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Abstract

Metal-organic frameworks (MOFs) are highly tuneable, extended-network, crystalline, nanoporous 

materials with applications in gas storage, separations, and sensing. We review how molecular 

models and simulations of gas adsorption in MOFs have informed the discovery of performant 

MOFs for methane, hydrogen, and oxygen storage, xenon, carbon dioxide, and chemical warfare 

agent capture, and xylene enrichment. Particularly, we highlight how large, open databases of 

MOF crystal structures, post-processed to enable molecular simulations, are a platform for 

computational materials discovery. We discuss how to orient research efforts to routinise the 

computational discovery of MOFs for adsorption-based engineering applications.
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I. INTRODUCTION

I can’t see exactly what would happen, but I can hardly doubt that when we have 

some control of the arrangement of things on a small scale, we will get an 

enormously greater range of possible properties that substances can have and of 

different things that we can do.

Richard Feynman, American Physical Society Meeting, 

1959

Metal-organic frameworks (MOFs) [1] are solid-state materials that commonly harbour 

nano-sized pores and enormous internal surface areas (> 7 000 m2/g) [2]. Their consequent 

gas adsorption properties lend them applications in storing [3], separating [4], and sensing 

[5] gases. Since the first MOF was reported by Omar Yaghi in 1999 [6], a few MOF-based 

products have appeared on the market [7], including for safe sub-atmospheric storage of 

toxic gases (NuMat Technologies) and carbon dioxide capture in submarines (Mosaic 

Materials).

MOFs, heralded as “designer materials” [8], are synthesised modularly by linking organic 

molecules, serving as struts, to metals or metal clusters, serving as nodes, to form pre-

determined, extended-network structures [1]. See Figure 1. Owing to their synthetic 

adjustability, over 80 000 MOFs displaying diverse pore geometries and surface chemistries 

and thus, adsorption properties, have been experimentally reported [9, 10]. MOFs have 

garnered much attention because of this ability to exert control over the self-assembly of 

linkers and metal nodes/clusters at the nano-scale; judiciously choosing the molecular 

building blocks and (sometimes arduously [11]) finding the synthetic conditions to yield a 

pre-determined, extended network structure is coined as reticular chemistry [12, 13].

For adsorption-based engineering applications, a coveted aim beyond reticular chemistry is 

to specify a desired (optimal) adsorption property, then synthesise the MOF that exhibits it. 

For example, consider the search for a MOF to densify and store natural gas onboard a 

passenger vehicle and deliver it to the engine for fuel [18]. The driving distance of a vehicle 

equipped with an adsorbed natural gas fuel tank of a given volume is determined primarily 

by the usable capacity of the material [19]; operating at room temperature via a pressure 

swing between 65 bar and 5 bar, the usable capacity is the equilibrium methane adsorption 

after filling up at the fuel station (65 bar) minus that retained when the tank sustains 

insufficient pressure to drive flow to the engine (5 bar)1. For the near-term deployment of a 

MOF in an adsorbed natural gas fuel tank, a lofty goal is to reliably identify, among the 80 

000 experimentally synthesised, which MOF exhibits the maximal methane usable capacity. 

1In addition to thermal and chemical stability and the cost of the MOF, several other material properties influence the performance of 
a MOF in adsorbed natural gas storage, such as heat of adsorption, specific heat, thermal conductivity, diffusion coefficients, and 
adsorption of impurities that can “poison” adsorption sites (note we approximated natural gas as methane).
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Clearly, it is impractically time- and resource-intensive to synthesise, characterise, and 

measure the high-pressure methane adsorption isotherm in every MOF, despite underway 

efforts for high-throughput robotic synthesis [20–22] driven by machine learning algorithms 

[23].

The topic of this review is the role of molecular modelling and simulation in enabling, to an 

increasing extent, the identification of an existing MOF2 to exhibit a desired (optimal) 

adsorption property (e.g., maximal methane usable capacity) through high-throughput 

computational screenings. The simple idea, encapsulated in the Materials Project [24], is to 

computationally predict adsorption performance of each existing MOF structure to shortlist 

materials for experimental synthesis and testing. We take a unique angle from previous 

reviews [25–27] by highlighting how large, open data sets of MOF crystal structures provide 

a platform for the computational identification of existing MOFs for gas storage, separation, 

and sensing.

We begin in Sec. II by briefly describing methodologies to computationally screen MOF 

structures for gas adsorption applications. We then discuss in Sec. III how MOF crystal 

structures are determined experimentally from X-ray diffraction (XRD) studies. In Sec. IV, 

we describe how, owing to artefacts of XRD studies, many MOF structures deposited in the 

Cambridge Structural Database (CSD) typically contain solvent and/or are chemically 

invalid, precluding their direct use for computational screenings. In Sec. V, we sketch how 

these structures are processed to curate an open database of computation-ready, 

experimental (CoRE) MOF crystal structures that resemble the structure used in gas 

adsorption studies. Following, in Sec. VI, we survey high-throughput computational 

screenings of MOF crystal structures for gas adsorption and separation applications that 

have directly motivated the experimental synthesis and characterisation of a performant 

MOF. In line with the theme of how the open CoRE MOF database spurred the 

computational identification of performant materials, in Sec. VII we review efforts by NIST 

to curate open databases of adsorption isotherms in MOFs. Interspersed, we draw analogies 

with the impacts of open data in molecular biology and machine learning.

II. MOLECULAR MODELS AND METHODS

Accurately and efficiently predicting the adsorption properties of a given MOF structure via 

computation remains a formidable challenge and is still an active, progressing area of 

research.

A. Energetic modelling

As a mathematical description of the potential energy of the many-body system consisting of 

the MOF structure and its adsorbed gas molecules, ab initio quantum chemical calculations 

are accurate but require significant computational resources. On the other hand, classical 

force fields, whose interatomic potential parameters are fit to experimental data or ab initio 

2We specify the MOF to be existing, as opposed to hypothetical or conceived, according to whether synthesis protocols have already 
been reported in the literature. Knowledge of these protocols, as well as activation procedures and information about stability, can 
expedite deployment.
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calculations, are more computationally efficient than ab initio calculations but often less 

accurate when transferred to systems different to which they were fit. For the former reason, 

classical force fields such as the Universal Force Field (UFF) [28] and DREIDING [29] are 

typically used to describe interactions of gas molecules with the MOF in high-throughput 

screenings. The interatomic potentials in DREIDING, for example, were tuned to reproduce 

crystal structures and sublimation energies of a large set of compounds. For gas–gas 

interactions, the Transferable Potentials for Phase Equilibria (TraPPE) [30] cover many 

adsorbate molecules and were tuned to reproduce vapour–liquid equilibria of the fluids. 

Gas–MOF interactions are typically obtained by mixing rules that determine interatomic 

potential parameters for cross-species interactions from pure-species parameters. 

Electrostatic interactions are usually modelled (with Coulomb’s law) by assigning point 

charges to the atoms of the MOFs and, if appropriate, the adsorbate molecule (e.g., TraPPE 

assigns charges to the atoms of CO2 [31], which has polar bonds, but not to CH4, which 

lacks polar bonds [30]). There exists a hierarchy of methods for assigning point charges to 

MOFs to model their electrostatic interaction with an adsorbate molecule that possesses 

polar bonds [32] (see Sec. IX B 2), and a database of experimental MOF crystal structures 

with high-quality point charges assigned can be downloaded (see Sec. V A 1).

Notably, off-the-shelf force fields such as UFF often inaccurately model the interaction of 

electron-donating adsorbates with coordinatively unsaturated/open metal sites in MOFs [33]; 

as they were designed/tuned to describe van der Waals interactions, complicated electronic 

interactions such as π-complexes are outside their scope of applicability. An example 

interaction between an adsorbate and unsaturated metal site is ethylene forming a π-complex 

with unsaturated Ag+ sites in MOFs [34, 35]. A typical approach to accurately model the 

electronic interaction between an adsorbate and unsaturated metal site is to retrofit the 

forcefield with a specially designed and tuned pair potential between, e.g., an unsaturated Cu 

in a Cu2 paddlewheel and the centre of the carbon-carbon double bond of ethylene [36]. The 

pair potential is chosen and tuned using first principles calculations of the potential energy 

of the adsorbate near the unsaturated metal atom (within the MOF or within a representative 

cluster) as training data. Such an approach (with variations) has been used to retrofit off-the-

shelf force fields such as UFF with a pair potential to describe C2H4 [36, 37], H2 [38], C2H2 

[39, 40], CO2 [39, 41, 42], CH4 [41, 43], and CO [44] interactions with un-saturated Cu 

within Cu2 paddlewheels as well as for CO2, CH4, and H2O interactions with unsaturated 

metals in the MOF-74 series [41, 45, 46]. Retrofitting an off-the-shelf force field to properly 

describe interactions of adsorbates with unsaturated metals in MOFs involves significant 

effort; Campbell et al. showed that such a retrofitted force field can transfer to different 

adsorbates (e.g., ethylene to propylene) and to different MOFs (e.g., CuBTC to PCN-16) 

[47].

The many-body potential energy description is then used as input to Monte Carlo (MC) or 

molecular dynamics (MD) simulations [48] to predict properties of the MOF crystal, such as 

adsorption isotherms and diffusion coefficients, respectively. See the recent review by Cho et 

al. for more on force field development [49].
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B. Structural modelling

To simulate adsorption of gas in a given MOF, its crystal structure must be known. Typically 

in high-throughput computational screenings, the MOF structure is, as an approximation of 

varying severity (see Sec. IX A), taken as rigid for two reasons. First, the computational 

expense to sample and compute the intrahost energy of the possible configurations of the 

host in addition to the gas (under the osmotic ensemble [50]) is prohibitive for a large 

number of structures. Second, an (accurate) intrahost force field to model the potential 

energy of different MOF conformations may not be available for certain coordination 

environments encountered in MOFs. However, progress is underway in the development of 

(i) transferable, accurate intrahost force fields for MOFs (e.g., UFF4MOF[51], MOF-FF[52], 

BTW-FF[53]) and tools to automatically generate intrahost force field input files for 

simulation software [54], (ii) automated procedures to generate intrahost force fields from ab 
initio calculations (QuickFF [55, 56]), and (iii) efficient algorithms to simulate their 

flexibility [57].

Clearly, databases of crystal structures of MOFs are a prerequisite for the high-throughput 

computational screening of MOFs for adsorption-based applications. The accuracy of the 

crystal structure is imperative, as simulated gas adsorption can be sensitive to the crystal 

structure assumed [58]. Generally, the experimentally determined crystal structure of a MOF 

is regarded as the gold standard, with the following caveats. First, if the crystal structure was 

experimentally determined directly after synthesis, with solvent in its pores, it could change 

upon the evacuation of solvent (activation) [59]. Second, there can be variation in the 

experimentally determined lattice constants of a given MOF among different research 

groups (e.g., see Figure S1 in Ref. 60 for the spread of 52 experimentally reported lattice 

parameters of HKUST-1). In the absence of an experimentally determined crystal structure, 

we note that one could computationally place the appropriate linker molecules and metal 

nodes into the appropriate network topology to build a predicted MOF structural model [61], 

then refine this crude geometrical approximation by minimising the potential energy of the 

assembled structure over the atomic positions using a classical force field or electronic 

structure calculations.

C. Molecular simulation of adsorption in MOFs

For general background on molecular simulation techniques, we suggest that readers consult 

the seminal textbook by Frenkel and Smit [48]. More recent reviews from the group of 

Coudert [50, 62, 63] outline the application of molecular simulation techniques specifically 

to the prediction of many properties of nanoporous materials.

1. Monte Carlo—The Markov chain Monte Carlo (MC) technique enables efficient 

sampling of a probability distribution defined on a high-dimensional sample space when a 

function proportional to the probability density is known (e.g., without exact knowledge of 

the normalisation factor) [64]. As such, it is useful for sampling statistical mechanical 

ensembles [65] that, at thermodynamic equilibrium, govern the probability of each possible 

microstate of a molecular system composed of a MOF and gas molecules and computing 

ensemble averages of random variables of interest.
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In the most widely invoked grand-canonical (μV T) ensemble, a MOF crystal of fixed 

volume V is immersed in a bath of (mixed) gas at temperature T and chemical potential μ. 

The probability of a given microstate, denoted by v, under the grand-canonical ensemble is:

pν ∝ e
−βEν + βμ ⋅ Nν,

(1)

with β = 1/(kBT), kB the Boltzmann constant, Ev the energy of microstate v, and Nv the 

number of particles in microstate v. The contribution of the potential energy to Ev is 

computed via a molecular model/force field. To explore microstates, Monte Carlo proposals 

typically include particle insertions, deletions, and translations. Equipped with a force field 

and a MOF crystal structure, therefore, we can conduct Markov Chain Monte Carlo 

simulations of the (μV T) ensemble to simulate equilibrium gas adsorption in MOFs 

assumed to be rigid. Properties such as the expected number of adsorbed particles of each 

species 〈N〉 and spatial probability density of gas molecules in the MOF are computed from 

the simulation. The latter is of interest to determine the most favourable adsorption sites in 

the MOF. Lastly, the chemical potential of the bulk gas μ is related to experimentally 

relevant variables (e.g., pressure and composition) through an empirical or theoretical 

equation of state or separate simulation(s) of the bulk, unconfined gas.

