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Abstract

The clinical onset of type 1 diabetes is characterized by the destruction of the insulin-producing β 
cells of the pancreas, and is caused by autoantigen-induced inflammation (insulitis) of the islets of 

Langerhans. The current standard of care for type 1 diabetes mellitus (T1DM) patients allows for 

management of the disease with exogenous insulin, but patients eventually succumb to many 

chronic complications such as limb amputation, blindness and kidney failure. New therapeutic 

approaches now on the horizon are looking beyond glycemic management and are evaluating new 

strategies from protecting and regenerating endogenous islets to treating the underlying 

autoimmunity through selective modulation of key immune cell populations. Currently, there are 

no effective treatments for the autoimmunity that causes the disease, and strategies that aim to 

delay or prevent the onset of the disease will play an important role in the future of diabetes 

research. In this review, we summarize many of the key efforts underway that utilize molecular 

approaches to selectively modulate this disease and look at new therapeutic paradigms that can 

transform clinical treatment.
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INTRODUCTION

Type 1 diabetes mellitus (T1DM) is a global epidemic affecting over 30 million people, and 

is one of the most common endocrine and metabolic conditions occurring in childhood.1 The 

incidence of T1DM has increased 5.3% annually and the economic cost is estimated 

between $14.4–14.9 billion in the US alone.2–4 T1DM is characterized by the autoimmune 

destruction of the insulin secreting β cells of the pancreatic islets of Langherhans, leading to 

insulin deficiency and unregulated blood glucose levels. The current standard of care entails 

a rigorous routine of blood glucose monitoring coupled to daily exogenous insulin 

injections. Despite advances in insulin therapies, these individuals still suffer chronic 

diabetic complications including cardiovascular disease, retinopathy, nephropathy, 

ketoacidosis, nonketotic hyperosmolar coma, or death.5 Whole organ pancreas 

transplantation has been explored, however it requires patients to receive systemic 

immunosuppressants and after 5 years 90% of patients are once again dependent on 

exogenous insulin.6 Polymeric encapsulation of donor insulin-producing tissue to overcome 

the need for systemic immunosuppression has gained momentum with the recent 

development of new materials and formulations.7–10 This therapeutic approach to tissue 

replacement promises to restore glycemic control for fully symptomatic patients with little 

to no remaining β cells. To complement this strategy, there is growing interest in 

interventional strategies that aim to tackle the underlying autoimmunity of the disease and 

preserve as much endogenous β cells as possible. Currently there are no clinically-approved 

interventional therapies to treat the underlying autoimmunity, but new therapeutic agents are 

being clinically tested and numerous new approaches are on the horizon.

Pathogenesis.

Development of an interventional therapy for T1DM has proven challenging owing to its 

polygenic and heterogeneous nature. There are a plethora of purported environmental 

triggers whose role in pathogenic processes are poorly understood, while genetic, and 
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phenotypic characteristics show marked variation.1 Over 40 loci play a role in T1DM 

susceptibility, with the major histocompatibility (MHC) class II HLA-DR and HLA-DQ 

genotypes providing an estimated half of the genetic susceptibility.11,12 While these genetic 

risk factors are necessary for T1DM development, they are not sufficient. Recent attention 

has turned to a variety of environmental factors including infant diet, vitamin D and the 

vitamin D pathway constituents, enteroviruses, the hygiene hypothesis, and the gut 

microbiome.1,13 However, no evident influence on pathogenesis has been identified and the 

exact triggering mechanism remains unknown.

The thymus plays a paramount role in eliminating self-reactive T cell populations through 

positive and negative selection, termed central tolerance.14 The transcription factor 

autoimmune regulator AIRE promotes the expression of self-antigens on the surface of 

medullary thymic epithelial cells (mTECs). The self-antigens are presented through MHC 

complexes to allow for targeted removal of potentially autoreactive T cell clones from the 

repertoire.15 Such regulation fails in T1DM, leading to escape of autoreactive T cell 

populations to the periphery. Diabetic MHC class II proteins presenting peptides recognized 

by these autoreactive T cells form a trimolecular complex with the T cell receptor (TCR) 

that leads to T cell activation and expansion. This is followed by pancreatic infiltration by T 

cells, macrophages, B lymphocytes and plasma cells, and subsequent autoimmune 

destruction of insulin secreting β cells.16 Symptoms and diagnosis typically occur well after 

two-thirds of β cells are lost (Figure 1).

Interventional Treatments under Clinical Evaluation.

Several clinical trials evaluating immunomodulatory agents in the past 40 years are 

discussed and summarized in Table 1. These trials include the systemic immunosuppressants 

cyclosporine, azathioprine, and mofetil, and immune interfering antibodies against CD20, 

cytotoxic T lymphocyte antigen-4 (CTLA-4), Interleukin 2 (IL-2), and CD3.1 The ladder 

case involving anti-CD3 monoclonal antibodies (mAb) suggested a reversal of 

hyperglycemia in preclinical studies and phase I trials through inactivation of effector T cells 

(Teff) and an expansion of the regulatory CD4+CD25+ T cell (Treg) populations.17 However, 

two different anti-CD3 mAb, Otelixizumab and Teplizumab, showed disappointing results in 

maintaining C-peptide levels in phase III clinical trials.18,19 Likewise, all other 

interventional trials have failed to meet phase III endpoints. This highlights the dire need for 

both new targets and methods for selectively modulating the immune system, and for 

mechanistic biomarkers to aid in selecting both appropriate treatments and therapeutic 

windows.

Here, we highlight emerging methods for targeting the underlying mechanisms of T1DM 

through the view of recent advances in immunomodulatory therapies, protective and 

regenerative strategies, and new targeting modalities. A brief perspective is offered into the 

future direction of treatment for T1DM and how next generation therapies can achieve 

improved clinical outcomes.
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Cytokine Blockade.

T1DM is characterized by an imbalance in pro-inflammatory and anti-inflammatory 

cytokines which manifest as the disease progresses.20,21 Elevated serum levels of pro-

inflammatory cytokines, such as IL-1β, tumor necrosis factor α (TNF-α), IL-6, and IL-7 

have spurred clinical investigation into the therapeutic utility of blocking these signaling 

pathways. IL-1 is an inflammatory cytokine involved in the differentiation of T helper 1 

(TH1) and TH17 T cells that has profound pro-apoptotic effects on β cells.22,23 In non-obese 

diabetic (NOD) mice, knockout (KO) of the IL-1 receptor (IL-1R) slowed the progression of 

T1DM, but did not prevent disease onset.24 Initial clinical trials with the IL-1 antagonist 

anakinra showed promising but mixed results with treated participants having similar 

hemoglobin A1c (HbA1c) levels requiring significantly less insulin than placebo cohort after 

1 month of treatment.25 Separate phase IIa clinical trials failed to find efficacy with two 

different IL-1 antagonists, canakinumab and anakinra.26 Both treatments were found to be 

safe, but failed to find any significant difference in C-peptide levels. In T1DM patients, 

monocyte expression of IL-1β is high at time of diagnosis but normalizes within 1 month.27 

This suggests anti-IL1 treatment may only be effective at early time points in disease 

progression.

