cell, tissue/organ, organism) indicate 

a significant impact of 17α-ethynylestradiol on reproductive biology. Although this pattern 

is consistently observed throughout the 17α-ethynylestradiol_fathead minnow continuum, it 

is not as obvious in the CTD-17α-ethynylestradiol continuum among all its top mappings. 

Overall, the CTD-17α-ethynylestradiol continuum contained many more genes and their 

derived pathways/diseases than its counterpart. At the gene level, only 29 mapped genes are 

shared in both continuums. Noticeably absent in the top ten genes of the 17α-

ethynylestradiol_fathead minnow continuum are two estrogen receptors (ESR1, ESR2), 

which, with similarity scores of 0.62 and 0.57, were deemed insignificant at P0.05. Given the 

well-established functions of these receptors in estrogen signaling, their absence appears to 

indicate that OS-Mapping is less sensitive than the direct omics assays of gene expression 

for establishing chemical-gene linkages. This interpretation is also supported by the more 

than ten-fold difference between the two continuums in the number of genes mapped to 

17α-ethynylestradiol. At the pathway level, the top ten in the 17α-ethynylestradiol_fathead 

minnow continuum contain a substantial number of gene members whose mutations/alleles 

directly led to phenotypes in reproductive systems (i.e., mapped to MP_0005389; http://

www.informatics.jax.org). For example, alpha-Linolenic acid metabolism (mmu00592) was 

involved in gonad development, spermatogenesis, oogenesis, fertilization, and infertility, as 

indicated by six of its gene members (Acox1, acyl-Coenzyme A oxidase 1; Fads2, fatty acid 

desaturase 2; Pla2g3, 4a, 6, 10, phospholipase A2 group III, IVa, VI, X; http://

www.informatics.jax.org). Nine out of these ten pathways are also found in the CTD-17α-

ethynylestradiol continuum, but ranked hundreds below. For diseases, only two of the top ten 

from the 17α-ethynylestradiol_fathead minnow continuum, OMIM_616067 (gonadal 

dysgenesis) and OMIM_614842 (hypogonadism), are present in CTD-17α-ethynylestradiol 
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disease mappings, but again, with very low rankings. Overall, these comparisons suggest 

that OS-Mapping appears to perform better for mapping toxicities of a chemical at the 

higher levels of biological organization, whereas the CTD provides a more comprehensive 

coverage of genes by relying on the data from omics-based gene expression assays directly.

The validity of OS-Mapping and its values for chemical toxicity assessment are strongly 

supported and demonstrated in this pilot study by the finding that the 17α-

ethynylestradiol_fathead minnow continuum is dominated by reproductive phenotypes 

throughout. This finding is consistent with the established estrogen MOAs (Nilsson et al., 

2001; Hess, 2003). Perhaps one of the most exciting prospects is that, due to the 

development of many reference ontologies over diverse knowledge domains, modeling 

chemical toxicities by incorporating a vast and growing amount of computable phenomics 

data throughout biological levels of organization has been made possible both within and 

across species. To fully realize this potential, however, efficient curation of toxicity 

responses into computable ontology classes must be attained. Manual curation of toxicity 

responses by EQ syntax is not only slow, but also subjective at times. In the current study, 

the curation of more than 700 publications took one individual several months to complete. 

Moreover, the phenotypes encountered during post composition were sometimes open to 

interpretation, leading to possible variations in the final annotations in terms of specificity 

and accuracy. A preferred solution to these issues would be found in the automated curation 

of free text, which is an area under active research. Considerable progress has been made for 

various aspects of this process, including mapping free text to ontology terms (e.g., https://

www.ebi.ac.uk/spot/zooma), generating ontology classes en masse by adopting design 

patterns (Osumi-Sutherland et al., 2017), and even the completely automated construction of 

full EQ statements with binding relations (Cui et al., 2015). More efforts are needed, 

however, before the performance of an automated curation tool will be as accurate as that of 

human curators.