The Gibbs ensemble [66] was specifically devised for molecular simulations of phase 

coexistence of a fluid within a single simulation, without introducing spurious interfacial 

effects from a finite-sized system. The Gibbs ensemble can be applied to simulate 

coexistence of a bulk gas with an adsorbed phase in a MOF [67]. The Gibbs ensemble 

imposes the Canonical (NV T) ensemble on a system comprised of two distinct subsystems: 

a volume containing the gas phase and a volume containing the adsorbed phase with the 

MOF. The two subsystems are in thermodynamic equilibrium internally and with each other, 

but periodic boundary conditions are applied to each subsystem separately to obtain bulk 

properties and eliminate interfacial effects. In a Monte Carlo simulation of the Gibbs 

ensemble, Monte Carlo proposals include (i) particle displacements within each subsystem 

that ensure internal equilibrium within each subsystem and (ii) particle transfers between the 

two subsystems to ensure the equality of chemical potential μ between the two subsystems. 

To treat a flexible MOF, we include a Monte Carlo proposal to (iii) equally and oppositely 

change the volume of the two subsystems [68]. The simulator sets the total system 

composition N, temperature T, and volumes of the two subsystems; the pressure P and 

composition of the gas phase can be computed in the equilibrated system to link back to the 

experimental conditions. The Gibbs ensemble reduces to the grand-canonical ensemble in 

the limit of infinite bulk gas volume [67]. The main advantage of the Gibbs ensemble over 

the grand-canonical ensemble is that we do not need to specify μ of the bulk phase in 

advance since the bulk phase is explicitly simulated [67, 69]. The main disadvantage of the 

Gibbs ensemble over the grand-canonical ensemble is that we can only directly specify the 
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total system composition, not the bulk gas composition, which is the more commonly 

encountered situation in experiments/industrial settings.

When the unit cell of the MOF is flexible, the appropriate ensemble for Monte Carlo 

simulation is the osmotic ensemble [70], in which the system volume (commensurate with 

the MOF crystal) is allowed to fluctuate against fixed mechanical stress, but is otherwise 

similar to a grand-canonical ensemble. (Hence, the osmotic ensemble is sometimes called 

the isothermal-isobaric-semigrand ensemble.) An important consequence of the set of 

constraints in the osmotic ensemble is that the chemical potential of the gas is decoupled 

from the mechanical stress imposed on the crystal. Simulations of the osmotic ensemble 

come at a large computational cost because, compared to the grand-canonical ensemble, (i) 

the number of accessible microstates to sample increases dramatically and (ii) during Monte 

Carlo moves that involve changes in the MOF structure, one must additionally calculate the 

intrahost potential energy (so, an intrahost force field for the MOF is required). Interestingly, 

the osmotic ensemble allows us to predict gas adsorption when the MOF is under 

mechanical stress in addition to the pressure of the gas, such the mechanical stress 

experiments on flexible MOF Co(bdp) by Mason et al. [71].

Notably, the Henry coefficient of an adsorbate in a MOF, pertinent to dilute conditions, can 

be calculated from an ordinary Monte Carlo integration [48]. Such a calculation is 

accomplished by a series of single-particle “ghost” insertions [72]; thus, estimation of a 

Henry coefficient is less computationally demanding than full grand-canonical Monte Carlo 

simulations.

Readers can additionally consult Ref. 69 for more details on Monte Carlo algorithms in the 

context of simulations of adsorption in MOFs.

2. Molecular dynamics—The other molecular simulation technique in widespread use 

is molecular dynamics (MD) simulation, which simulates a system comprised of atoms 

and/or molecules by propagating Newton’s equations of motion forward in time. As for MC 

simulation, a user may obtain time averages of random variables (which, according to the 

ergodic hypothesis, are equivalent to ensemble averages given the same constraints) and, 

hence, thermophysical properties of the model system. Unlike MC, however, MD also 

enables the measurement of transport properties, such as the diffusivity of gas inside a MOF 

[73], as it samples a sequence of transient microstates in a time series3.

As is done in MC, classical MD simulations of a gas in a MOF utilise a force field and a 

MOF crystal structure, which provide the quantities necessary to define the system’s 

Hamiltonian and, therefrom, its governing equations of motions. In the simplest 

applications, the combined gas–MOF system is constrained to a fixed total energy (the sum 

of all kinetic and potential energies), fixed volume (and system shape), and fixed number of 

atoms/molecules, i.e., a microcanonical ensemble. Other ensembles, such as the canonical 

ensemble (fixed temperature) or the isothermal-isobaric ensemble (fixed temperature and 

stress [e.g., thermodynamic pressure and/or external mechanical stress]), are simulated by 

3That said, under application of transition state theory, kinetic MC algorithms can simulate the diffusion of gases in MOFs [74].
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extending the system Hamiltonian [48] to impose the desired constraints on the system and 

then propagating the resultant equations of motion for that constrained ensemble.

Among the challenges encountered in using MD simulations to model gas in a MOF is the 

issue of how to set or determine the gas pressure when the MOF structure is rigid; since the 

simulation cell cannot change shape, the isothermal-isobaric ensemble is not applicable. 

This challenge led to the development of various “grand canonical” molecular dynamics 

simulation techniques, in which a portion of the simulation cell acts as a reservoir of guest 

molecules at a fixed chemical potential. Gas molecules are added to and removed from the 

reservoir in events that resemble GCMC insertion and deletion moves, which fixes the 

chemical potential (and, hence, the pressure) of the remainder of the simulation cell once the 

system has adequately equilibrated. Readers can consult work by the group of Parrinello 

[75–77] for details of the general approach or others [78–80] for specific applications to 

adsorption of gases in porous materials.

Additional challenges arise in the implementation of MD for flexible MOFs. In principle, 

one can directly simulate adsorption-induced deformation of a MOF using 

isothermalisobaric ensemble MD, provided a model for the intrahost potential energy. 

However, we reiterate that intrahost force fields have not been extensively developed and the 

use of stock force fields for deformable materials is questionable[54, 81]. An approach that 

has been used to address these challenges is that of hybrid MD-MC, in which the total 

simulation cycles between periods of isothermal-isobaric ensemble MD (fixed-N, but 

changing volume) and GCMC (fixed volume, but fluctuating N). The MD portions relax the 

MOF structure while allowing the thermodynamic pressure to change whereas the MC 

portions restore the chemical potential to the desired value while the MOF is rigid. Readers 

can consult Refs. 82–84 for more details and particular implementations of this type of 

approach.

D. High-throughput computational screening

Equipped with a force field, a set of MOF crystal structures, and software to conduct e.g. a 

grand-canonical Monte Carlo (GCMC) simulation [68, 69, 85], the brute-force 
computational screening strategy is to loop over all material candidates and simulate gas 

adsorption in each material:

for material in materials 

simulate_adsorption(material)

end

After all simulations have finished, we sort the materials by the desired property obtained by 

the simulation and, voilá, shortlist the top few for experimental testing4. This is the obvious 

value of high-throughput computational screenings, and it is predicated on sufficiently 

4Typically, as illustrated in our survey in Sec. VI, some human judgment on e.g., ease of synthesis is also exercised in further 
shortlisting materials.
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accurate molecular models and simulations (i.e., sufficient sampling [86, 87]) to rank the 

materials by their desired adsorption property with high statistical confidence.

A less obvious value of high-throughput computational screenings, which negates their 

trivialisation as a for loop, is to extract relationships between the structure of the MOF and 

the (simulated) adsorption property to reveal insights for rational design. For example, 

Wilmer et al. [88] found that MOFs exhibiting the highest CO2/N2 selectivities for flue gas 

separations harbour pore sizes no larger than ≈ 5 Å to 6 Å. Often, experimental data are too 

sparse to recognise such structure-property relationships.

Finally, another value of simulating adsorption in thousands of MOFs is to set expectations 

of performance limitations. For example, by simulating methane adsorption in 650 000 

nanoporous materials, some of us suggested that the usable capacity targets set for vehicular 

methane storage and delivery were likely too high because all materials fell short of the 

target [89]. Again, the validity of conclusions of this nature is predicated on the accuracy of 

the force field and assumptions built into the molecular models. For example, that work [89] 

held MOFs rigid during the simulation, neglecting the effect of structural flexibility on the 

usable capacity. Currently, MOF Co(bdp) boasts the highest methane usable capacity [71]; 

Co(bdp) possesses a flexible backbone that collapses and expels residual gas at the discharge 

pressure to obtain a large usable capacity.

A brute-force screening strategy (the for loop above) for thousands of structures may entail 

an infeasible computational expense, especially for complicated adsorbates (e.g., inserting 

chain molecules such as hexane during an MC simulation via a configurational bias 

algorithm [90], modelling polarisability of carbon dioxide by open-metal sites in MOFs 

[91], modelling water adsorption in MOFs, which requires many MC samples [92]), high 

pressures (where many molecules are typically present in the system), and treatment of 

structural flexibility [70]. Two methods have emerged to circumvent conducting simulations 

in all material candidates in a brute-force screening, thereby saving computational expense: 

statistical machine learning and genetic algorithms.

a. Statistical machine learning.—A statistical machine learning [93] (regression or 

classification) model can be trained to predict adsorption properties using geometric/

structural [94] and/or chemical [95] descriptors representing the MOF as input. The key idea 

is that the dependent variable in the model (the adsorption property) is expensive to 

compute, whereas the independent variables (the MOF descriptors) are cheap to compute. 

So, a trained statistical model can be used to cheaply predict adsorption properties on the 

basis of MOF descriptors. In a machine learning-accelerated high-throughput computational 

screening, simulated properties in only a (diverse) subset of material candidates are used to 

train the model (i.e., to identify the parameters of the statistical model). For the remaining 

materials where simulations were forgone, the trained statistical model is then used to 

predict their adsorption properties on the basis of their (cheaply computed) descriptors. For 

example, chemical, geometrical (surface area, void fraction, largest cavity diameter, etc.), 

and/or potential energy-based descriptors were used to train statistical models to screen 

MOFs for CO2 adsorption [96], Xe/Kr separations [97], hydrogen adsorption [98, 99], and 

methane adsorption [100], conducting simulations on only a subset of training MOFs. See 
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Ref. 101 for a review on Quantitative Structure Property Relationship (QSPR) modelling in 

materials science in general.

Fernandez et al. [102] trained a variety of machine learning models to predict simulated 

methane adsorption in MOFs from geometric features such as void fraction, pore size, 

surface area, and density; perhaps most interestingly, the decision trees learned and, owing 

to their interpretability, informed useful MOF design rules for methane storage. Fernandez et 

al. [103] later invented a more information-rich descriptor of MOF structures based on the 

radial distribution function, weighted by atomic properties. Principal component analysis of 

the new (multi-dimensional) descriptor revealed its correlation with pore size, surface area, 

and simulated CH4 and CO2 uptakes. Motivated by the latter correlation, they trained 

support vector machines and multilinear regression models to predict simulated CH4, CO2, 

and N2 adsorption in hypothetical MOFs from the atomic property-weighted radial 

distribution function. Fernandez et al. [96] later used the atomic property weighted radial 

distribution descriptor to train a support vector machine to discriminate between MOFs with 

high and low simulated CO2 adsorption, viewing computational screening as a classification 

problem. Next, Fernandez et al. [104] similarly binarised simulated low-pressure CO2 and 

N2 adsorption in hypothetical MOFs as high or low, then trained a variety of machine 

learning classifiers to discriminate between MOFs with high/low CO2 and N2 adsorption on 

the basis of geometric descriptors.

Simon et al. [97] trained a random forest to predict simulated Xe/Kr selectivity in 

nanoporous materials using cheaply computed structural and energetic descriptors as input. 

While a structurally diverse set of 15 000 materials was used for training (where GCMC 

simulations of Xe/Kr adsorption were required to label each structure for the random forest), 

the trained random forest was used to discard materials unlikely to exhibit a high Xe/Kr 

selectivity from a pool of 655 000 materials without conducting GCMC simulations of 

Xe/Kr adsorption. This allowed more computationally expensive GCMC simulations to be 

focused on the most promising materials as determined by the random forest, which predicts 

Xe/Kr selectivity from the material descriptors very quickly. Feature importance methods 

showed that the energy-based descriptor was the most predictive feature for the random 

forest.