TNF-α is a cytokine involved in regulating the maturation of dendritic cells (DCs) and has 

been affiliated with the activation of islet-specific T cells in pancreatic lymph nodes (PLNs).
28 T1DM patients have significantly higher levels of plasma TNF-α compared to healthy 

subjects.29 In NOD mice, the systemic administration of TNF-α led to a 5 week earlier onset 

of disease and a higher incidence rate compared to control mice,30 indicating the therapeutic 

value in modulating this target. However, efficacy in treatments targeting TNF-α may 

depend strongly on time of administration during disease progression. Administration of 

anti-TNF-α mAb in 2-week-old NOD mice protected against T1DM development compared 

to control mice, whereas 8-week-old treated mice showed only 50% incidence of the 

disease.30 A small clinical trial had promising results with treated patients having lower 

HbA1c levels and increased C-peptide levels, but there have been no subsequent studies.31

IL-7 is a pro-inflammatory cytokine that impacts proliferation and survival of naïve T cells.
32,33 It is implicated in multiple autoimmune diseases and represses the suppressive 

functions of Tregs.34,35 Two studies showed blocking the IL-7R in NOD mice resulted in a 

significant reduction of T1DM incidence and even remission of established T1DM.36,37 In 

addition, both studies found that IL-7 suppression resulted in increased expression of the 

Programmed Death-1 (PD-1) receptor on the surface of Teff cells. Strikingly, NOD mice that 

received anti-IL-7 treatment followed by a PD-1 antagonist show increased incidence of 

T1DM, suggesting that PD-1 expression is required for anti-T1DM effects (discussed further 

below).36 Additionally, blocking IL-7R also resulted in an increase in Tregs without affecting 

their suppressive activity.37

IL-6 is a cytokine involved in host defense against pathogens, but is also involved in 

autoimmune diseases with increased TH17 cell development and inhibited Treg development.
38 In patients with T1DM, IL-6 sensitivity correlated with increased expression of genes 

involved in T cell migration and inflammatory responses, including CD4+ cells.39 These 

results suggest IL-6 may be a target for modulating T1DM and other autoimmune diseases. 
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NOD/Wehi mice treated with an anti-IL-6 antibody resulted in a three-fold reduction in 

T1DM incidence compared to treatment with a control antibody.40 Inhibition of IL-6 can be 

a promising therapeutic strategy and further validation and studies elucidating the 

mechanism of action should prove insightful.

Inducing Antigenic Tolerance.

T1DM pathogenesis is characterized by a loss of central tolerance and the production of 

autoreactive T cells that have escaped thymic negative selection. Antigen-specific 

immunotherapy seeks to provide a targeted approach towards inducing peripheral immune 

tolerance without leading to systemic immune inhibition and associated complications that 

are typically seen in current non-antigenic therapies.41 Antigenic therapies seek to achieve 

tolerance through induction of Tregs (active tolerance) that inhibit TH1/TH17 populations or 

removal of autoreactive cell populations (passive tolerance) by eliminating autoantigen 

expression or the cell populations that propagate autoantigen sensitivity. Here we focus on 

promising targets involving antigenic responses that may lead to re-establishing immune 

tolerance.

The T1DM autoantigen GAD65, encoded by the GAD2 gene, is responsible for production 

of the inhibitory neurotransmitter γ-aminobutyric acid (GABA)42,43 which impairs insulin 

secretion.44 Administration of human recombinant GAD65 formulated with aluminum 

hydroxide (GAD65-alum) induces a favorable immune response, with decreased GAD-

specific CD4+ and CD8+ Teff cells and increased GAD65-specific Tregs. However, after 4 

years of treatment there was no detectable change in T cell populations over placebo.45 

Thus, while antigenic treatment with GAD65 does activate immune tolerance pathways, a 

combinatorial approach may be necessary for long-term efficacy.

Heat-shock protein 60 (HSP60) is an implicated autoantigen in T1DM, yet is involved in 

preventing stress-induced damage to proteins and functioning as a chaperone protein. This 

duality has been explored by administration of a peptide derived from HSP60 (p277), which 

protected NOD mice from both induced and spontaneous diabetes.46 Additionally, a stable 

version of p277 (DiaPep277) promotes anti-inflammatory effects, cell adhesion, and inhibits 

migration though interaction with Toll-like receptor 2 (TLR2).45,47 DiaPep277 in a phase II 

T1DM trial ultimately failed to meet endpoints despite previous encouraging results of a 

shift in T cell populations to a TH2 phenotype.48–50 Combining DiaPep277 with therapies 

that inhibit inflammation may be needed to enable stronger Treg induction.51

Peptide immunotherapy seeks to achieve immune tolerance by expanding Tregs and forcing 

pathogenic T cells through anergy and/or deletion. Recent clinical peptide immunotherapy 

efforts have involved administration of either an altered peptide ligand of Insulin B:9–23 or 

natural peptide sequences from proinsulin.52–54 The former failed to show efficacy and a 

single peptide sequence of proinsulin trial did not look at efficacy. One promising preclinical 

peptide therapy involves generating “navacims” through coating peptide-MHC complexes 

onto nanoparticles followed by administration to induce immune tolerance. Using this 

method, several autoimmune-disease-relevant peptide-MHC class II complexes triggered 

expansion of Type 1 regulatory-like CD4+ T cells and restored normoglycemia in the NOD 

mouse model.55 Importantly, these peptide-MHC coated nanoparticles did not compromise 
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systemic immunity, which has been a major challenge in antigen-specific peptide 

immunotherapy.

Taken together, antigenic induced immune tolerance shows efficacy in diabetic mouse 

models but have so far failed to replicate in human populations when administered as 

monotherapies. Inadequate dosages and the inherent challenges in attempting to reverse 

symptomatic T1DM rather than delay the onset of the disease may be contributors to these 

results. T1DM prevention studies in humans also lack robust early biomarkers. Preclinical 

studies have suggested that combinatorial administration of antigenic therapies with immune 

modulators may be required for efficacy in T1DM patients.56–58 Future clinical studies with 

this approach are needed.

Lymphocyte Modulation.

T cells.—The persistence and proliferation of autoreactive T cells are at the root of the 

autoimmune reaction in T1DM. CD3 is a component of the TCR complex and is required 

for T cell activation, and multiple anti-CD3 therapies have emerged and are 

comprehensively reviewed.59–61 Briefly, blockade of CD3 in NOD mice resulted in 

prevention of T1DM incidence and remission of established T1DM in 60–80% of mice.62 In 

the first clinical study of anti-CD3 treatment, 9 of 12 treated patients maintained or reduced 

their insulin requirements compared to 2 of 12 in the control cohort.63 These results were 

promising and sparked extensive clinical trials of anti-CD3 therapies, with mixed outcomes. 

In a phase III clinical trial with teplizumab, effects were only seen at the highest dosing 

regimens and the trial failed to reach primary outcomes of patients using less than 0.5 U/kg 

of insulin per day and HbA1C reduction of less than 6.5% after 1 year.18 A subsequent trial 

identifying drug responders and nonresponders showed no significant difference in C-

peptide levels between drug responders and nonresponders, however they had significant 

differences in their baseline insulin requirements and lower levels of CD8+ effector memory 

cells.64

There is rapidly growing interest in targeting T cell metabolism in autoimmune diseases. 

Mitochondrial metabolic activity plays a key role in modulating T cell activation, 

proliferation, and programmed cell dealth.65 Additionally, upon antigen recognition the T 

cell mitochondria modulates processes important for IL-2 production.66–68 A recent study 

shows that T1DM patients have an altered mitochondrial and cytokine response following 

TCR stimulation linked to persistent T cell mitochondrial inner membrane 

hyperpolarization.69 Of particular interest are metabolic pathways that inhibit proliferation 

and effector functions of both CD4+ and CD8+ T cells through mechanisms such as mTOR 

inhibition and selective reduction of glucose uptake. Blockage of glucose metabolism in the 

pre-diabetic NOD mouse model using 2-deoxy-D-glucose (2DG), a competitive inhibitor of 

phosphoglucose isomerase, reduces insulitis and the frequency of a subset of diabetogenic 

CD8+ T cells.70 While promising, a key challenge for metabolic therapies is identifying the 

optimal period for inhibition, as currently there are no predictive biomarkers for autoreactive 

T cell activation.