5. Conclusions

This study demonstrated that OS-Mapping offers a powerful approach to help bridge the gap 

between the molecular/non-molecular phenotypes of chemicals characterized by using 

traditional omics methods and their apical endpoints of greater regulatory relevance. OS-

Mapping also enables the comparative toxicity assessment among chemicals, both within 

and across species. Furthermore, the semantic analysis of phenotypes can reveal additional 

novel MOAs for some of the well-known chemicals and assist in the discovery of candidate 

MOAs for chemicals that are less molecularly characterized. A full phenotypic continuum 

delineating chemical toxicities will also be conducive to the future development of adverse 

outcome pathways, a framework increasingly adopted under the new toxicology paradigm 

(Ankley et al., 2010). Continued advances in phenomics and more automation of the 

ontological annotation of the literature will further enhance the power of OS-Mapping.
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Refer to Web version on PubMed Central for supplementary material.
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HP Human Phenotype Ontology

IC information content

ID identification

KEGG Kyoto Encyclopedia of Genes and Genomes

MICA most informative common ancestor

MOA mechanism of action

MP Mammalian Phenotype Ontology

OBO Open Biological and biomedical Ontology
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OWL Web Ontology Language

OWLAPI OWL Application Programming Interface

PATO Phenotype And Trait Ontology
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RO Relations Ontology

SML Semantic Measure Library

TDCPP Tris(1,3-dichloroisopropyl) phosphate
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ZP Zebrafish Phenotype Ontology
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Figure 1. 
The workflow to build a chemical-species phenotypic profile (CSPP) as illustrated by the 

17α-ethynylestradiol_fathead minnow (EE2_FHM). A) Relevant publications were first 

identified from ECOTOX; B) two 17α-ethynylestradiol-induced phenotypes reported in the 

publication 59226 were curated manually; C) the phenotypes were annotated in Entity-

Quality (EQ) syntax; D) EQ annotations were converted to their respective ontology classes 

in Manchester syntax; E) all annotated ontology classes for the 17α-ethynylestradiol 

_fathead minnow were organized into its CSPP.
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Figure 2. 
OS-Mapping analysis workflow. A) OS-Mapping java application compared the query 

against target phenotypic profiles semantically based on vertebrate.owl, a cross-species 

phenotype ontology. Prior to the analysis, vertebrate.owl first imported many other domain 

ontologies, and then merged them with both the custom OWL (Web Ontology Language) 

classes constructed from the Entity-Quality annotations of various chemical-species (‘19 

chemical-species.owl’) and the external ontology terms contained therein (OS-

Mapping.import.owl). The merged ontology was subsequently reasoned into a unified 

ontology graph, based on which CSPPs were analyzed; B, C) two sample subgraphs 

containing two of the 156 ontology classes of 17α-ethynylestradiol_fathead minnow from 

the merged and reasoned ontology as extracted by the robot tool (http://

robot.obolibrary.org); D) an illustrative ontology graph with classes represented by nodes 

and their subsumption relationships by edges. A query profile (solid black nodes) and target 

profiles (various combinations of nodes in the entire graph) are compared semantically; E) 

part of a simplified 17α-ethynylestradiol_fathead minnow query output.
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Figure 3. 
The scope of coverage of mammalian phenotypes by chemical-species phenotypic profiles 

(CSPPs). The Mammalian Phenotype Ontology (MP) terms with pairwise similarities to the 

custom ontology classes from individual CSPPs ≥ 0.9, 0.8, or 0.7 were retained for 

extracting their respective superclasses in mp.owl using the Robot tool (http://

robot.obolibrary.org). The 27 categories of high level MP terms (http://

www.informatics.jax.org) present in each CSPP-associated MP superclasses based on the 

minimum similarity scores of 0.9, 0.8, or 0.7 are marked as dark green, light green, or 

yellow respectively. The categories absent at ≥ 0.7 are marked as white. The phenotypic 

coverages at these minimum scores are 77% (393/27×19), 85% (438/27×19), and 95% 

(485/27×19). TDCPP, Tris(1,3-dichloroisopropyl) phosphate.
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Figure 4. 
Semantic similarity network of chemical-species phenotypic profiles (CSPPs). Edges are 

weighted by indirect group-wise similarity scores ranging between 0 and 1, in “prefuse force 

directed layout” at 3X scale in Cytoscape (http://www.cytoscape.org), with shorter and 

wider edges in darker red color indicating a greater similarity between the two connected 

nodes. Abbreviations: ATZ, atrazine; BPA, bisphenol A; CdCl2, cadmium chloride; CMT, 

cypermethrin; CPF, chlorpyrifos; CuSO4, copper sulfate; DOX, dioxin; DRE, zebrafish; 

EE2, 17α-Ethynylestradiol; FHM, fathead minnow; MLT, malathion; TDCPP, Tris(1,3-

dichloroisopropyl) phosphate.
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Figure 5. 
A phenotypic continuum anchored by the 17α-ethynylestradiol_fathead minnow. Top ten 

mapped phenotypic profiles of genes (P0.01), pathways, CSPPs (P0.01), and disease (P0.01) 

are listed. The total counts of genes, pathways, and diseases are based on P0.05. The top ten 