Thornton et al. [99] trained a neural network to predict simulated hydrogen adsorption in 

MOFs using structural descriptors (void fraction, pore size, surface area) and simulated 

adsorption energy as input, then used it accelerate a high-throughput computational 

screening of hundreds of thousands of materials.

Pardakhti et al. [100] combined the commonly used structural descriptors with chemical 

descriptors (such as the number of H, C, O, etc. atoms in a unit cell) to describe a MOF, then 

trained a variety of machine learning models to predict methane adsorption in hypothetical 

MOFs. They found a random forest to be most predictive, using the combination of 

structural and chemical features as input.

Borboudakis et al. [105] gathered H2 and CO2 adsorption measurements (target variables) in 

100 MOFs from the literature. The authors then encoded the identity of the linker, metal 
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centre, and functional groups comprising each MOF (independent variables) into a data 

matrix. They then used a black box machine learning pipeline, Just Add Data, for training 

and testing, which led to a modest predictive capacity (Pearson correlation of 0.68 and 0.61 

between predicted and true CO2 and H2 adsorption, respectively).

Anderson et al. [106] constructed over 400 hypothetical MOFs, then used simulated 

adsorption data and a variety of structural and chemical descriptors to train an (interpretable) 

decision tree to predict if the CO2/N2 selectivity of a given parent MOF will increase (or 

not) when functionalised. The authors also trained several machine learning regressors 

(decision tree, random forest, support vector machine, neural network, gradient boosted 

machine) to predict the simulated CO2/N2 selectivity of a given MOF; the gradient boosted 

machine ranked the materials according to CO2/N2 selectivity most accurately.

Motivated by the promise of metalated catechols for hydrogen storage [107], Anderson et al. 

[108] constructed 105 MOF crystals with “alchemical” metalated catechols on their linkers. 

The sites are “alchemical” because the interaction of H2 with the metalated catechol was 

allowed to artificially vary to account for variations in chemistry without the explicit 

specification of it. The authors trained a neural network to predict simulated hydrogen 

adsorption of a given MOF from structural descriptors, the density of catechol sites, and the 

strength of the alchemical H2 interaction with the catechol site. A single neural network was 

trained to predict hydrogen adsorption at different temperatures and pressures by including 

them as inputs. The authors then used the neural network to predict the maximum attainable 

H2 deliverable capacity at different storage/discharge conditions.

Wu et al. [109] trained a random forest and a gradient boosting regression tree to predict 

simulated methane adsorption in hypothetical MOFs using structural descriptors and the 

simulated methane Henry coefficient (cheaper to compute than adsorption from a GCMC 

simulation) as inputs.

Bucior et al. [98] engineered an energy-based feature vector for H2 adsorption in a MOF by 

computing the potential energy of a H2 adsorbate at each point on a grid overlaying the unit 

cell of the MOF, binning the energies into a histogram, and stacking the bin heights into a 

vector. They then trained an L1-regularised multilinear regression model to predict the H2 

usable capacity at 77 K from the descriptor, using molecular simulations of H2 adsorption in 

a training set of 1 000 hypothetical MOFs. Inspection of the coefficients in the regression 

model revealed the energetics of the adsorption sites that tend to equip a MOF with a 

high/low H2 usable capacity. Given the predictiveness of the model, the authors proceeded to 

screen 54 776 MOF structures for H2 storage and delivery with the trained model, eventually 

pinpointing MFU-4l as a promising candidate (see Sec. VI A 2 c).

We anticipate machine learning to (i) more commonly play a role in high-throughput 

computational screenings and (ii) to be further transferred to and developed for the domain 

of MOFs, particular deep learning [110, 111].

b. Genetic algorithms.—The second method to avert a brute-force screening is to 

employ a genetic algorithm to search for and sample regions of chemical space where the 
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most performant MOFs lie. A genetic algorithm [112] begins with an initial population of 

MOFs, then iteratively evolves the population of MOFs towards MOFs displaying higher 

fitness, defined to be e.g., the CO2 uptake, which we can compute with a simulation [113]. 

The population of MOFs present at iteration i is generation i. The fitness and characteristics 

of MOFs in generation i are used to stochastically evolve generation i, thereby determining 

generation i + 1 of MOFs, with the aim of selecting/generating MOFs that exhibit maximal 

fitness. First, in elitism, a fraction of the MOFs with the highest fitness simply proceed to 

the next generation (without modification) [113, 114]. Second, in selection, a subset of the 

population is stochastically selected to be parents that produce children, which inherit 

features from their two parents, that belong to the next generation. MOFs displaying higher 

fitness are more likely to be selected to be parents. MOFs with the lowest fitness are unlikely 

to (i) proceed to the next generation or (ii) pass off their genes (features) to the next 

generation. Each possible MOF must have an [ideally, unique] genetic representation, 

usually a categorical array; one entry of this array, a gene, might represent, e.g., the type of 

functional group that decorates the linker [114]. Crossover and mutation determine the child 

of two selected parents from the genetic representations of the two parents. In the simplest 

variant, uniform crossover, each gene for the child is chosen from a randomly chosen parent. 

Mutations are random changes in randomly selected genes to maintain a diverse population 

and prevent finding a local as opposed to the global maximum of fitness. The idea is to 

generate children for the next generation by mixing the features (genes) of the MOFs 

exhibiting the highest fitness, but also by exploring small genetic variations. A genetic 

algorithm terminates after a specified number of generations or when a satisfactory fitness is 

reached.

Bao et al. [115] used a genetic algorithm to mutate the chemistry of MOF linkers to arrive at 

MOFs with high methane usable capacity. Chung et al. [114] used a genetic algorithm to 

search for MOFs for CO2 capture. Collins et al.[113] began with 141 experimentally 

reported MOF structures as “parents”, to focus on a more synthetically viable subspace of 

MOFs, and used a genetic algorithm to optimise the functionalisation of their linkers for 

postcombustion CO2 capture.

III. DETERMINING CRYSTAL STRUCTURES OF MOFS

Single crystal X-ray diffraction (SC-XRD) is the most utilised and powerful technique to 

quantitatively determine the detailed crystal structure of a MOF, although sometimes 

neutron diffraction is used [124]. Structural information can be extracted from the XRD 

pattern by careful analysis. Take a one-dimensional XRD pattern (e.g., X-ray intensity vs. 

the diffraction angle) as an example. The position of the peak, according to Braggs law, is 

related to the d-spacing of the unit cell of the material, which is defined by the lattice 

parameters and symmetry. The area of the peak, i.e., the integral of the intensity, is a result 

of the types and relative positions of atoms in the unit cell; the peak width and shape are 

affected by defects and the size of the the crystallite. [125, 126]

The crystal structure of a MOF can be determined from XRD data through a process called 

Rietveld refinement[127]. First, we start by building a crystal unit cell structure model (or 

use an existing one) as an initial guess. Then, we refine the unit cell structural model, i.e., 
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adjust the atomic positions, unit cell parameters, and atomic occupancy (but not symmetry), 

to minimise the difference between the experimental and the simulated (in the structural 

model) SC-XRD pattern [126]. Clearly, building a crystal unit cell requires prior information 

(i.e, atom types, possible chemical formula, crystal symmetry) about the MOF. The 

crystallographic R-factor describes the difference between the refined crystallographic 

structure model and the experimental X-ray diffraction pattern:

R : =
∑ Iexp − Isim

∑ Iexp
,

(2)

where Iexp is the experimentally measured X-ray intensity and Isim is the simulated intensity; 

the sum is over all diffraction angles in the data. A trustable structure is achieved when the 

crystallographic R-factor is less than 10 % [128]; a high quality structure usually has R < 

5 %.

Several difficulties are encountered in SC-XRD analysis that complicate or prevent 

definitive structural solutions. (1) As X-rays interact with electrons of matter, light elements 

such as carbon, oxygen, and hydrogen weakly scatter X-rays compared to heavy metals. 

Consequently, the refinement of such light elements is extremely difficult or sometimes 

impossible, resulting in e.g., commonly missing hydrogen atoms in Rietveld-refined crystal 

structure files. (2) As extended-network structures, MOFs can be deconstructed into their 

underlying topological nets by treating the points of extension on the secondary building 

units and linkers, respectively, as nodes and edges of a network [129]. During MOF 

synthesis, high temperature and pressure could introduce network disorder such as twinning 

[130] and pseudo-symmetry [131]. Relatedly, interpenetration of nets in MOFs [132] 

introduce complexity in the XRD pattern. (3) If the building blocks do not assemble into the 

anticipated net, Rietveld refinement will be unsuccessful, and the crystallographer must 

brainstorm other possible nets with which to compare with the XRD pattern; a degree of 

experience, intuition, and prior knowledge is required; (4) Since most MOFs are synthesised 

using solvent-based methods, solvent molecules are present in the pores. Strongly 

coordinating solvents (e.g., water, nitrobenzene) may assume a structure or pseudo structure 

and introduce foreign diffraction peaks that complicate XRD analysis [133]. Even if the 

solvent can be evacuated, the MOF may still adsorb moisture rapidly from the air; keeping 

the MOF in an inert (dry) atmosphere during experiments may be beneficial. Solvent 

masking (typically by software such as SQUEEZE[134]) is an effective way to remove the 

contribution by the solvent from the XRD pattern. (5) Because XRD is an ensemble 

measurement, the specific tilt of certain ligands in the MOF structure could be averaged out 

and thus undetermined by refinement [135, 136].

In addition to SC-XRD, powder X-ray diffraction (PXRD) is used to obtain MOF structural 

information. This is because it is sometimes difficult to synthesise large single crystals ca. 
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100 nm, as required for SC-XRD. The relationship between the crystal structure and XRD 

peak positions and intensities is the same as in SC-XRD, however, unlike SC-XRD, PXRD 

is the average of the diffraction of all small MOF crystals in different orientations. Thus, 

unlike SC-XRD, PXRD is often used to check the phase, crystallinity, and purity of the 

sample instead of determining the detailed atomic positions. However, it has become 

possible to obtain crystal structures from powder diffraction data using various refinement 

and simulation methods [125, 137, 138]. See Figure 2b for an example experimental PXRD 

pattern, of IRMOF-74-VII, whose crystal structure is in Figure 2a.

In some cases, computational methods can assist the experimental determination of MOF 

crystal structures. Poor crystallinity, large unit cells, high void fraction, and low symmetry 

sometimes impede MOF structure determination from XRD data with conventional methods 

such as Rietveld refinement [139, 140]. On the computer, we can explore the possible ways 

in which the (known) building blocks can be arranged under constraints (unit cell 

dimensions, maybe space group) imposed by the experimental XRD pattern. After building a 

set of candidate structural models, we can simulate the XRD pattern in the candidates and 

compare to the experimental pattern to identify the most likely structure [139, 141]. For 

example, Li et al. [140] computationally constructed a model of the suspected, complex 

structure of NU-1301, whose 173.3 Å cubic unit cell is comprised of 816 organic linkers and 

816 uranium nodes; the correspondence of the simulated PXRD pattern of the crystal model 

with the experimental PXRD pattern was evidence that the crystal model was an accurate 

representation of NU-1301. Deria et al. [142] used computer-generated structural models to 

assist elucidation of the closed pore and open pore structures of breathing MOF NU-1105. 

Deng et al. [143] synthesised a series of MOFs expected to possess the same topology as 

Mg-MOF-74, but with longer linkers, up to 50 Å long. They verified the newly synthesised 

MOFs share the topology of Mg-MOF-74 by constructing structural models, simulating their 

PXRD patterns, and comparing to the corresponding experimental PXRD patterns (see 

Figure 2).

Finally, in situ XRD has become popular during the synthesis process [144, 145] to study the 

growth kinetics and mechanism [146–148] and during gas adsorption experiments to 

determine which adsorption sites are populated at different pressures [149, 150] and 

investigate gas-induced structural changes [151, 152].

IV. THE CAMBRIDGE STRUCTURAL DATABASE

The Cambridge Structural Database (CSD) [153] is a widely-used repository of crystal 

structures of organic, metal-organic, and organometallic compounds that are mostly 

determined by X-ray diffraction. Anyone can initiate the deposition of a structure in the 

Cambridge Crystallographic Data Center (CCDC), a nonprofit organisation. Before entering 

the database, these structures are processed both computationally and by expert structural 

chemistry editors [154]. Each crystal structure in the database is assigned a unique six-letter 

identifier (a “refcode”, sometimes also including two digits appended at the end 

corresponding to different structure determinations). Anyone can access and download CSD 

data freely via the online search engine of the CSD, the ConQuest programme [155], and a 

Python API[154]. For each crystal structure entry, the CCDC website has a chemical 
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diagram, 3D viewer, and link to the associated publication. The data from CCDC, 

downloadable as a .cif file, contains basic structure parameters (e.g., space group, lattice 

constants, unit cell angles, fractional coordinates of atoms, etc.). More than 50 000 new 

structures are entered and updated each year [156], and 900 000 entries were recorded in 

2018, according to the CSD website (https://www.ccdc.cam.ac.uk/). The number of MOFs 

estimated to be in the CSD is ca. 70 000 [10].