A major suppressor of autoimmunity are Tregs, which make up less than 10% of CD4+ T 

cells in peripheral circulation.71 Tregs play a primary role for maintaining immune tolerance 
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by downregulating the induction of other immune cells including CD4+ and CD8+ T cells, B 

cells, NK cells, macrophages, and DCs.72,73 T1DM patients have been found to possess an 

imbalance between Teff and Treg,51 leading to an inability to properly inhibit Teff responses.
72,74,75 In NOD mice, Treg populations initially increase in the inflamed pancreas but 

decrease as insulitis progresses.76 Numerous studies have attempted to restore Treg 

populations and are reviewed elsewhere in detail,71,77 with more recent progress mentioned 

here.

Perturbation in IL-2Rα (CD25) expression in Tregs has shown T1DM susceptibility by a 

reduction in STAT5 phosphorylation.78 Additionally, IL-2 deprivation in T1DM patients 

results in low levels of anti-apoptotic protein Bcl-2, leaving Tregs prone to apoptosis.79–81 

Administration of a low dose IL-2 therapy overcomes IL-2 signaling defects in patients and 

was effective at increasing Treg populations.82 However, other CD25 expressing populations 

are also activated with low dose IL-2 administration and when combined with rapamycin an 

increase in both CD56high NK cells and CD4+ memory cell populations are observed and 

negatively impacts β cell function.83,84 A clinical trial addressing dosing has completed, 

however no results are reported.85

These results from IL-2 therapies led to interest in using Tregs themselves as a therapeutic 

approach. Indeed, adoptive transfer of Tregs have been investigated in two clinical trials and 

are safe, long-lived, and stable.73,86,87 Follow-up phase II studies and an interesting study of 

Tregs in combination with low-dose IL-2 are still ongoing.77 Antigen-specific Tregs may be 

more effective at preventing insulitis,88 and chimeric antigen receptor (CAR) engineered 

Tregs show promising results in various pre-clinical models of autoimmunity.89–92 Other 

avenues to expand Tregs are being explored by targeting memory T cells.93 Of note are Teff-

depleting agents teplizumab and alefacept, which show promise for sustaining remission and 

tolerance.64,94 Alternatively, polarizing TH17 pro-inflammatory cells towards a Treg 

phenotype has been achieved using small molecule glutamate receptor enhancers.95

A major mechanism of maintaining tolerance is through T cell anergy, the inactivation of 

autoreactive T cells. T cell anergy can manifest through MHC-peptide-TCR complex 

recognition in the absence of co-stimulation through CD28 (T cell) and B7 (APC) where the 

T cell cannot produce IL-2, thus preventing proliferation.96 Similar effects happen with 

CTLA-4 (related to CD28) which blocks the CD28-dependent T cell activation. Abatacept, a 

CTLA4-Ig approved for rheumatoid arthritis, prevents disease progression in T1DM animal 

models. However, T1DM clinical trials involving CTLA-4 have failed to meet endpoints.97 

Encouragingly, recent work with a selective CD28 antagonist in combination with 

rapamycin (mTOR pathway inhibition) inhibits T cell activation and migration into the 

pancreas in NOD mice.98 Indeed, tolerogenic APCs display low numbers of co-stimulatory 

molecules like CD80, CD86, and CD40, and anergy can be achieved using rapamycin, 

corticosteroids, IL-10, and transforming growth factor β 1 (TGFβ−1).99,100 These studies 

provide additional options to rapamycin in combination trials with CTLA4-Ig.

Tregs can also play a similar role in T cell anergy through ligation of CTLA4 to CD80 and 

CD86, which induces APCs to express Indoleamine 2,3-dioxygenase (IDO) resulting in 

abolished T cell activation.101–103 Additionally, Tregs can inhibit APC maturation resulting 
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in T cell anergy.104 Increased expression and binding of lymphocyte activation gene 3 

(LAG-3) to MHC II induces the ITAM-mediated inhibitory signaling pathway, resulting in 

suppression of DC maturation and immunostimulatory capacity. Additionally, CTLA4-Ig 

therapies may be beneficial to modifying DCs present in inflammatory microenvironments 

through CTLA4-Ig binding to B7 while simultaneously inducing DC expression of IDO 

which leads to Treg expansion.105 Subsequently, Tregs are reported to downregulate CD80/86 

expression on APCs and DCs, which modifies them towards a tolerogenic state.106,107

A complementary approach to T cell anergy in restoring immune tolerance is inducting 

apoptosis of autoreactive cell populations. Activated periphery T cells express death 

receptors from the TNF family (Fas/FasL), making them susceptible to activated-induced 

cell death (AICD).108,109 Specifically, TH1 cells are most susceptible to AICD while TH2/

Treg cells are considered protective against AICD.110,111 A potential therapy that induces 

Fas would have to be administered pre-insulitis due to inflammation induced upregulated 

expression of Fas in β cells leading to Fas-mediated β cell apoptosis during insulitis.112,113 

The therapeutic implications of inhibiting the Fas/FasL interaction alone after early insulitis 

have been debated elsewhere and is thought to have low efficacy due to redundant pro-

inflammatory mechanisms.114 However, recently the combination of engineered microgels 

displaying FasL with a short course of rapamycin achieved localized immunomodulation of 

islet allografts for over 200 days.115 Since there are still no predictive early biomarkers for 

T1DM, overactivation of the Fas/Fas-ligand pathway must be avoided since it is associated 

with cancer and can lead to liver toxicity.109,116

Antigen Presenting Cells.—An ideal therapy for targeting APCs will mask the 

presentation of self-antigens known to activate T cells. One of the major autoantigens is 

proinsulin, with 90% of CD4+ insulin-reactive T cell clones from prediabetic NOD mice 

targeting the insulin B:9–23 peptide.117,118 Preventing autoreactive T cells from recognizing 

insulin bound to MHC class II could delay or attenuate T1DM autoimmunity. The 

therapeutic potential of this approach was explored by Kappler and coworkers through 

generation of mAb287 that specifically recognizes NOD I-Ag7 with insulin B:9–23 bond in 

register 3.119 Administration of mAb287 blocked CD4+ TCR interaction with the complex 

resulting in a delayed disease onset and the majority of 30-week-old mice had intact islets 

with only mild pre-insulitis. This work established that blocking TCR recognition of the 

MHC-insulin complex gives a beneficial physiological response in NOD mice, and human 

validation is a next step for mAb287.