KEGG pathways listed by OS-Mapping are not significant at P0.05 (text in gray). Each 

pathway is denoted in a parenthesis by its KEGG ID, number of genes whose mutation/

alleles directly caused phenotypes in reproductive systems (MP_0005389), and total number 

of genes in the pathway. The phenotypes at the levels of biological process, cell, tissue/

organ, and organism (boxes in dash lines) were selected from the top five HP/MP/ZP terms 

present in the target phenotypic profiles, based on their semantic similarities to individual 

terms in the 17α-ethynylestradiol_fathead minnow. The terms overlapping with the 

phenotypic profiles of 915 genes, the top ten pathways, and 155 diseases are marked by G, P, 

and D in parentheses. A disease with multiple variants are denoted by its OMIM ID + the 

number of variants, for example, M_OMIM_615842+13. M_OMIM, an OMIM disease 

annotated by MP terms. Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes 

(https://www.genome.jp/kegg); OMIM, Online Mendelian Inheritance in Man (https://

www.omim.org).
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Figure 6. 
Mappings of 17α-ethynylestradiol according to the Comparative Toxicogenomics Database 

(http://ctdbase.org; as of July 2018). The mappings were constructed as follows: chemical-

genes, literature curation; chemical-pathways, human KEGG (hsa) and REACTOME 

pathways enriched in chemical-genes; chemical-Gene Ontology (GO) terms, GO terms 

enriched in chemical-genes; chemical-disease, direct curation from the literature (4.5%) or 

indirect inference from transitive chemical-gene-disease associations (99%), with a slight 

overlap between the two methods; chemical-phenotypes (delineated by process, cellular, 

tissue/organ, and organism), literature curation; chemical-chemical linkages, shared gene 

interactions. Except for phenotypes, only top ten mappings are listed for each category. For 

pathways, only human KEGGs are listed.
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Table 1.

Summary of semantic mapping hits by chemical-species phenotypic profiles (CSPPs; P-value ≤ 0.05). 

Significant hits are the row sums of mapped CSPPs, genes, pathways, and diseases for individual CSPPs. 

Pearson correlation: r (profile size, significant hits) = 0.41, r (phenotypic coverage, significant hits) = 0.56.

CSPP (No. publications) Profile 

size
1

Phenotypic 

coverage
2 CSPP

3 Mouse 
Genes

Human 
Genes

Zebrafish 
Genes

KEGG 
pathways

Disease 

accessions
4

Significant 
hits

cypermethrin _rat (40) 200 1.00 19 2059 201 102 50 549 2980

malathion _mouse (49) 182 0.96 18 1901 127 138 66 440 2690

atrazine _mouse (28) 187 0.96 18 1564 126 82 61 478 2329

atrazine _rat (94) 477 1.00 19 1275 110 55 31 337 1827

malathion _rat (93) 480 1.00 19 1248 85 73 39 289 1753

cadmium chloride_trout 
(30)

130 0.96 19 885 89 51 8 258 1310

cadmium chloride_rat 
(76)

404 1.00 19 898 47 7 18 169 1158

17α-
ethynylestradiol_fathead 
minnow (34)

156 0.96 17 800 66 49 1 155 1088

17α-
ethynylestradiol_zebrafish 
(66)

269 1.00 18 757 73 52 1 165 1066

copper sulfate_rat (28) 193 0.93 19 596 54 8 2 169 848

dioxin_trout (26) 139 0.96 19 375 84 45 4 226 753

chlorpyrifos _carp (27) 216 0.96 19 414 35 17 0 175 660

atrazine _carp (31) 244 0.93 19 354 21 17 0 120 531

cypermethrin _carp (12) 96 0.78 17 199 21 21 0 57 315

chlorpyrifos _mouse (42) 187 0.93 19 220 4 3 1 25 272

bisphenol A_zebrafish 
(26)

132 0.96 16 40 0 30 0 0 86

Copper sulfate_fathead 
minnow (23)

58 0.93 13 52 0 8 0 0 73

atrazine _zebrafish (22) 105 0.93 15 18 0 5 0 0 38

Tris(1,3-
dichloroisopropyl) 
phosphate _zebrafish (8)

144 0.81 9 15 0 2 0 0 26

Total unique (726) 3999 --- 19 3702 422 338 94 1181 5756

1
the number of post-composed OWL classes included in a CSPP.

2
percentage (×100) of the 27 categories of high level phenotypes represented (http://www.informatics.jax.org).

3
including self-hits.

4
including human diseases (OMIM; https://www.omim.org) annotated by either HP or MP terms, and rare diseases (Orphanet; https://

www.orpha.net/consor/cgi-bin/index.php).
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