There are a few issues with MOF structures deposited in the CSD that preclude 

computational scientists from directly using them to conduct molecular simulations of gas 

adsorption. The summation of these issues, described in the following subsections, means 

that most MOF structures deposited in the CSD are not computation-ready.

A. Problem 0: Identifying which crystal structures within the CSD are MOFs

Because each CSD entry is not labelled according to the class of material (e.g., MOF versus 

covalent organic framework), goal zero is to compile a list of entries in the CSD that can be 

classified as MOFs via an automatic routine. The IUPAC provisional recommendation for 

the definition of a MOF is “… is a Coordination Polymer (or alternatively Coordination 

Network) with an open framework containing potential voids.” [157], but this definition is 

not universally accepted [157, 158]. The most common method to search for MOFs in the 

CSD is to use a chemical bond criteria [10, 159, 160]; MOFs usually have a metal atom 

connected to specific atoms and/or ligands, which can be searched for in the database. For 

example, carboxylate-based linkers coordinated to metals can be found using the CSD 

Python API or ConQuest [155]. Beginning 2016, the Cambridge Crystallographic Data 

Centre (CCDC) maintains a subset of all structures in their database that they classify as a 

MOF [10] using seven different chemical bond criteria (see Figure 4), narrowing 850 000 

structures in the CSD down to 69 699 MOFs [10]; 1D, 2D, and 3D network structures were 

included. On the other hand, the CoRE MOF dataset (see Sec. V A) contains only structures 

with 3-D connected frameworks [9]. The CSD subset reports 8 388 non-disordered 

structures with a pore limiting diameter greater than 3.7 Å.

B. Problem 1: solvent in the pores

The first problem with MOF structures in the CSD is that solvent molecules are often 

included in their pores. This is an artefact of XRD studies conducted after solvent-based 

synthesis [11]. However, before MOFs are deployed for use as adsorbents, heat and/or 

vacuum is applied to drive off residual solvent in the pores, a process known as activation 
[161], thereby allocating space for gas molecules to adsorb. Thus, the solvent molecules 

must be computationally removed from each structure, mimicking the experimental 

activation process, before simulating gas adsorption in it. An underlying assumption here is 

that removing the solvent does not change the MOF structure or cause it to collapse, which 

sometimes occurs [59, 162]; also, the structure of the MOF could differ depending on the 

solvent in its pores [163]. Almost 90 % of MOFs in the CSD contain solvent in their pores; 

water is most common [10].
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C. Problem 2: structural disorder and missing hydrogen atoms

The second problem with many MOF structures in the CSD is an artefact of XRD; many 

structures are incomplete (e.g., missing hydrogen atoms) and chemically invalid (e.g., 

exhibit disorder). As Sec. III describes, (1) it is difficult to refine from XRD patterns the 

atoms, such as hydrogen, that only weakly scatter X-rays. Therefore, often, hydrogen atoms 

are omitted entirely from the .cif file. (2) Because XRD is an ensemble measurement, 

ligands that adopt multiple e.g., rotational conformations will appear disordered, resulting in 

a chemically invalid crystal structure. See Figure 3 for examples. The disorder must be 

repaired and missing atoms must be added in appropriate orientations to render a MOF 

structure computation-ready.

V. COMPUTATION-READY CRYSTAL STRUCTURES

We now review efforts to compile a database of computation-ready MOF structures, i.e., by 

addressing the problems noted above, to facilitate virtual screenings. We declare a crystal 

structure model (unit cell information, list of atoms and their coordinates) to be 

computation-ready if and only if the crystal comprises chemically valid building blocks and 

resembles the experimentally activated crystal structure used for gas adsorption 

measurements. For example, a MOF is not computation-ready if hydrogen atoms are missing 

from its linker, residual solvent (which ideally is removed during activation) remains in its 

pores, or linkers appear in multiple rotational conformations owing to disorder. To address 

the problems discussed in Sec. IV, the curation of a computation-ready database of 

experimental MOFs requires (a) sifting through the CSD to pick out the MOFs, (b) 

removing solvent molecules to mimic the experimental activation procedure, and (c) 

correcting artefacts of XRD that result in chemically invalid structures, by, e.g., adding 

missing hydrogen atoms and choosing one conformation of a disordered ligand.

Manually inspecting each structure in the CSD, removing solvent, adding missing hydrogen 

atoms, and repairing disorder, i.e., rendering it computation-ready, would be extremely time-

consuming. Therefore, several authors have developed automatic routines using computer 

programmes to curate sets of computation-ready MOF structures. However, early databases 

prior to Chung et al. [9] remained private and thus could not serve as a platform for 

materials discovery for the community as a whole. We briefly review them here regardless.

In 2005, Ockwig et al. [159] identified a set of 1 127 MOFs from the CSD using structural 

queries that searched for crystals with metals coordinated to organic linkers to form 3D 

structures. The motivation of Ockwig et al. to compile these MOFs was to analyse and 

rationalise the distribution of net topologies among MOFs synthesised to date and shed light 

on how to design structures and predict the topology in which building blocks will assemble. 

While these MOFs were not rendered computation-ready, the authors made available as 

supplementary material a list of the CSD refcodes of these 3D MOFs along with their net. 

Haldoupis et al. [164] leveraged this early list of experimentally synthesised MOFs in the 

CSD to demonstrate a high-throughput screening of MOFs for kinetic-based separations 

(estimating permeability) of small, approximately spherical adsorbates. The authors 

manually repaired disorder in several of the structures listed by Ockwig et al. to render them 

computation-ready. In 2012, Van Heest et al. [165] extended the database of Haldoupis et al. 
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[164] to 3 432 MOFs and computationally screened them for kinetic-based noble gas 

separations. The authors mentioned that they excluded materials with a “significant degree 

of disorder” and removed solvent from the pores, but did not provide details or publicly 

release the database of MOFs.

In 2013, Goldsmith et al. [160] compiled a database of 22 700 computation-ready MOFs 

using an automated routine and divulged details of their procedure. First, they specified 

criteria to classify a structure as a MOF (“structures that contain carbon, a metal, a ligand, 

and a metal-ligand bond; and structures labeled as an extended structure” [160]) and scanned 

the CSD for MOFs. They then detected symmetry-related disorder, ionic species, and 

missing hydrogen atoms in these structures and excluded them. Finally, they developed an 

algorithm to remove residual, free-floating (as opposed to bound) solvents from the pores to 

mimic the experimental activation process. The authors removed solvent by first 

constructing a periodic graph model of a MOF, where the nodes represent atoms and edges 

represent bonds. The atoms that were not a member of the largest connected graph that 

included the metal were assumed solvent and removed. Goldsmith et al. used the Chahine 

rule for carbonaceous materials [166], a linear relationship between the gravimetric surface 

area and excess hydrogen uptake5, to estimate the hydrogen uptake capacity in these MOFs. 

In addition to shortlisting top candidates for experimental testing, the authors revealed a 

trade-off between gravimetric and volumetric capacity and indicated that targeting MOFs 

with the highest surface areas is not coincident with targeting MOFs with the highest 

hydrogen capacity.

The curation of these early databases of computation-ready MOFs enabled high-throughput 

computation screenings of experimental MOFs for adsorption-based engineering 

applications and the generation of considerable insights [160, 164, 165, 169]. However, the 

fruits of these private computation-ready crystal structures were available only to the authors 

that were in possession of them. We now highlight the development of open computation-

ready, experimental MOF databases [9, 10] and review their lucid impact on the 

computation-informed discovery of MOFs for adsorption-based engineering applications.

A. The (open) CoRE MOF database

In 2014, Chung et al. released a free and open, computation-ready, experimental (CoRE) 

MOF database [9]6. The workflow to construct the CoRE MOF database is shown in Figure 

3a. The authors first searched the CSD for potential MOF crystal structures using the CCDC 

Conquest programme; the search was for structures with more than one bond between 

metals and the elements O, N, B, P, S, and C. Additionally, the structures were required to 

form any kind of bond from these six elements to C, N, P, or S atoms. Then, the framework 

5Consider a MOF immersed in a bath of gas at chemical potential μ and temperature T. Absolute adsorption is the number of 
adsorbate molecules in the MOF. Excess adsorption is the absolute adsorption minus the number of adsorbate molecules present in a 
volume Vp of the bulk gas phase at chemical potential μ and temperature T, where Vp is the accessible pore volume offered by the 
MOF. While absolute adsorption is directly obtained in molecular simulation, excess adsorption is more directly obtained in 
experimental gas adsorption measurements. [167, 168]
6The term “CoRE MOF” was coined by Prof. David Sholl, who wrote a number of different combinations of words on a napkin 
during the Nanoporous Materials Genome Center Meeting (2013, Berkeley, CA).
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structures were analysed using the routine implemented in Zeo++ [170, 171] to identify 3-

dimensional MOFs. The procedure led to 20 000 3D MOF structures.

Several automated in-house scripts were developed to further modify the framework 

structures to make them computation-ready crystals. This includes the removal of solvents 

(see Figure 3b), of which, by the definition provided by Chung et al., there are two types: 

free and bound. Free solvents (i.e., unbound solvents) are molecules that are not part of the 

framework, and bound solvents (i.e., coordinated solvents) are molecules that are part of the 

framework atoms as determined by the van der Waals radii of atoms plus a skin distance of 

0.4 Å. Bound solvents are usually coordinated to the open metal sites in MOFs, such as the 

copper site in HKUST-1. Figure 3b illustrates the removal of free and bound solvents from a 

MOF. To remove solvents bound to the open metal sites of a given structure, the algorithm 

first constructed an adjacency matrix that describes the bonding network of atoms within it, 

viewed as an undirected graph (nodes: atoms, edges: bonds). Entry (i, j) of the adjacency 

matrix is one if atom i and j are bonded and zero otherwise. Second, for each oxygen atom– 

the typical bridging atom belonging to a solvent molecule in the pores–that is connected to a 

metal atom in the structure, the oxygen-metal bond was temporarily removed from the 

adjacency matrix by modifying the two corresponding elements to be zero. Following the 

modification, the adjacency matrix was passed to the SciPy connected components module 

to check if removal of the bond changed the number of edge-disjoint graph clusters 

comprising the structure. If the number of edge-disjoint clusters changed (indicating a 

solvent-MOF bond was eliminated), then the matrix element was left modified and the 

disjoint graph with the lowest molecular weight (the solvent) was deleted. If the number of 

clusters did not change, then the matrix component was changed back to one to reintroduce 

the bond. Also, the symmetry-related copies of atoms arising from disorder (see Figure 3c) 

were deleted by removing the lines from the .cif files that contained coordinates with 

asterisks or question marks. Lastly, the charge-balancing ions in the structures were kept on 

the basis of the chemical formula provided by the CSD and the adjacency matrix. For 

instance, if the chemical formula of an ion, which can be distinguished on the basis of a (+) 

or (−) mark, provided by the CSD, matches the chemical formula derived using the 

connected component algorithm applied to the adjacency matrix, the ion is kept as part of 

the framework. Some chemically invalid structures were manually edited using Materials 

Studio to add missing hydrogen atoms (that were not resolved from XRD), repair other 

related disorders, such as overlapping atoms, and remove solvent molecules (which are often 

critical in maintaining the structural integrity of the MOF) to mimic experimental activation. 

A set of 4 764 computation-ready structures were made available to the public via Github 

[172].

As evidence that the CoRE MOF database has had a significant impact on high-throughput 

computational MOF screening and discovery, it has collected over 220 citations on Google 

Scholar (as of 12 July 2019) since its publication in 2014 and has enabled several 

computation-inspired MOF discoveries, as outlined in our survey in Sec. VI. Its impact was 

predicated on making the structures freely and easily accessible via Github.

1. CoRE MOF charge assignment—Electrostatic forces are an important component 

of the interaction between a MOF and an adsorbate possessing polar bonds, such as carbon 
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dioxide [173, 174]. The electrostatic potential inside the MOF is typically modelled by 

assigning a point charge to each MOF atom; point charges are assigned on the molecular 

model for the adsorbate as well (as is the case for CO2 [31]), thereby completing the 

description of the electrostatic interaction of the adsorbate with the MOF. Quick/cheap 

charge equilibration [Qeq [175]] methods and its variants [EEM[176], , PQeq[177], 

SQE[178], SCQeq[179], EQeq[180], MEPO-Qeq[181], FCQeq[182], I-Qeq[182], , EQeq

+C[183], and SQE-MEPO[184]] are commonly used to assign point charges to atoms of a 

MOF. However, point charges derived from the electronic density obtained from a first 

principles calculation on the particular MOF are generally considered more reliable [32]. 