Recently, inhibiting autoantigen presentation was expanded to using small molecules in 

humans. In silico screening methods of FDA approved drugs against DQ8 identified 

methyldopa, and treatment in NOD mice showed a reduction in primary antigen-specific T 

cell responses to insulin.120 Additionally, a phase Ib dose-escalation study with methyldopa 

in patients with recent-onset T1DM showed reduced inflammatory T cell responses to 

insulin. These results further highlight the potential of this approach and that small 

molecules, not just antibodies, can disrupt autoantigen presentation. However, because 

methyldopa is a clinically approved anti-hypertension drug,121 repurposing methyldopa for 

immunomodulation may have its own challenges.
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CD40 is a member of the TNF receptor family and is expressed by professional APCs, B 

cells, and T cells.122–124 The natural ligand for CD40 is CD154, in either soluble or 

membrane-bound form, and the CD40-CD154 interaction is important for the initiation of 

insulitis.124–129 Initial therapeutic attempts to block this interaction in lupus patients using 

anti-CD154 resulted in risk of life-threatening thrombotic events.130 Current efforts to avoid 

these antibody-induced thrombotic events utilize a small peptide, KGYY15, which uses the 

primary CD154 domain that interacts with CD40.131 In NOD mice, KGYY15 administration 

was shown to prevent diabetes onset, and human validation is a next step.

B cells.—In recent years, it has become clear that B lymphocytes contribute to 

autoimmunity and secrete autoantibodies prior to insulitis.132–139 In NOD mice B cells 

support the expansion of pathogenic T cell responses, and these pathogenic populations 

contribute to T1DM progression in humans.140–142 Abnormalities in the thymus B cell 

compartment prior to T1DM presentation have also been found in the NOD mouse.143 This 

suggests thymic B cells in T1DM have a potentially harmful impact on the effectiveness of 

negative selection on autoreactive T cell precursors, thus making thymus B cells a potential 

target for T1DM therapies.

The generation of pathogenic B cell populations is thought to take place during affinity 

maturation through aberrant selection leading to expansion of autoreactive B lymphocytes.
144,145 Clinical trials targeting B cells with a depleting P-specific therapy, rituximab, failed 

to preserve C-peptide production past two years and a follow-up study showed an increase of 

asymptomatic viremia.146,147 This highlights the challenge that systemic non-antigenic 

therapies face. Promising preclinical approaches have targeted B cells undergoing affinity 

maturation by disrupting the activated-induced cytidine deaminase protein (AID), a protein 

involved in the dsDNA break repair mechanism mediated by the RAD51 complex.148 

Inhibition of RAD51 showed subsequent inhibition of T1DM development in NOD mice 

partially through expansion of CD73+ B lymphocyte populations that regulate pathogenic T 

cell responses. Interestingly, these results were mirrored through CRISPR-Cas9 directed 

ablation of the gene encoding AID.148

Immunoregulatory.—In recent years, therapies targeting critical junction points 

controlling immune inhibition/activation has revolutionized how cancer is treated. 

Recognition that many types of cancer modulate the immune system led to the development 

of several immune checkpoint inhibitors (CPIs) that has drastically improved patient 

outcomes in several cancers.149 Drawing from this success, approaches aimed at attenuating 

autoimmunity through checkpoint modulation are now actively being explored.

IDO is inducible in APCs and is associated with inhibition of T cell proliferation, prevention 

of memory T cell formation, and induction of Treg differentiation.150 Although the precise 

mechanism of activation and IDO’s role is still being explored, that IDO could have a 

therapeutic role in diabetes is becoming more apparent.151 Notably, treatment with IDO 

inhibitor 1-methyl-D-tryptopan (1MT) accelerated T1DM progression in NOD mice.152 

Conversely, increased IDO expression from bystander fibroblasts can inhibit macrophage 

and infiltration of CD3+ cells into islet xenogeneic grafts, thus impairing pro-inflammatory 

responses.153 Recently, IDO expression from encapsulated Sertoli cells attenuated T1DM in 
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experimental autoimmune encephalomyelitis (EAE) induced T1DM in C57BL/6 mice.154 

However, no clinical trials have commenced for increasing IDO in T1DM.

The programmed death ligand 1 (PD-L1) is a ligand for PD-1, an inhibitory receptor 

expressed on activated lymphocytes that serves as an immune checkpoint to regulate 

tolerance.155,156 Malignant cancers hijack this checkpoint to locally suppress anti-tumor 

immunity, and clinically successful CPIs have been developed to inhibit formation of the 

PD-1/PD-L1 complex.157 Interestingly, both CD274 encoding (PD-L1) and PDCD1LG2 
(encoding PD-L2) are up-regulated in newly onset T1DM,158 suggesting that PD-L1 might 

have a protective effect on T1DM. Additionally, cancer patients on anti-PD-1 therapy can 

develop T1DM.159 The NOD mouse model recapitulates these results, with anti-PD-L1 

therapies accelerating disease progression.160

Overexpression of PD-L1 may prove more useful for T1DM treatment. PD-L1 expressing 

autologous hematopoietic stem and progenitor cells (HSPCs) transplanted into NOD revert 

diabetes in recent onset mice.161 Migration of these PD-L1.Tg HSPCs to the pancreas 

appears to be driven by the chemokine profile of the inflamed islets through high expression 

of C-X-C chemokine receptor type 4 (CXCR4) in these HSPCs. PD-L1 also plays a 

significant role in HSPC immunobiology and a there is a strong link between PD-L1 defects 

and T1DM.160,162,163 Taken together, HSPC expression of PD-L1 plays an important role in 

maintenance of immunocompetence and a cell based therapy using HSPCs to correct PD-L1 

expression deficiency in T1DM is a promising approach.

Targeting Innate Immunity.

The innate immune system is involved in the detection and removal of pathogens.164 Innate 

immune receptors, including pattern recognition receptors, such as TLRs, have been shown 

to play a role in the development of T1DM.165 Modulation of TLRs and other proteins 

involved in their signaling pathways have been explored for modulating the incidence of 

T1DM. The role of innate immunity in T1DM has been reviewed elsewhere,166,167 and here 

we highlight some of the important molecular findings from recent studies.

MyD88.—The adapter protein myeloid differentiation primary response gene 88 (MyD88) 

is involved in signaling pathways for multiple TLRs and IL-1R.168 NOD MyD88 KO mice 

are protected from T1DM when housed in normal specific pathogen-free (SPF) conditions, 

but had high incidence of T1DM when housed in germ-free conditions.169 Interestingly, 

MyD88 KO mice showed tolerization of T cells in the PLNs under SPF conditions, whereas 

T cells in the spleen and mesenteric lymph nodes were still autoreactive to diabetes-

associated peptides. Additionally, MyD88 KO mice in SPF conditions have changes in gut 

microbiota composition and further studies on the interplay between the innate immune 

system and gut microbiome have yielded promising results.169 In a related study, MyD88 

inhibition utilizing a small molecule probe, TJ-M2010–6, in NOD mice had two-fold lower 

T1DM incidence, an increase in Tregs, and a reduction in CD4+/CD8+ T cell proliferation.170 

More work is underway to confirm the role of the microbiome in T1DM and targeted 

approaches to altering it.
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TRIF.—The TIR-domain-containing adapter-inducing interferon-β (TRIF) is an adapter 

molecule involved in TLR3 and TLR4 signaling. NOD TRIF KO mice were protected from 

T1DM when housed with other TRIF−/− mice, but not when cohoused with WT mice.171 

Similar to MyD88 KO mice, TRIF KO lead to a different microbiota compared to WT mice, 

along with DCs that had reduced levels of inflammatory cytokines, such as TNF-α, and 

increased TGF-β.172 In addition, TRIF KO mice APCs had impaired antigen presentation 

and ultimately reduced T cell activation and proliferation.