The Repeating Electrostatic Potential Extracted ATomic (REPEAT) method [185] assigns 

charges to MOF atoms by fitting to the electrostatic potential (outside the van der Waals 

radii of the MOF atoms) obtained from a periodic, first principles calculation. The density 

derived electrostatic and chemical (DDEC) method [186] assigns charges to MOF atoms by 

both fitting to the electrostatic potential (outside the van der Waals radii of the MOF atoms) 

and partitioning the electron density obtained from a periodic, first principles calculation. 

Both REPEAT and DDEC methods address issues caused by buried atoms and result in 

chemically meaningful charges. Nazarian et al. computed DDEC charges for more than 2 

900 CoRE MOFs from the electronic density calculated with the PBE Density Functional 

Theory (DFT) functional and made these charges openly available [187]. DDEC charges 

were not assigned to a fraction of the CoRE MOF structures owing to failures in the 

electronic density calculations arising from computer memory limitations (affecting MOFs 

whose primitive unit cells have many atoms) and unresolved errors in VASP [187]. As the 

electrostatic potential inside a MOF is assumed to be independent of the adsorbate studied, 

with the view of the MOF as ‘hosting’ an electrostatic potential field in which the ‘guest’ 

adsorbate sits, these adsorbate-agnostic DDEC charges will facilitate high-throughput 

computational screenings of the CoRE MOFs when electrostatic interactions are involved.

2. DFT-energy-minimised CoRE MOFs—The crystal structure of a newly synthesised 

MOF is often determined from XRD preceding activation, therefore with its pores still filled 

with solvent molecules [60]. Upon activation (evacuation of solvent) for gas adsorption, the 

structure of the MOF could change significantly [59]. Some MOFs may be destabilised by 

removing solvent, causing the framework to collapse [188]. Therefore, simply deleting 

solvent molecules from crystal structure files obtained via XRD studies, as in the generation 

of the CoRE MOF database, may not represent the structure upon activation. In addition, as 

Nazarian et al. [60] demonstrate for HKUST-1, MOF structures determined by XRD are 

subject to variation among research groups.

To address these issues, Nazarian et al. [60] used DFT to minimise the potential energy (by 

changing the atomic coordinates) of the structures of 879 CoRE MOF structures. Indeed, 

several DFT-optimised CoRE MOFs showed significant changes in the structure and 

simulated adsorption compared to their cognate unoptimised structures [60]. These DFT-

optimised structures are likely more reliable then the vanilla CoRE MOF structures [9] 

because (a) they maintained their structural integrity (i.e., still have a void) after DFT-

optimisation, (b) the DFT-optimisation accounted for any change in structure that would 

result from the solvent removal, and (c) the DFT-optimised structures serve as a standard for 
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a given MOF as opposed to (perhaps) arbitrarily choosing from the multiple structures of the 

same MOF deposited into the CSD by different research groups. Notably, the DFT 

calculations of only 879 of the 2 612 optimisation-attempted, lanthanide- and actinide-free 

CoRE MOF structures converged within the 30 000 CPU hours ceiling dedicated to each 

structure [60]; reasons for lack of convergence in the allotted time include a large number of 

atoms and a poor initial geometry.

B. CSD-maintained structures

In 2017, Moghadam et al. [10] reported a CCDC-maintained MOF subset of the CSD 

integrated into the CSD to allow for substructure searches using CSD tools and 

automatically update every quarter to account for newly deposited MOFs. They used seven 

chemical bonding criteria (see Figure 4) to sift through the CSD and identify which 

structures are MOFs, resulting in 69 666 MOF structures. Then, to mimic the experimental 

activation process, the authors wrote and released a Python script to remove bound and 

unbound solvent from the structures by searching the structure for 74 common solvent 

molecules in the MOF (or for lone oxygen atoms representing a partially resolved water 

molecule); 88 % of the MOFs were found to have solvent (water most common), of which 

52 % is unbound and 48 % bound. A filtering process then flagged structures with disorder 

present, resulting in a non-disordered subset, within the MOF subset, containing 54 808 

structures. According to computed geometric properties of the non-disordered subset, such 

as surface area and pore size, a large portion of the structures in the non-disordered subset 

(85 %) exhibit negligible internal surface areas, while the remaining 8 388 structures had 

notable pores, with a pore limiting diameter of at least 3.7 Å and a gravimetric surface area 

between 500 m2/g and 2000 m2/g.

The CSD-maintained MOF database by Moghadam et al. [10] offers several advantages over 

the CoRE MOF database: it is more comprehensive (including 1D, 2D, and 3D structures), 

automatically updates quarterly to account for newly deposited structures, allows for bond-

type or cluster-type searches using the CSD tools, makes the Python scripts used for solvent 

removal open, and grants the user more granularity during solvent removal by allowing the 

removal of bound and unbound solvent separately. Two major shortcomings of the CSD 

MOF subset [10] compared to the CoRE MOF database [9], however, are (a) many 

structures are still invalid and not computation-ready because crystallographic disorder was 

not repaired and missing hydrogen atoms were not added and (b) DFT-optimised structures 

and DFT-assigned point charges are not available for the CSD MOF subset (unlike for the 

CoRE MOF database [60, 187]).

C. Shortcomings of automatically curated MOF databases

There are several criticisms/shortcomings of the computation-ready, experimental MOF 

databases. (1) The method used for the removal of solvent could be too aggressive, in that 

the structural integrity of the framework without solvent may become questionable for some 

structures [188]. The newly updated CoRE MOF database will contain structures with and 

without bound solvents, and the CSD-maintained subset [10] grants the user granularity in 

removing free or bound solvents via the Python scripts. (2) The MOF structure could change 

upon activation, relaxing to a different state when the solvent is removed [10, 50]; this is 
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particularly a concern for soft porous crystals [189]. (3) Redundant (duplicate) structures are 

present [190]. (4) As the solvent-removal is automatic and disorder-flagging are imperfect, 

several structures in both databases are not chemically accurate [191–193]. A recommended 

way to report such structures for the CoRE MOF database is to report an issue via Github.
7(5) When repairing disorder, one must choose a certain conformation of the ligand. The 

choice of ligand conformation could significantly influence the adsorption properties. This 

has been demonstrated in the case of Xe adsorption in SIFSIX-3-Ni structure, where the tilts 

of the pyrazine ligands are disordered in the XRD-determined structure [136]. (6) Several 

MOFs are missing from the CoRE MOF database, and it is not automatically updated when 

a new MOF is deposited in the CSD [10]; this issue is addressed with the CSD-maintained 

subset [10] which is updated every quarter.

Altintas et al. [191] comprehensively compared the CoRE [9] and CSD-maintained, non-

disordered [10] MOF databases and found several discrepancies and shortcomings in both. 

The authors assembled 3 490 MOFs (characterised by CSD codes) in the intersection of the 

two databases and found that simulated gas adsorption (for both methane and hydrogen) 

differed significantly depending on from which database it was pulled for 387 MOFs. The 

differences emanated from the different and often erroneous methods among the two 

database curators to remove solvent, repair disorder, and address charge balancing ions. For 

example, errors in the automatic solvent removal routine sometimes erroneously removed a 

metal, ligand, or functional group that is part of the MOF structure. Several MOFs (total of 

54) lacked a structure in either database that properly represents the experimentally reported 

structure. Altintas et al. [191] remark “it is not completely possible to fully automate 

establishment of a MOF [database] because treatment of some MOFs requires personal, 

hands-on manipulation and detailed chemistry knowledge”. They released a spreadsheet 

with a list of problematic MOFs and manually corrected set of 54 MOFs with improper 

structures in both databases.

D. Computation-ready crystal structures for other classes of materials

Despite our focus on MOFs, open databases of computation-ready covalent organic 

frameworks (COFs) [194] and porous organic cage molecules [195] have emerged as well. 

Tong et al. [196, 197] prepared a database of 280 disorder- and solvent-free, experimentally 

synthesised COF structures (both 2D and 3D) ready for molecular simulations. Miklitz et al. 

[198] compiled a database of 41 intrinsically porous cage molecules from the CSD. Recent, 

exploratory work on applying an unsupervised machine learning algorithm to encode the 

shapes of cavities of porous cage molecules into latent vector representations [199] was 

enabled by the open porous cage database of Miklitz et al. [198]. We also duly mention the 

open International Zeolite Association (IZA) database of zeolite structures [200], which is 

widely used for computational studies of gas adsorption in zeolites.

7http://dx.doi.org/10.11578/1118280
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VI. SURVEY OF HIGH-THROUGHPUT COMPUTATIONAL SCREENINGS 

WITH EXPERIMENTAL CONFIRMATION

We now survey high-throughput computational screenings of MOFs for gas storage and 

separation that directly motivated the synthesis and testing of a MOF in the bona fide (as 

opposed to in silico) laboratory. These computation-driven MOF discoveries demonstrate the 

practical impact of computational materials science. However, we do not discount the many 

high-throughput computational screenings lacking an experimental component, as (i) these 

computational predictions could be followed up in the future and (ii) insights into structure-

property relationships from computational studies can (albeit perhaps indirectly) prompt the 

experimental discovery of new, performant MOFs.

A. Gas storage and delivery

For applications of MOFs in storing gases, we exploit the interactions [van der Waals, 

electrostatic, transition metal complexation (π-backbonding with olefins [201], complexes 

of H2 with metalated catechol [107, 202, 203]), etc.] of a gas molecule with the surface of 

the MOF to achieve a greater density of adsorbed gas than in the corresponding bulk gas 

phase at the same temperature and pressure. In practice, deploying a MOF for gas storage 

entails packing a pressure vessel with a MOF adsorbent.

1. Natural gas storage and delivery—Natural gas, composed of mostly methane, is 

regarded as a transition fuel from petroleum-based to renewable and clean fuels (i.e., 

renewably produced hydrogen) [18]. First, natural gas is abundant and cheap. Second, 

compared to e.g., gasoline, natural gas emits 25 % less carbon dioxide per energy harvested 

from its combustion [204], as well as less volatile organic compounds, carbon monoxide, 

particulate matter, and sulphur oxides (but more nitrogen oxides) [205]. However, the 

greenhouse effects of fugitive emissions (methane is a potent greenhouse gas itself) [206] 

and groundwater contamination by hydraulic fracturing [207] may diminish these 

environmental benefits if not controlled. Third, in the United States, the pipeline 

infrastructure for natural gas delivery is already in place. The transportation sector accounts 

for 28 % of energy consumption in the United States, and petroleum-based fuels comprise 

93 % of transportation fuels [208]. The widespread adoption of natural gas as a 

transportation fuel could, therefore, reduce transportation costs and emissions.

A technical barrier to the widespread adoption of natural gas as a fuel for passenger vehicles 

is that, as a gas, compared to (liquid) gasoline, its volumetric energy density is low. 

Therefore, to obtain a reasonable driving range under the constraint of limited space for an 

onboard fuel tank, natural gas must be densified [19]. Two incumbent methods to densify 

natural gas are liquefaction at low temperature (111.7 K, 1 atm) and compression to high 

pressures (≈ 200 bar, 298 K). These methods require bulky, heavy, expensive fuel tanks and 

expensive infrastructure at refuelling stations; further, boil-o losses from liquefied natural 

gas are an environmental concern [209]. Alternatively, MOFs have demonstrated the ability 

to densify natural gas for onboard vehicular storage at room temperature and significantly 

lower pressures (35 bar to 65 bar) than compressed natural gas [18, 19, 210]. So far, no 

MOF has met the most recent usable capacity target of 12.5 MJ methane/L MOF set by 
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ARPA-E to compete with compressed natural gas [211], using a pressure swing between 65 

bar (storage pressure) and 5.8 bar (minimum engine inlet pressure needed) [89].

Note that in the high-throughput screenings below, natural gas is approximated as methane. 

As a caveat, a computational study by Zhang et al. found that, when considering the 

influence of larger hydrocarbons contained in natural gas, the ranking of MOFs for natural 

gas storage could differ from when approximating natural gas as pure methane [212].

a. NOTT-107 and NU-125: Wilmer et al. [213] developed a computational approach to 

generate MOF structural models from a chemical library of building blocks, then screened 

them to identify candidate materials for methane storage at 35 bar and 298 K. This study 

considered only the absolute volumetric methane loading at 35 bar as opposed to other 

studies, which consider a usable capacity, defined as the difference in absolute volumetric 

methane loadings at 35 bar and 5 bar. To generate hypothetical MOFs, Wilmer et al. curated 

a library of 102 building blocks. The building blocks varied substantially in their geometry, 

number of connection sites, and chemical composition. These building blocks could be 

divided into three categories: inorganic, organic, and functional groups. The algorithm 

constructed crystals with at most one kind of inorganic building block, two kinds of organic 

building blocks, and one functional group (see Figure 5). Building blocks could combine if 

the geometry and chemical composition at the point of connection was the same as in the 

synthesisable structure. Connections between building blocks were determined solely based 

on geometric rules; that is, the structures were not energy-minimised. “The approach is very 

much like snapping Tinkertoys or Lego bricks together,” said Wilmer et al. [213]. The 

combinations of building blocks were exhaustively explored, resulting in 137 953 

hypothetical MOF structures.

The generated structures were validated by comparing a subset of them to their energetically 

relaxed counterparts. Choosing the appropriate building blocks, structures were generated 

resembling HKUST-1 [16], IRMOF-1 [6], PCN-14 [214], and MIL-47 [215]. Allowing each 

“pseudo-MOF” to relax energetically using the UFF [28], Wilmer et al. found that every 

atom within the pseudo-MOF structures was typically < 0.8 Å distance from the 

crystallographically measured position. Further, simulated methane adsorption isotherms at 

298 K in the pseudo-MOFs agreed with both simulated adsorption in the crystallographic 

structure as well as with experimental adsorption data.

After validation of the structure generation algorithm, each hypothetical MOF was screened 

for methane storage at 35 bar and 298 K. The screening of the 137 953 structures was 

conducted in three successive stages of increasing Monte Carlo cycles in GCMC 

simulations. Of these top performers, a structural analogue to PCN-14 [PCN-14 had a 

predicted methane storage capacity of 197 L(STP)/L] was predicted to have a record-

breaking methane storage capacity of 213 L(STP)/L.[213] This structure, unbeknownst at 

the time of synthesis as having been the previously-reported MOF NOTT-107 [216], was 

synthesised and found to have an experimentally measured methane capacity ≈ 8 % lower 

than the prediction [213].
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In addition to identifying promising candidate structures for synthesis, this library of 

hypothetical structures provided insights into relationships between the structure of the MOF 

and high-pressure methane storage. For each hypothetical MOF, geometric properties such 

as surface area, void fraction, and pore size distribution were computed and correlated with 

the simulated methane adsorption. Though maximising gravimetric surface area had been a 

common strategy for designing methane adsorbents, exceeding an optimal surface area (≈ 2 

500 m2/g to 3 000 m2/g) was found to diminish the methane storage capacity. The void 

fractions of the best adsorbents were found to fall within a narrow range around ≈ 0.8, and 

the majority of these contained methyl, ethyl, or propyl functional groups, with pore sizes 

between 4 Å and 8 Å. These insights led to the discovery of MOF NU-125 [217], which was 

designed to have a void fraction of 0.8 and demonstrated promise as an adsorbent with an 

exceptionally high methane uptake (see Figure 6) and a usable capacity (58 bar to 5.8 bar) 

that is 67 % that of the typical compressed natural gas tanks used in American transportation 

vehicles, which are pressurised to 3600 psi (248 bar).

b. NU-800: Gomez-Gualdron et al. [218] constructed a set of 204 zirconium-based, 

hypothetical MOF structures to search for optimal and stable MOFs for storage and delivery 

of methane. The authors constructed the MOF structural models by computationally 

arranging a highly stable inorganic secondary building unit, (Zr6O4)(OH)4(CO2)n, with 

various building blocks (see Figures 7a and 7b) to form MOFs in four network topologies, 

fcu, ftw, scu and csq. The structures were energy-minimised by using the UFF [28] to 

describe the intrahost energetics.

In each hypothetical MOF, the authors conducted GCMC simulations of methane adsorption 

at 65 bar and 5.8 bar to compute the usable capacity. Of the 204 Zr-based hypothetical 

MOFs, the one based on the ditopic building unit TPT in Figure 7a was predicted to exhibit 

the highest methane usable capacity (197 L(STP)/L) and was coined NU-800. See Figure 7c. 

As a consequence, NU-800 was synthesised, and its methane (also nitrogen, carbon dioxide 

and hydrogen) adsorption isotherms were measured and compared to the simulation (see 

Figure 7d) with overall good agreement. The measured experimental methane usable 

capacity of NU-800 is 167 L(STP)/L (10 % lower than the simulated value), which is the 

best among Zr-based MOFs and better than many previously reported MOFs for methane 

storage, such as Ni-MOF-74 [121 L(STP)/L] [219] and PCN-14 [149 L(STP)/L] [214], yet 

15 % lower than MOF-519 [203 L(STP)/L] [220], the record-holder at the time of 

publication. Repeated adsorption and desorption cycles indicated that NU-800 was highly 

stable.

2. Hydrogen storage and delivery—Hydrogen (H2) is an ideally clean transportation 

fuel since it emits only water and heat when it combines with oxygen in a fuel cell. If 

hydrogen is produced renewably, such as via electrolysis of water with electricity generated 

from wind turbines [221] as opposed to via the (currently widely-used) steam reforming of 

natural gas, its adoption as a fuel could significantly reduce the rate of greenhouse gas 

emissions associated with the transportation sector. Moreover, hydrogen is abundant (though 

bonded with oxygen in water or with carbon in hydrocarbons). Hydrogen possesses a larger 

gravimetric energy density than any fossil fuel; however, as a gas at ambient conditions, 
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hydrogen suffers from a very low volumetric energy density compared to (liquid) gasoline. 

Therefore, for a passenger vehicle to drive an acceptable distance on a single, reasonably 

sized tank of hydrogen fuel, the hydrogen must be densified. Incumbent densification 

schemes include room-temperature storage by compression up to 700 bar and cryogenic 

storage (liquefaction at 20.4 K at 1 bar). Both require significant energy input, heavy and 

bulky fuel tanks, and costly infrastructure at refilling stations. Safety is a concern 

particularly for hydrogen compressed to 700 bar. Another well-researched densification 

strategy is to react hydrogen with metals to form metal hydrides [222], but these metal 

hydrides often require high temperatures to release the hydrogen and are very heavy [223]. 

For an ultimate hydrogen storage goal, the United States Department of Energy (DOE) set 

50 g/L and 6.5 weight percent storage targets for an onboard vehicular hydrogen storage 

system operating at temperatures ranging from −40 °C to 60 °C [224] and pressures below 

100 bar [225]. To meet this target and densify hydrogen at 100 bar for onboard vehicle 

storage (significantly lower than compressed hydrogen storage at 350 bar to 700 bar), much 

current research is focused on exploiting physical adsorption in MOFs [225]. Thus far, no 

MOF has met the DOE storage target in the specified temperature range because the van der 

Waals interactions of hydrogen with a MOF are too weak [18, 223, 225].

a. she-MOF-1: Gómez-Gualdrón and co-workers[226] constructed a set of 13 000 

hypothetical MOF structures falling in 41 different topologies and screened them for 

cryogenic hydrogen storage. The hydrogen usable capacities in each hypothetical MOF were 

predicted from the difference in simulated hydrogen adsorption at 77 K and 100 bar and at 

160 K and 5 bar (using a combination of a pressure- and temperature-swing for hydrogen 

storage and delivery). To generate the hypothetical structures, the authors took a “top-down” 

approach by, first, specifying the topology of the extended network based on the points of 

connection emanating from the building blocks, then, placing building blocks in the 

topological net, spatially scaled to accommodate them. The building blocks were selected 

from those seen in existing MOFs. The authors then synthesised, activated, and measured 

hydrogen adsorption isotherms in a hypothetical MOF in the rare she topology, she-MOF-1. 

While she-MOF-1 showed moderate thermal stability up to 548 K, its pore volume reduced 

by 30% (according to nitrogen adsorption isotherms) during shipping for hydrogen 

adsorption measurements, indicating a lack of long-term stability after activation. To 

confirm the adsorption prediction, though, simulated and experimental hydrogen adsorption 

isotherms match very well at 160 K after scaling the experimental data by 1.3 to account for 

the loss in pore volume after shipment. This study demonstrates the need for the ability to 

predict the stability of hypothetical MOFs (see Sec. IX D).

b. IRMOF-20: Ahmed and co-workers[227] sought to find MOFs with both high 

gravimetric and volumetric usable hydrogen capacity. To do so, they simulated hydrogen 

adsorption at 77 K in a pressure range from 1 bar to 100 bar in each MOF in the CoRE MOF 

database [9] and the (privatized) database from Goldsmith et al. [160]. On the basis of the 

simulated usable capacity of hydrogen at 77 K using a pressure swing between 100 bar and 

5 bar, the authors targeted the synthesis of a MOF exhibiting gravimetric and volumetric 

usable capacities that surpass those measured in MOF-5 (4.5 weight percent and 31.1 g/L), 

considered a benchmark material for hydrogen storage [228]. Among the 90 MOFs 
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predicted to surpass the performance of MOF-5, they targeted IRMOF-20 [229], with a 6.1 

weight percent and 35.5 g H2/L predicted usable capacity, for synthesis and measured its 

hydrogen adsorption isotherm at 77 K and up to 100 bar. The simulated and experimental 

gravimetric and volumetric hydrogen adsorption isotherms agreed very well. Notably, the 

authors quantified the degree to which the Chahine rule [166], an empirical correlation that 

relates gravimetric excess hydrogen uptake to the surface area of a material, can predict 

simulated hydrogen adsorption at 77 K and 35 bar using two different molecular models for 

hydrogen; the correlation is reasonable in both cases. IRMOF-20 has a greater surface area 

than MOF-5 (measured BET areas of 4 073 m2/g vs. 3 512 m2/g), rationalising its greater 

gravimetric usable capacity of hydrogen under the Chahine rule.

c. MFU-4l: Bucior et al. [98] screened the CSD MOF subset [10] of ca. 55 000 MOFs for 

hydrogen storage at 77 K and 100 bar using a combination of machine learning and 

molecular simulations. First, they trained an L1-regularised linear regression model to 

predict the simulated usable capacity of hydrogen at 77 K using a pressure swing between 

100 bar and 2 bar. Engineering a feature vector to represent each MOF, they binned into a 

histogram the computed van der Waals potential energy of interaction between hydrogen and 

the MOF at a grid of points overlaid the unit cell. To serve as training data for the regression 

model, they simulated hydrogen adsorption in a diverse set of hypothetical MOFs [141, 213, 

226]. After ensuring their trained regression model was sufficiently accurate on test data, 

Bucior et al. then, on the basis of computed potential energy histograms, applied the model 

to predict the hydrogen usable capacity of the 55 776 MOFs in the CCDC subset [10]. To 

refine the usable capacity predictions by the regression model, they conducted GCMC 

simulations in the 1 000 MOFs predicted by the regression model to have the highest usable 

capacity. MFU-4l [230] (CSD refcode: UPOZAB) was among the top 25 3D MOF 

candidates according to these targeted GCMC simulations; its hydrogen adsorption 

isotherms were measured before but only up to 20 bar [230]. Bucior et al. then 

experimentally synthesised MFU-4l and measured its high-pressure hydrogen adsorption 

isotherms at 77 K, 160 K, and 296 K, with which the simulated adsorption isotherms agreed 

very (160 K and 296 K) or reasonably (77 K) well. See Figure 8. MFU-4l exhibited a usable 

capacity of 29 g/L (77 K, between 100 bar and 5 bar), which ranks it among the top reported 

MOFs for hydrogen storage at these conditions [231].

d. SNU-70, UMCM-9, and PCN-610/NU-100: Ahmed et al. [232] used the Chahine rule 

to down-select ca. 44 000 MOFs from a set of ca. 500 000 experimentally reported and 

hypothetical MOFs for focused GCMC simulations of hydrogen adsorption at 77 K and 100 

bar and 5 bar. They targeted the experimental synthesis of materials with predicted 

volumetric and gravimetric usable hydrogen usable capacities larger than benchmark 

materials MOF-5 and IRMOF-20, also considering “perceived stability and synthetic 

accessibility”: PCN-610/NU-100, an experimentally reported MOF (CSD refcodes 

HABQUY/GAGZEV); a hypothetical MOF [233] that was a variant of experimentally 

reported MOF, SNU-70 (CSD refcode GEBPEK) [234]; and MOF with CSD refcode 

ZELROZ [235]. The latter could not be fully activated, which motivated the authors to 

construct a model of and synthesise (motivated by high predicted H2 capacity) a mixed-

linker, non-interpenetrated, MOF, UMCM-9 [236], iso-reticular to ZELROZ. Experimentally 
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measured H2 adsorption isotherms at 77 K up to 100 bar demonstrated each UMCM-9, 

SNU-70, and PCN-610/NU-100 to have higher H2 volumetric and gravimetric usable 

capacities than both benchmark materials MOF-5 and IRMOF-20.