TLRs.—Patients with T1DM have increased expression levels of TLR2 and TLR4 in 

monocytes.173 Studies with TLR4 KO mouse models have yielded mixed results from 

inflammation reduction, no effect, to an increase in T1DM incidence.169,174,175 Antibody 

inhibition of the TLR4/MD-2 interaction, mediated by both MyD88 and TRIF, resulted in a 

significant reduction of T1DM incidence accompanied by a significant increase in Fox3p+ 

Tregs.176 A decrease in APC-mediated T cell proliferation is one potential mechanism, as 

NOD scid mice treated with TLR4-Ab followed by addition of NOD CD4+ and CD8+ T 

cells were protected from T1DM incidence. Underscoring its clinical potential, treatment in 

NOD mice with established T1DM led to a permanent reversal in 71% of treated mice.176

NETs.—Neutrophils are the most abundant leukocyte in mammals, play important roles in 

both immunosurveillance and inflammation.177 To fight bacterial infection, neutrophils eject 

nuclear chromatin and bactericidal proteins to form structures called neutrophil extracellular 

traps (NETs).177 Patients with T1DM have been shown to have increased levels of 

neutrophil elastase and proteinase 3, two neutrophil serine proteases, and corresponding 

higher levels of NET formation.178 In NOD mice, neutrophil infiltration and NET formation 

appears as early as 3 weeks of age. Upon further investigation, depleting NOD mice of 

neutrophils resulted in a three-fold decrease in T1DM incidence.179 In a separate study, 

Lactococcus lactis, a food grade microorganism, was used to deliver staphylococcal nuclease 

(SNase) to disrupt NETs. NOD mice treated with L. lactis expressing SNase had a two-fold 

lower T1DM incidence, enhanced glucose tolerance, and a three-fold reduction of severe 

neutrophil infiltration of the islets,180 indicating clinical potential.

Islet Protection.

A complementary therapeutic approach to immunomodulation is to inhibit pathways 

involved in cytokine-mediated cell death of β cells. Cytokine-induced stress is known to 

induce autoimmune-mediated destruction of islets cells through endoplasmic reticulum (ER) 

dysfunction, altering cellular metabolism, and deregulating calcium homeostasis. Here we 

discuss progress made in modulating these pathways to preserve β cell mass and function.

Cellular Stress.—ER stress and the affiliated unfolded protein response (UPR) has an 

adverse effect in many autoimmune diseases, including T1DM.181 During ER stress, the ER 

transmembrane kinase/endoribonuclease (RNase), IRE1α, degrades mRNA to promote 

apoptosis. Treatment of NOD mice with the tyrosine kinase inhibitor Imatinib led to T1DM 

remission in 80% of mice in an ABL protein kinase-dependent manner, leading to 

inactivation of IRE1α.182,183 Accordingly, direct inhibition of IRE1α with the small 

molecule KIRA8 also led to 90% reversal of T1DM in NOD mice.184 Imatinib is currently 
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being investigated in a phase II trial for treatment of T1DM (Table 1), highlighting that 

inhibition of proteins affiliated with ER stress and the UPR are promising targets to preserve 

β cell mass.

T1DM patients display islet cells with hyperexpression of HLA Class I proteins along with 

elevated expression of signal transducer and activator of transcription 1 (STAT1).185 A 

recent analysis indicated JAK-STAT and IFN signaling being highly enriched in multiple 

autoimmune diseases.186 Suppression of STAT1 in transgenic NOD mice can also reduce 

incidence of T1DM.187 Inhibition of JAK1/JAK2, enzymes that phosphorylate and activate 

STAT1, with the small molecule inhibitor AZD1480 in NOD mice reduced MHC Class I 

expression on β cells and results in three-fold lower incidence of T1DM.188 Directly 

inhibiting STAT1 to reduce MHC Class I expression is a promising therapeutic strategy, but 

an inhibitor of STAT1 has yet to be developed.

Cellular Metabolism.—Sphingolipid metabolism and sphingosine 1-phosphate (S1P) play 

an important role in the development of several inflammatory and autoimmune disorders, 

and their role has been thoroughly reviewed elsewhere.189 Briefly, S1P is a bioactive 

signaling molecule that is degraded by the ER protein S1P lyase (SPL) and is involved in the 

activation of innate and adaptive immune pathways, including the TH1/Treg balance.190 

Treatment with fingolimod, an antagonist for the S1P receptor, increases survival and 

reduces insulitis scoring in NOD mice.191,192 In INS-1 cells, overexpression of SPL protects 

against cytokine-related cell death and caspase-3 activation, likely through prevention of 

Ca2+ leakage from the ER into the cytosol.193 Disruption of Ca2+ homeostasis in the β cell 

from cytokine exposure has been linked to ER stress and contributes to β cell death.194,195 

Modulating Ca2+ homeostasis in INS-1 cells with the small molecules dantrolene and 

sitagliptin displayed less cytokine-related cell death and lower expression of thioredoxin-

interacting protein (TXNIP). Knockdown of TXNIP resulted in a similar protection from 

cytokine-mediated cell death,196 suggesting that TXNIP is a mediator in Ca2+ homeostasis 

and a potential target for reducing β cell death.

Oxidative stress also contributes to T1DM pathogenesis.197 Of note, reactive oxygen species 

(ROS) act on the innate immune system to induce the production of inflammatory cytokines, 

such as TNF-α and IL-1β that ultimately led to the activation of CD4+ and CD8+ T cells.
197,198 The high levels of ROS in T1DM has prompted studies utilizing antioxidants for their 

ability to prevent β cell destruction in T1DM. The antioxidant quercetin preserves β cell 

mass compared in streptozotocin (STZ) treated mice.199 Quercetin treatment of INS-1 cells 

protects against oxidative death from H2O2 and increased glucose-induced insulin secretion.
200 Unfortunately, clinical investigations utilizing antioxidants in children with recently 

onset T1DM have failed to find any effects on C-peptide levels.201

Modulating specific pathways involved in ROS production also affect T1DM development. 

The enzyme 12/15-Lipoxygenase (12/15-LOX) catalyzes the oxygenation of arachidonic 

acid to form 12- and 15-hydroxyeicosatetraenoic acid (HETE), a pro-inflammatory mediator 

of insulitis.202,203 12-HETE also decreases insulin secretion and increases β cell death in 

human islets.203,204 In both STZ and NOD models, 12/15-LOX KO mice had a lower 

incidence of T1DM.205,206 Inhibition of the 12-LOX pathway protects mouse and human 
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islets against cytokine-mediated cell death/disregulation.207–210 A follow-up study in STZ-

induced T1DM mice showed treatment with the 12/15-LOX inhibitor ML351 displayed 

similar glucose tolerance and identical β cell mass to control C57BL/6 mice,211 making the 

12-LOX pathway a promising target for β cells preservation.

IL-35 is a newly discovered cytokine believed to have immunosuppressive effects and an 

important role in autoimmunity.212,213 Systemic administration of recombinant IL-35 

reverses established T1DM in a NOD mouse model through tolerization by Tregs.214 

Transgenic expression and viral transfection of IL-35 in the pancreatic β cells of NOD mice 

displayed a four-fold lower T1DM incidence compared to control NOD mice and had 

reduced insulitis.215 While these preliminary results are promising, more work is needed to 

confirm the β cell protective effects of IL-35.

Epigenetic histone modifications have been shown to play a role in T1DM.216,217 Histone 

deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from the 

lysine residues of histone proteins, generally reducing gene expression and play a role in 

transcriptional regulation.218 HDAC inhibitors have anti-inflammatory properties and are 

actively being explored as therapeutics for cancer, rheumatoid arthritis, and T1DM.219 The 

HDAC inhibitor ITF2357 protected islet cells from STZ-mediated destruction and INS-1 

cells from cytokine-mediated cell death through inhibition of HDAC3.220–222 Furthermore, 

NOD mice treated with the specific HDAC3 inhibitor BRD3308 showed a significantly 

lower incidence in T1DM and significantly less mononuclear islet infilltration.223 Thus far, 

β cell protective strategies have produced promising results in animal models and may be 

candidates for combination therapies with immunomodulatory agents.