3. Oxygen storage and delivery—Oxygen (O2) gas is used in healthcare to treat a 

variety of respiratory illnesses including chronic obstructive pulmonary disease and 

pulmonary fibrosis. [237, 238] Pure O2 is also necessary for industrial processes such as 

Linz-Donawitz-steelmaking, which uses O2 to reduce the carbon content of molten carbon-

rich pig-iron to create steel; this process comprises 60 % of all steel production [239, 240]. 

Another use of pure oxygen is to increase the efficiency of the regeneration of catalyst in 

fluid catalytic cracking, which is an essential process in petroleum refinement [241]. To 

store oxygen gas, it is typically densified via compression to high-pressures of around 200 

bar and stored at room temperature. Liquid oxygen is also used, though this storage method 

requires temperatures be maintained below 90 K in insulated vessels. MOFs are a novel 

alternative for O2 storage [242], enabling, compared to standard compressed oxygen storage, 

(a) an increased oxygen storage density at comparable pressures and/or (b) a comparable 

stored oxygen density but at a reduced storage pressure, thereby alleviating safety concerns 

and the need for heavy storage tanks.

a. UMCM-152: Moghadam et al. [243] conducted a high-throughput computational 

screening of 2 392 previously synthesised MOFs from a subset of the CoRE database chosen 

because of the high-quality partial charges assigned to the MOF atoms [9, 187]. The authors 

performed GCMC simulations of oxygen adsorption at 298 K and at pressures between 1 bar 

and 200 bar in each MOF. The volumetric oxygen usable capacity, using a pressure swing 

between 140 bar and 5 bar, was then computed. High volumetric oxygen usable capacities 

were correlated with the largest cavity diameters above 8 Å, void fractions larger than 0.7, 

and geometric surface areas larger than 2 600 m2/g. See Fig 9a. The most promising MOF 

for oxygen delivery was UMCM-152 (CSD refcode: ANUGIA; see Figure 9b), with a 

predicted usable capacity of 249 L(STP)/L. Thus, UMCM-152 was targeted for synthesis 

and oxygen adsorption isotherm measurement. UMCM-152 displayed the highest volumetric 

O2 delivery of any material reported, 249 L(STP)/L, 22.5 % higher than the previously best 

reported material, NU-125.[242]. At room temperature, the density of oxygen in a 

UMCM-152-packed tank at 140 bar is 96 % higher than in a traditional O2 gas tank storage 

at the same pressure; to achieve the same density in a UMCM-152-packed tank at 140 bar, a 

compressed cylinder would exhibit up to 300 bar of pressure. Notably, the simulated and 

experimental oxygen adsorption isotherms at 298 K agreed very well. In summary, 

computational screening was used to identify UMCM-152 as exhibiting a large volumetric 

oxygen usable capacity to enable safer (low-pressure) and more compact adsorption-based 

oxygen storage.

B. Gas separations

For applications of MOFs in gas separations, we exploit differences among gas species in 

their (i) affinity for the surface, an energetic effect, (ii) packing into the pores, an entropic 

effect [244], and/or (iii) rate of transport through the material. Chemical separations account 

for 10 % to 15 % of the world’s energy consumption [245]. Therefore, improving the 
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efficiency of incumbent separation processes, e.g., distillation in the petroleum industry, 

could reduce pollution and make goods cheaper to produce. Moreover, the highly tuneable 

pore shapes and surface chemistries of MOFs could enable molecular separations that were 

once infeasible [246]. In practice, deploying a MOF for gas separations entails (a) packing a 

column with a MOF adsorbent, then passing the gaseous mixture through the column or (b) 

embedding the MOF adsorbent within a membrane, both of which allow the MOF to 

selectively capture certain gas species.

1. Xenon/krypton separations—Life-cycle analysis indicates that generating 

electricity by nuclear fission emits less greenhouse gases than by fossil fuels, with emissions 

on par with solar photovoltaics [247]. Reprocessing used nuclear fuel recovers unused 

uranium for further electricity generation, thereby maximally utilising our uranium reserves, 

and reduces the volume of nuclear waste to sequester [248]. During the aqueous 

reprocessing of used nuclear fuel, volatile, radioactive nuclides of xenon and krypton evolve 

into the off-gases in parts-per-million concentrations [249]. MOFs could potentially be used 

in an adsorption-based process at ambient conditions to capture the xenon and krypton from 

the off-gases to prevent their emission into the environment [250]. Using two adsorption 

processes in series, one to remove xenon, and the next to remove krypton, is one strategy, 

where a material with a high Xe/Kr selectivity is desired for the first process [251]. The 

radioactive krypton (85Kr, half-life ca. 10.7 years) recovered from the second process can be 

sequestered, while the xenon, which has a much shorter half-life (longest-lived 127Xe, half-

life 36.4 days [251]), recovered from the first process could be sold in the market for use in 

medicine, ion propulsion, lighting, and insulation [252].

a. SBMOF-1: Searching for a MOF harbouring a high Xe/Kr selectivity, Banerjee et al. 

[253] calculated the Henry coefficients of xenon and krypton at 298 K in the set of CoRE 

and hypothetical MOFs, relevant to the dilute conditions encountered in the off-gases of 

used nuclear fuel reprocessing. The MOF that exhibited the highest Xe/Kr selectivity, 

SBMOF-1, was a member of the CoRE MOF database and thus has already been 

synthesised [254], but not characterised for Xe/Kr separations. Motivated by the 

computational prediction, Banerjee et al. [253] synthesised SBMOF-1, measured its pure-

component adsorption isotherms, and conducted column breakthrough experiments using a 

surrogate gas mixture that mimics the off-gas of used nuclear fuel reprocessing facilities. 

SBMOF-1 was found to exhibit the highest experimentally reported equilibrium Xe/Kr 

selectivity at dilute conditions (on the basis of experimental Henry coefficients) and to show 

good breakthrough performance, even in the presence of humidity. See Figure 10. We duly 

note that several computational screenings of MOFs for xenon/krypton separations have 

been carried out at different conditions prior to the release of the CoRE MOF database [97, 

255, 256].

2. Chemical warfare agent capture—Nerve agents, such as sarin and soman, are 

among the most lethal chemical warfare agents due to their high levels of neurotoxicity. 

These synthetically produced toxins are readily absorbed through dermal contact, inhalation, 

and ingestion [257]. The primary mechanism of nerve agent function is by disrupting nerve 

signals to the organs in the body, resulting in symptoms such as seizures, cardiac arrest, and 
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potentially death by asphyxiation [258, 259]. Acute exposure to nerve agents can lead to 

long-term cognitive and behavioural deficits [260]. The adsorption capabilities of MOFs can 

potentially be exploited to capture chemical warfare agents from the air [261], e.g., as a filter 

in a gas mask [262]. Using molecular simulations to rank MOFs according to their ability to 

capture CWAs underlines a classic role of computer simulations: reducing the need to 

conduct dangerous experiments.

Due to the lethality of chemical warfare agents, surrogate molecules that share key 

characteristics are used in research to avoid exposure. For example, a commonly used 

surrogate for mustard gas is diethyl sulphide (DES). See Figure 11b. Sholl et al. [259] 

simulated adsorption of nerve agents [soman, sarin] at dilute conditions in the CoRE MOFs 

and compared their heats of adsorption to that of four common surrogates [dimethyl 

methylphosphonate (DMMP), diethyl chlorophosphate (DCP), diisopropyl fluorophosphate 

(DFP), and dimethyl p-nitrophenyl phosphate (DMNP)]. Judging from the correlation of the 

simulated heats of adsorption of the authentic nerve agents in the CoRE MOFs with the 

heats of adsorption of surrogates, e.g., DMMP, DCP, and DFP are poor surrogates for soman 

adsorption in MOFs, with DMNP its best surrogate.

a. Ni3(BTP)2: Matito-Martos et al. [263] designed a high-throughput screening strategy to 

identify MOFs for the capture of chemical warfare agents (CWAs) sarin, soman, mustard in 

humid environments. The authors screened a subset of 2 932 MOFs from the CoRE database 

with point charges assigned [187] to account for CWA-MOF electrostatic interactions during 

the simulations. First, a subset of 1 275 MOFs were excluded because they exhibited pore 

limiting diameters too narrow (lower than 3.72 Å) to accomodate CWA molecules. Second, 

the authors simulated adsorption of the CWAs and their surrogates in the 1 647 remaining 

MOFs at dilute conditions, computing their Henry coefficients and isosteric heats of 

adsorption via Widom insertions. The heats of adsorption of the authentic CSW and its 

surrogate were reasonably correlated for mustard gas and its surrogate diethyl sulphide 

(DES), but less so for sarin and somin and their surrogates. MOFs displaying the highest 

Henry coefficients of CWAs tended to harbour a largest cavity diameter of around 5 Å. Next, 

to account for competitive adsorption of water from the environment, Matito-Martos et al. 

computed the Henry coefficients of water in each MOF, then shortlisted 156 hydrophobic 

structures displaying Henry coefficients and heats of adsorption lower than hydrophobic 

ZIF-8 [264]. In the shortlist of hydrophobic MOFs, the authors ran (more expensive) GCMC 

simulations of mustard gas and nerve agents sarin and soman at 13.8 Pa and 0.6 Pa, 

respectively, an estimate of the lethal concentrations. Of eight MOFs predicted to exhibit the 

largest sarin, soman, and mustard gas uptakes (the three were strongly correlated), they 

selected Ni3(BTP)2 (CSD refcode: UTEWOG; see Figure 11a) for experimental synthesis 

and column breakthrough experiments on the basis of its reported thermal and chemical 

stability [265]. The authors conducted a column breakthrough experiment with 150 mg 

Ni3(BTP)2, flowing nitrogen gas with 80 % relative humidity (water) and 1 ppm diethyl 

sulphide (DES, a mustard gas surrogate) through the column at room temperature and 20 

mL/min and measuring the composition of DES at the exit of the column with a gas 

chromatograph. Figure 11c shows that Ni3(BTP)2 readily captured DES for more than 7 

hours, at which point the MOF became saturated with DES, and DES broke through the 
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column. The concentration of DES in the eluted gas (before saturation) was only 0.05 ppm, 

mimicking the mustard gas concentration that would be inhaled if Ni3(BTP)2 were a filter in 

a gas mask within an environment of 1 ppm mustard gas and 80 % relative humidity. 

Further, adsorption in Ni3(BTP)2 was reversible; thermogravimetric analysis and 

temperature programmed desorption indicated water was desorbed at a lower temperature 

than for DES, proving that the framework is selective for DES over water. In summary, 

Matito-Martos et al. computationally pinpointed Ni3(BTP)2 as readily adsorbing mustard 

gas in the presence of humidity and demonstrated capture of its surrogate molecule DES 

through column breakthrough experiments.

C. Carbon dioxide capture

Fossil fuels have been one of the main energy sources since the twentieth century in the 

United States [266] and are the dominant source of CO2 emissions into the atmosphere 

worldwide [267]. The increasing CO2 concentration in the atmosphere is leading to 

significant changes in the climate, and the average global temperature is projected to rise by 

2.6 °C to 4.8 °C by the end of the twenty-first century if CO2 emissions are not mitigated 

from their current trajectory [268]. In the United States, roughly 33 % of energy-related CO2 

emissions are directly tied to the burning of fossil fuels to generate electricity [269]. 

Significant effort is devoted to develop efficient technologies to capture CO2 from the flue 

gas of fossil fuel-fired power plants before it is released into the atmosphere (post-

combustion capture). The captured CO2 can then be sequestered in a geological reservoir 

[270]. The technology currently used to capture CO2, such as absorbing CO2 with aqueous 

alkanolamine absorbents, has not proven to be energy efficient and would reduce the energy 

output of power plants by ca. 30 % [271]. The energy penalty is mainly due to the high cost 

regenerating the amine solvent used to capture the CO2 [271]. A more recent development 

sees MOFs selectively capturing CO2 from flue gas, which could reduce the energy penalty 

significantly [272]. The removal of CO2 from the flue gas is called post-combustion carbon 

capture. An alternative is to capture CO2 prior to fuel combustion, i.e., a pre-combustion 

strategy. Instead of directly burning natural gas to produce electricity, natural gas and steam 

are converted, in the presence of a catalyst, to H2 and CO (steam reforming). The CO is then 

reacted with water (water–gas shift reaction) to produce CO2 and H2. CO2 can then be 

separated from H2 (rather than from the flue gases) and sequestered, and the pure H2 can be 

burned to produce electricity (without CO2 emissions). An advantage to employing MOFs 

for pre-combustion carbon capture is that the CO2/H2 mixture is at high pressure already, 

and a pressure swing down to atmospheric pressure can readily push CO2 out and regenerate 

the MOF.

a. NOTT-101/OEt—Chung et al. [114] used a genetic algorithm to find a performant 

MOF for pre-combustion CO2 capture. To apply genetic algorithms to search for MOFs with 

good selectivity for CO2 over H2 and a high CO2 usable capacity, Chung et al. explored the 

hypothetical MOF (hMOF) database by Wilmer et al. [213]. The database contains some 

duplicate “twin” structures, so the database was reduced from 130 000 to ≈ 55 000 

structures. The genetic representation of each hMOF consisted of a set of six integers 

representing the maximum and actual degree of interpenetration and the species of the 

inorganic node, organic linkers, and the appended functional group (see Figure 12a). In a 
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genetic algorithm, the series of integers is called a chromosome, and each integer within the 

chromosome is called a gene. A genetic algorithm compares fitness between different 

chromosomes, where the fitness is a property of the chromosomes that we seek to optimise. 