Regeneration.

β Cell Protection and Proliferation.—The restoration of lost or at-risk β cells is a major 

therapeutic focus in both T1DM and T2DM. These efforts focus on either selectively 

expanding or protecting β cells and reprograming non-β cells into functional β cells. 

Pancreas protection and regeneration studies were initially spurred by signs of β cell 

regeneration in adolescence and during times of stress such as pregnancy and obesity.224 

However, adult endocrine islets have limited regenerative capacity. Recent studies have 

shown that α cells (glucagon producing) and δ cells (somatostatin producing) can undergo 

transdifferentiation to functional β cells or β-like cells.225,226 Although the precise 

mechanism and protection of β cells is unclear, potential in vivo therapeutic targets have 

been identified.

Inducing β cells to undergo mitosis through increases in relevant cyclins, cyclin-dependent 

kinases (CDKs), and with reductions in cell cycle inhibitors can protect against losses in β 
cell mass.227 A high-throughput small molecule screen identified harmine as a cell 

mitogenic compound and two relevant protein targets: tyrosine-regulated kinase-1a 

(DYRK1A) and the Nuclear Factors of activated T cells (NFAT).227 Harmine inhibits the 

ATP binding pocket of DYRK1A, inducing c-MYC activation, and driving β cell 

proliferation. Harmine also causes translocation of NFAT from the cytoplasm to the nucleus 

and increases expression of the transcription factors involved in β cell differentiation 

(NKx6.1, PDX1, and MAFA).227 Ultimately, harmine induced human β cell proliferation to 
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levels comparable in early adolescence. This work established DYRK1A and NFAT as 

attractive clinical targets, but harmine has limited therapeutic utility due to off-target effects 

against other DYRK, CDC-like kinases (CLK), and inhibition of monoamine oxidases 

(MAOs).

Physiological glycemic regulation is modulated by the thyroid hormones triiodothyronine 

(T3) and the T3 precursor, levothyroxine (T4). T3 supplementation attenuates 

hyperglycemia in STZ-treated mice,228 while T4 supplementation in wild-type C57BL/6 

mice enhanced glucose clearance and simultaneously increased the proliferation and 

apoptosis of pancreatic β cells, while increasing insulin production.229 T4 supplementation 

was also shown to reduce the onset of T1DM in the RIP-B7.1 model of early diabetes and 

increase survival of STZ-treated mice through increased expression of Akt and glucokinase. 

Clinical application will need to avoid the detrimental effects of high circulating levels of 

these hormones (thyrotoxicosis).230,231

Maintaining a stable rate of β cell turnover would be beneficial, yet an ideal therapy would 

also keep β cell mass within a normal range and prevent future insulitis. Substance P (SP) is 

a neuropeptide that acts as a pain-sensing neurotransmitter in the central nervous system and 

as an immune modulator.232 SP directly induces proliferation of β cells through the 

PI3K/Akt pathway, affects the preservation of β cells at early time points after STZ 

treatment, and inhibits further insulitis.233 This suggests early intervention of T1DM can 

benefit from both β cell and neural components in the pancreatic islets.

Novel agents that can shift a pro-inflammatory autoimmune islet environment towards an 

anti-inflammatory milieu are also desirable for islet protection and regeneration therapies. 

Recently, liver receptor homologue-1 (LRH-1) was shown to modulate the expression of 

genes involved in glucose homeostasis and is protective against both inflammation and ER 

stress.234–236 Small molecule BL001 activates LRH-1 in several T1DM mouse models 

resulting in a shift towards the anti-inflammatory macrophage phenotype (M2), secretion of 

IL-10, Treg expansion, and a reduction in TH1 cells with increasing TH2 phenotype.237 This 

resulted in reduced insulitis and LRH-1 stimulated regeneration of β cells through a non-

proliferation/apoptosis manner, suggesting LRH-1 activation may promote α to β cell 

transdifferentiation.

α to β Cell Transdifferentiation.—β cell regeneration can be achieved through 

transdifferentiation of developmentally related pancreatic cell types into functional β cells. 

Notable work in elucidating the mechanism of either α or δ to β cell transdifferentiation 

highlights the activation of transcription factors pdx1 and pax4, the downregulation of arx 
and foxo1, and the influence of epigenetic modulation.225,226,238–241 Direct inhibitors to 

transcription factors and epigenetic modulators has traditionally been considered 

“undruggable”, however recent progress has been made and more specific inhibitors have 

been developed.242 Here we focus on extracellular and extranuclear targets that stimulate 

islet cell transdifferentiation to β cells which act, in part, through transcription factor 

modulation.
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The insulin-like growth factor (IGF) signaling pathway plays a role in cell proliferation and 

differentiation.243 Overexpression of the IGF-binding protein 1 (IGFBP1) in zebrafish 

results in inhibition of IGF signaling and promotes β cell regeneration through α to β 
transdifferentiation.244 Importantly, IGF receptor inhibitor picropodophyllin replicates this 

result and increases α cell expression of PDX1, an important marker for α to β 
transdifferentiation. The role of IGFBP1 was further explored in transgenic mice 

overexpressing the protein and found to restore normoglycemia when administered 

exogenous IGF-I.245 Enhancing IGFBP1’s potential role in human diabetes, high serum 

levels of IGFBP1 was associated with a reduced risk of T2DM development.246,247

Aristaless related homeobox (ARX) is a master regulator of α cell fate and is required for 

maintaining glucagon production.248 Targeting ARX can modulate the pancreatic ratio of α, 

β, δ, and pancreatic polypeptide cells. Direct inactivation of ARX alone is insufficient to 

induce α to β cell conversion,241,249 and inhibition of DNA methyltransferase 1 (DNM1) is 

also required for conversion of α cells to functional β-like insulin secreting cells.250 

Heterogeneity of expressed β cell regulators was observed, showing incomplete conversion 

to a full β cell morphology, but the observed response to glucose is encouraging. Indirect 

functional repression of ARX also shows therapeutic promise. The anti-malarial drug 

Artemisinin induces ARX translocation to the cytoplasm and stimulates GABAA receptor 

signaling, resulting in increased β cell mass in zebrafish and rodent models.251 Interestingly, 

GABA signaling is known to modulate the immune system and promote β cell proliferation.
252,253

Taken together, β cell regeneration either through protection, proliferation, or 

transdifferentiation offers hope as a successful regeneration therapy and need only restore 

normoglycemia to greatly impact treatment for T1DM patients.

ISLET TARGETING

In addition to modulating specific pathogenic pathways, targeted technologies for 

therapeutic and diagnostic purposes are under investigation for T1DM. Targeted β cell/islet 

probes by themselves do not have therapeutic effects, but are used to image and monitor 

disease progression, serve as a biomarker for disease incidence, or play a role in targeting 

drug delivery systems. Indeed, drug-loaded targeted constructs are now being investigated to 

better localize existing drugs/therapies to the islet microenvironment and improve treatment 

outcomes. Here we discuss advances in β cell imaging probes and islet delivery 

technologies.

β Cell Imaging.

Current clinical tests for T1DM diagnosis, such as insulin/C-peptide measurements after a 

glucose challenge, serve mainly as indicators of β cell function, but not β cell mass. In 

addition, changes in these markers are typically only detected when nearly 80% of β cells 

have already lost function. Therefore, development of probes to measure/monitor β cells is 

urgently needed to accurately monitor T1DM progression.
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β cells are scattered in the pancreas in the islets of Langerhans and constitute only 1–3% of 

total pancreas mass, thus imaging requires a probe with high specificity and high signal-to-

noise ratio. While there are a number of imaging probes used to monitor β cell mass, only a 

small number of probes have been tested clinically, including exendin-4/exenatide, 

tetrabenazine, 5-hydroxy-tryptophan (HTP), sulfonylurea, and (+)-4-propyl-9-

hydroxynaphthoxazine (PHNO) based probes.254–257

Exendin-4, also known as exenatide, is a 39 amino acid peptide isolated from Heloderma 
horridum that shares 50% homology with endogenous glucagon-like peptide 1 (GLP-1), but 

has much slower clearance and high stability in vivo.258 Clinically, exendin-4 is typically 

prescribed with metformin for treatment of T2DM to increase insulin secretion and reduce 

body weight.259 GLP-1R expression is restricted to β cells in the pancreas, with low 

expression in exocrine tissue. Exendin-4 has been extensively utilized as a targeting ligand 

for β cell imaging probes.260 An exendin-4 based probe conjugated to 

diethylenetriaminepentaacetic acid (DTPA) chelated with Indium-111 was successfully used 

to image transplanted islets in humans.261 Additional clinical studies with a 111In-DTPA-

Exendin probe found a linear relationship between β cell mass and pancreatic uptake of the 

probe, but failed to find any statistical significance in uptake between healthy and T1DM 

human subjects.262

Vesicular monoamine transporter 2 (VMAT-2) is involved in the storage and release of 

amines, such as dopamine and serotonin, and is expressed both in neuroendocrine cells and 

β cells.263,264 Tetrabenazine and its various analogs, such as dihydrotetrabenazine (DTBZ) 

and fluoropropyl-dihydrotetrabenazine (FP-DTBZ), are the most widely used VMAT2 

antagonists.265,266 The analog [18F]-FP-DTBZ successfully correlates β cell function and 

mass, after accounting for pancreatic volume,267 with T1DM subjects showing an average 

59% loss in specific binding of the probe compared to healthy subjects. Currently, there is 

some disagreement about using VMAT2 as a biomarker for β cell mass, as binding in the 

pancreas may be mainly nonspecific,268 and further studies are needed.

Although they come from different germinal layers, pancreatic β cells and neurons have 

shared functions, including serotonin production.269 In many mammals, including humans, 

serotonin production is exclusive to the islets with no expression in the exocrine pancreas.270 

[11C]5-hydroxy-tryptophan ([11C]5-HTP) is a probe used to visualize serotonin biosynthesis 

in disease and is used to monitor neuroendocrine tumors.271,272 Initial studies with [11C]5-

HTP in exocrine PANC-1 cells and endocrine human insulinoma cell lines (CM) suggested 

signal may not be representative of β cell mass, but PANC-1 cells rapidly lost signal whereas 

CM cells maintained signal.273 [11C]5-HTP was further studied in non-human primates, 

where it had two-fold higher pancreatic uptake compared to the liver. STZ-induced diabetic 

mice showed 66% lower signal compared to wild-type mice, suggesting a correlation to 

functional β cell mass.274 Clinical studies show a correlation between plasma C-peptide 

levels and the pancreatic uptake of [11C]5-HTP, suggesting that the probe may be used as a 

marker for β cell mass.275

Sulfonylureas, such as glibenclamide, bind to the sulfonylurea receptor 1 (SUR1) on β cells 

and are used clinically as insulin secretagogues for treatment of T2DM.276 Glibenclamide 
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analogs for β cell imaging have been synthesized with high affinity to SUR1 and variable 

lipophilicities.276,277 A promising glipizide analog conjugated to 99mTc-DTPA was 

developed and displays a thirty-fold higher pancreatic uptake with reduced kidney and liver 

uptake.278 To compliment this effort, multivalency using glibenclamide-polyamidoamine 

(PAMAM) probes have been evaluated. PAMAM dendrimers with 15 glibenclamide 

molecules/dendrimer have higher affinity for SUR1 than the unmodified glibenclamide and 

successfully labeled human islets in vitro and murine islets ex vivo.279

The dopamine receptors, D2 and D3, also have overlap between neural and pancreatic cells. 

D2/D3 receptors colocalize with insulin-containing granules suggesting that probes used to 

image D2/D3 receptors in the brain can also image the receptors on β cells.280 

Iodobenzamide, a molecule that is used clinically to image D2 receptors in 

neurodegenerative diseases, was recently shown to be effective for imaging islet grafts. 

Unfortunately, [123I]-Iodobenzamide also had high uptake in spleen, liver, and kidney, where 

grafts are often placed.281 Fallypride, another D2/D3 antagonist used for clinically imaging 

D2 receptors in the brain, has been investigated for imaging transplanted islet grafts. 

[18F]Fallypride had 0.05% injected dose uptake in pancreas, but encouragingly successfully 

visualized transplanted islets.282 A later study confirmed that [18F]fallypride uptake was 

77% lower in STZ-treated mice compared to control, indicating potential utility in 

monitoring β cell mass.283 A currently used compound for positron emission tomography 

(PET) brain radioligands, [11C](1)-4-propyl-9-hydroxynaphthoxazine (PHNO), was recently 

identified as a D2/D3 antagonist and used to differentiate between a healthy, T1DM C-

peptide positive, and a T1DM C-peptide negative subject based on PET imaging.284

A number of other probes have been developed and tested in multiple animal models, but 

have failed to garner any data in humans. Of note is the G-coupled protein receptor 44 

(GPR44), which binds Prostaglandin D2 (PGD2) and was identified as a β cell-specific 

biomarker through a proteomic screen.285 Initial investigations in vitro with human islets 

and EndoC-βH1 cells confirmed the surface expression of GPR44 and identified the 

antagonist AZD3825 as having nanomolar affinity and high endocrine-exocrine binding.286 

Biodistribution studies in non-human primates and pigs with a related GPR44 antagonist 

indicated pancreatic binding, but the probe also accumulated in the small intestines and 

spleen.287

Islet Delivery.

Several targeting ligands are under investigation for their ability to selectively deliver 

therapeutics to the islet microenvironment. Using phage display and a library of small cyclic 

peptides, the peptide CHVLWSTRC was found to specifically home to islets where it binds 

to the EphrinA4 receptor on islet capillary cells.288 This cyclic targeting ligand has been 

utilized twice in attempts to deliver therapeutics specifically to the islet microenvironment. 

Conjugation of this peptide to a PLGA-PEG polymer and nanoformulation with the anti-

inflammatory drug genistein yielded nanoparticles targeted to the islet microenvironment. In 

rat islet capillary endothelial cells that endogenously express EphA4, the targeted 

nanoparticles had three-fold higher uptake compared to untargeted/scrambled nanoparticles.
289 This peptide targeting ligand was also used to deliver plasmid DNA encoding retinoic 
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acid early inducible gene-1 (RAE-1) to islet capillary cells. The targeted polyplex displayed 

2.5-fold higher uptake compared to untargeted control in MS-1 cells that express EphA4.290 

Targeted constructs utilizing the CHVLWSTRC peptide have shown promising results in 
vitro, but will need to be validated in animal models for their ability to bind islet vasculature.

Several antibodies have been developed to specifically home to the islet microenvironment. 

An in vitro phage display experiment with INS-1 cells was used to identify antibody SCA 

B5 binding specifically to β cells with low exocrine tissue affinity.291 In vivo, 5.12% of 

injected dose of 125I-labeled SCA B5 localized to the pancreas with low (<0.70%) 

accumulation in other tissues. The putative molecular target of SCA B5 is currently 

unknown.291 As previously mentioned, GAD-65 is an autoantigen affiliated with T1DM, so 

it may be used as a unique feature in the pancreatic microenvironment to target. An anti-

GAD antibody fragment (Fab) has been developed as a β cell specific nucleic acid delivery 

system and showed a ten-fold higher transfection in GAD-expressing MIN-6 cells compared 

to an untargeted construct with low transfection in GAD-negative HEK-293 cells.292 These 

antibodies had promising in vitro results, but need to be validated in vivo.

β cell selective imaging probes are of vital need to monitor loss of β cell mass as the disease 

progresses. These probes could enable β cell mass to be a new biomarker for disease 

incidence. Finally, these targeting ligands have potential for islet-specific delivery of highly 

potent therapeutics that otherwise may give detrimental effects when administered 

systemically.

FUTURE PERSPECTIVE

Significant progress has been made developing new therapeutic modalities that attack T1DM 

on multiple fronts: from immunomodulatory agents, β cell protective and regenerative 

strategies, to new diagnostic probes. All of these approaches take advantage of key 

molecular mechanisms and targets in T1DM, and while pre-clinical results have been 

promising, clinical translation of these approaches has remained elusive. Many of these 

therapeutic modalities are more effective when administered in pre-symptomatic stages of 

the disease, which is currently challenging in humans due to a lack of predictive and reliable 

diagnostic readouts. Clinical evaluation of some of these therapies have revealed adverse 

effects through the distribution and systemic action of these agents at unrelated tissue sites. 

While many monotherapies are effective in pre-clinical models, the added complexity of 

human biology may require combinatorial approaches to achieve clinical efficacy.

The next generation of therapeutic modalities (Figure 3) will benefit from current efforts at 

developing predictive biomarkers and probes in T1DM-susceptible individuals. Improved 

diagnostics will enable many of the therapies discussed here to be interventional and expand 

the temporal window for many immunomodulatory and β cell protection/regeneration 

therapies. Equally important will be the emergence of drug delivery systems that can bias the 

systemic distribution of these agents to relevant tissue sites, enabling localized therapeutic 

modulation and avoiding adverse effects in healthy tissues. T1DM is a complex disease 

where our understanding of the pathogenesis is evolving. The diversity and richness of the 
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approaches reviewed here reveal the direction of future treatment paradigms for this disease 

that could dramatically improve clinical outcomes and the quality of life for these patients.
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Figure 1. 
Progression of β cell loss and primary cells involved in the pathogenesis of T1DM. 

Predisposition from bone marrow, thymus, and immune populations followed by a 

precipitating event lead to β cell mass loss prior to clinical diagnosis and therapeutic 

intervention.
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Figure 2. 
Selective T1DM pre-clinical and clinical therapeutic intervention strategies through 

immunoregulation, β cell protection and regeneration, and antigenic therapy. Solid arrows 

denote a causal event. Dashed arrows denote cell population shift. Red arrows indicate the 

pathway leads to T1DM autoimmunity and green arrows indicated protective and immune 

tolerance pathways. Green text indicates increase secretion or strengthening of indicated 

molecular interaction. Red text indicates suppression of indicated molecular interaction. 

Purple text indicates additional therapies discussed herein.
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Figure 3. 
Future therapeutic paradigm for localized early delivery of therapeutics for T1DM. In 

combination with genetic screening and early biomarker T1DM indication, formulated 

nanoparticles with encapsulated therapeutic agent can be conjugated to islet targeting agents 

that populate the nanoparticle surface. These localized delivery agents will likely need to be 

used in combination therapies.
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Table 1.

T1DM and Immunoregulatory Clinical Trials

Therapy 
Group

Therapy Phase ID Comments

Cytokine 
Blockade

Anti-IL-1β (Canakinumab) II No C-peptide level difference.26

IL-1R antagonist (Anakinra) II No C-peptide level difference.25

Soluble TNF-α receptor 
(Etanercept)

I/II Significant reduction of HA1c and increase in C-
peptide levels.31

Inducing 
Antigenic 
Tolerance

Human recombinant GAD-alum II Decreased Teff, increased Tregs, but no C-peptide 
difference.45

HSP60 (DiaPep277) II N/A Delayed decrease in C-peptide levels.49

HSP60 (DiaPep277) II N/A 30 children, no C-peptide, insulin dose, or HA1c 
level difference.48

Altered peptide ligand of B9–23 
epitope (NBI-6024)

I N/A T cell population shift from TH1 to TH2.52

Altered peptide ligand of B9–23 
epitope (NBI-6024)

I Repeated administration shows no efficacy.53

Multiple Islet peptide 
(MultPepT1De)

Ib Recruiting.54

Lymphocyte 
Modulation: T 
cell

Anti-CD3 (Otelixizumab) III No C-peptide level difference.18

Anti-CD3 (Teplizumab) II/III Primary outcome not met, 5% of patients were not 
taking insulin 1 year after treatment.19

Anti-CD3 II Reduced insulin dosage requirements.63

Anti-CD3 (Teplizumab) II No C-peptide level difference. Reduced insulin 
requirements.64

IL-2 (Aldesleukin) I & II Selectively activates Tregs. No efficacy endpoints.82

IL-2/Rapamycin combination I Treg, NK and Teff populations increased. B cell 
function impaired.84

IL-2 (Aldesleukin) I & II Dosage testing. No results reported.85

Ex vivo expanded human 
autologous polyclonal Tregs

I Safe. Subset were long-lived. C-peptide levels 
stabilized through 2 years.73

Ex vivo expanded 
CD4+CD25+CD127-Tregs

II ISRCTN06128462 Safe. Increased C-peptide levels. Reduced insulin 
requirements.87

Ex vivo expanded human Tregs II Follow up study. No results reported.77

Anti-CTLA4 (Abatacept) II Slowed β cell reduction for 24 months, but no 
improved function.97

Lymphocyte 
Modulation: 
APC

Methyldopa Ib Reduced inflammatory T cell response to insulin.
120

Methyldopa II Recruiting.

Anti-CD40 ligand for Lupus I N/A Terminated due to risk of life-threating thrombotic 
events.130

Lymphocyte 
Modulation: B 
cell

Anti-CD20 (Rituximab) II Inhibits T cell activation and further insulitis over a 
1 year period. Follow-up study showed increase of 
asymptomatic viremia.146,147
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Therapy 
Group

Therapy Phase ID Comments

Immuno-
regulatory

Anti-PD1 for various cancers N/A N/A Various different trials report development of 
insulin-dependent diabetes following anti-PD1 
therapy.159

Islet Protection Tyrosine Kinase Inhibitor (Imatinib) II Preserved β cell function, reduced insulin 
requirements up to 1 year (unpublished, presented 
at American Diabetes Association Scientific 
Sessions 2017).

β Cell Imaging GLP-1R targeted probe 111In-
DTPA-Exendin

N/A Found difference in pancreatic uptake between 
healthy and T1D patients.262

VMAT2 targeted probe [11C]-DTBZ N/A Did not correlate β cell function to mass.266

APPROACHES FOR IMMUNOMODULATION
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