The chromosomes with higher fitness are allowed to advance to the next generation and are 

then allowed to undergo genetic changes, such as a random change in one of their genes 

(mutation) or a gene swap between two chromosomes (crossover). This process repeats, 

allowing the chromosomes to “evolve”. Eventually, the genetic algorithm creates a 

generation that optimises the fitness function[273]. All hMOFs were described by a 

chromosome and a subset of 100 diverse hMOF chromosomes were chosen for the initial 

generation. Three genetic algorithms were initiated, each with a different adsorption 

property serving as the fitness: CO2 usable capacity, selectivity for CO2 over H2, and an 

adsorbent performance score (APS), a product of the two aforementioned properties. The 

genetic algorithms were run for 10 generations, at which point Chung et al. analysed the 

MOFs in the last generations and found that only a few organic linker genes and inorganic 

node genes were represented (see Figure 12b), meaning that those genes led to higher fitness 

throughout the evolutionary stages of the genetic algorithm. These genes were used to obtain 

a preliminary list of MOFs that exhibited both good selectivity for CO2 over H2, a high CO2 

usable capacity, and APS (see Figure 12c). Because of its high fitness, as well as previous 

experience in MOF synthesis, Chung et al. synthesised NOTT-101/OEt and measured both 

CO2 and H2 adsorption isotherms (see Figure 12d). Good agreement was found with 

simulated isotherms. NOTT-101/OEt had a usable capacity of 3.8 mmol/g and a CO2/H2 

selectivity of 60. Comparatively, other notable MOFs studied for CO2/H2 separations in pre-

combustion are Mg-MOF-74, with a 2.6 mmol/g usable capacity and a 365 CO2/H2 

selectivity [274], and Cu-BTTri, with a 3.7 mmol/g usable capacity and a 20 CO2/H2 

selectivity [275].

Selectivity and usable capacity, however, are based on the equilibrium adsorption isotherms 

and do not consider process objectives, such as required purity and recovery. To check if 

there exists a certain “threshold” selectivity to achieve the hydrogen purity requirement of 

99.999 % for combustion, Chung et al. carried out a series of pressure-swing adsorption 

(PSA) simulations to find the lower limit of CO2/H2 selectivity. They found that, for 

precombustion CO2/H2 separation, the CO2/H2 selectivity of the material needs to be greater 

than 30 to meet the process objective of 99.999 % H2 purity. On the basis of process 

modelling, Chung et al. concluded that, while NOTT-101/OEth meets the process 

requirement, another porous material, Cu-BTTri, cannot be used for precombustion carbon 

capture application because the CO2/H2 selectivity is not high enough to generate the high 

purity H2 stream required for subsequent energy generation.

1. Xylene enrichment: Mixtures of ortho-, para-, and meta-xylene and ethylbenzene (C8 

aromatics) are obtained from the catalytic reforming of crude oil [276, 277]. The p-xylene 

isomer is the most valuable component of the C8 aromatic mixture. It is oxidised to yield 

terephthalic acid or dimethyl terephthalate, both feedstocks for the production of 

polyethylene terephthalate (PET) [276], which is widely used for synthetic fibres (polyester) 

and bottles [245]. Pure o-xylene is also valuable to synthesise phthalic anhydride, a 

precursor for the production of plasticisers [276]. However, mixtures of C8 aromatics are 
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very challenging to separate because of their similar shapes, boiling points, and polarities 

[278]. The two incumbent industrial processes to separate C8 aromatic mixtures are 

crystallisation and, more often, selective adsorption onto a solid-state material [276, 277, 

279]. MOFs are promising adsorbent materials for separating C8 aromatics more effectively 

than zeolites, which are currently used in a simulated moving bed process to obtain high-

purity p-xylene [280].

a. MOF-48: Gee et al. [281] conducted multi-component GCMC simulations of 

adsorption in the CoRE MOFs immersed in a 1:3:6:3 ethylbenzene/o-X/m-X/p-X 

(X=xylene) mixture at 9 bar and 50 °C (conditions for liquid phase). Among the CoRE 

MOFs with the highest predicted selectivity for and capacity of p-xylene, Gee et al. selected 

MIL-140B, MOF-48, MIL-47, and MIL-125-NH2 to target for experimental investigation 

after also considering chemical and thermal stability and the commercial availability of their 

linkers and metals. Liquid-phase breakthrough adsorption measurements then tested the 

capability of each MIL-140B, MOF-48, and MIL-125-NH2 to separate p-xylene. Of these, 

MIL-140B exhibited the highest breakthrough p-xylene selectivities (1.8 over o-xylene, 1.6 

over m-xylene, and 2.1 over ethylbenzene). The authors claim that their column 

breakthrough experiments indicated MIL-140B exhibits a higher p-xylene selectivity than 

zeolite BaX currently used in industry, but their breakthrough experiment for BaX was 

conducted at 180 °C compared to 50 °C for MIL-140B. Interestingly, though MOF-48 and 

MIL-47 differ only by a dimethyl-functionalisation, MOF-48 exhibits p-xylene selectivity 

while MIL-47 exhibits o-xylene selectivity, emphasising that subtle distinctions in pore 

features can lead to selectivity switching for these similarly-shaped C8 aromatic isomers.

VII. NIST RESOURCES FOR ADSORPTION MEASUREMENTS

In 2014, the National Institute of Standards and Technology (NIST) officially launched a 

programme devoted to adsorption science, with two main aspects: a measurement laboratory 

named the NIST Facility for Adsorbent Characterization and Testing (FACT)[292] and an 

adsorption data repository. The purpose of the FACT laboratory is to support programmes 

related to research, development, and engineering of adsorbent materials by developing 

testing procedures, disseminating reference measurements, and providing impartial testing 

and characterisation of adsorbent materials. A notable accomplishment of the FACT is the 

dissemination of a reference carbon dioxide adsorption isotherm on a NIST Reference 

Material, NIST RM-8852 (an Ammonium ZSM-5 zeolite), which was developed via an 

interlaboratory study[293]. With an emphasis on development and dissemination of standard 

methods and measurements, measurement outputs of the FACT may prove useful as 

reference points for validation of laboratory measurements or as reference properties for 

future modelling efforts.

The data component of NIST’s efforts was released in 2014 as a free, web-based database of 

adsorption experiments, including measured adsorption isotherms, entitled the NIST/ARPA-

E Database of Novel and Emerging Adsorbent Materials[294] (NIST-ISODB)8. The initial 

iteration of the database included a list of previously-published journal articles that describe 

adsorption experiments (with a broad definition of “experiments,” including molecular 

simulations, ab initio simulations, model-based approaches, etc.) with tagged metadata 
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describing experimental parameters such as the adsorbent material, adsorptive gas, 

measurement temperatures, and pressure range among other descriptors. The data contents 

of NIST-ISODB were to be from two major sources: the open scientific literature and 

measurements from the FACT laboratory itself. The initial contents of the database targeted 

materials in the MOF family, though it also included carbon materials, zeolites, and other 

common porous adsorbents. Adsorption isotherms present in the journal articles that 

compose database entries were converted from the source graphical or tabular form in the 

article to a format compatible with NIST-ISODB, which could then be accessed either by 

displaying the isotherm graphically in the NIST-ISODB web application (cf. Figure 13) or 

by downloading a structured data file from NIST-ISODB. Furthermore, the NIST-ISODB 

web application was and is capable of plotting multiple isotherms, from the same or 

different source articles, simultaneously, allowing for online comparison of isotherms; 

simultaneous plotting of isotherms for the same adsorbent/adsorptive/temperature 

combination enables a sort-of “virtual interlaboratory study” of the particular adsorption 

experiment. The NIST-ISODB has steadily grown to over 3 500 articles and more than 30 

000 isotherms as of publication of the present manuscript. Data additions to the database are 

chosen either from the results of string-based searches of the extant literature or by direct 

submission of data by outside laboratories. Other additions to NIST-ISODB since its 2014 

launch include improved database vocabulary for adsorptive species (via the InChIKey 

scheme[295]) and adsorbent materials (see following paragraph), an application 

programming interface (API) for accessing the database contents (in particularly, the library 

of adsorption isotherms), isotherm fitting tools inside the online isotherm plotting utility, an 

ideal adsorbed solution theory (IAST) calculator that integrates with the API to estimate 

multicomponent adsorption equilibrium, and a simple adsorption column simulator that also 

uses IAST in conjunction with the isotherm API functions to estimate column breakthrough 

time.

One challenge identified early in the NIST-ISODB project was that of the naming scheme(s) 

for adsorbent materials and MOFs in particular. In short, there is no standard method for 

naming MOFs and, perhaps more critically, a specific MOF may go by multiple names, 

easily leading to confusion for novices and experts alike. For example, the material named 

HKUST-1 in the disclosure of its initial synthesis[16] is now more commonly known as 

CuBTC (short for copper benzene-1,3,5-tricarboxylate), but is also known as MOF-199 

[296] and is sold by BASF under the name Basolite™ C300[297]. Multiplicity of names, 

such as for CuBTC, hinders effective searches in NIST-ISODB. To solve this problem, the 

NIST Registry of Adsorbent Materials[298] (NIST-MATDB)9 was released in 2017 as a 

companion to NIST-ISODB. The overarching purpose of NIST-MATDB is to identify 

adsorbent materials via unique identifiers (based on SHA-256 cryptographic hash digests) 

that cross-references the names that have been or will be applied to those materials. 

Additionally, the NIST-MATDB provides for the association of external resources to the 

unique identifiers, allowing, for example, an association of a CSD entry with an adsorbent 

material in the NIST-MATDB. As for the NIST-ISODB, the contents of NIST-MATDB are 

accessible via both a web application and an API. Additionally, the NIST-ISODB was 

9https://adsorption.nist.gov/matdb
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reconfigured to rely on NIST-MATDB for resolution of adsorbent material names. Lastly, 

the NIST-MATDB web application includes a feedback tool by which the user community 

can provide corrections, metadata improvements, and additions to the registry. The intention 

is that, via crowd-sourcing and followup auditing by subject matter experts, the registry will 

be improved using the collective knowledge of the adsorbent materials, synthetic chemistry, 

and crystallography communities.

The availability of both the NIST-ISODB and NIST-MATDB provide a large quantity of 

freely-accessible data on adsorbents and adsorption experiments that can be leveraged for 

computationally-driven approaches to material development and refinement, e.g., through 

validation of molecular simulations and benchmarking of force fields. Additionally, the APIs 

of both databases provide platforms for automated exploitation of the open datasets through 

either straightforward data mining or more opaque machine-learning approaches. For 

example, Park et al. used the NIST-ISODB API to investigate the reproducibility of 

experimentally-measured adsorption isotherms and reported the perhaps not surprising, but 

certainly concerning, conclusion that few experimental adsorption isotherm experiments 

(e.g., for carbon dioxide adsorptive, perhaps only 15 MOFs out of thousands) can be clearly 

identified as reproducible based on literature data in the NIST-ISODB[299]. For example, 

Figure 14 shows the authors’ compilation of isotherms of carbon dioxide adsorption in 

HKUST-1 near 298 K from the NIST-ISODB, which provides a graphical indication of the 

variability present in reported experimental isotherms. Additionally, Figure 15 graphically 

summarises their results, relating reproducibility of experimental isotherms to consistency 

while also indicating the number of independent isotherms available and the outlier types. 

One can envision other relatively straightforward uses for the NIST-ISODB dataset by 

identifying specific materials or families of materials that could then be reevaluated or 

evolved via computational approaches to achieve specific performance objectives. As one 

example, the NIST-ISODB isotherms could be data mined to search for candidate adsorbents 

for chemical separations by applying a theory such as IAST to suitable isotherms in the 

database. (Such a use is already envisioned via example tools in the NIST-ISODB 

application that integrate its isotherm API functions with the pyIAST software package[300, 

301].) Similarly, integration of NIST-ISODB and NIST-MATDB with chemical insight into 

adsorbents (e.g., via the CSD) could be leveraged to identify families of MOFs that could be 

the starting point for computational material evolution toward specific performance metrics 

via genetic algorithm-driven mutation of those MOF coupled with the computational 

evaluation of the o spring materials for various material properties and adsorption 

characteristics. Such approaches are similar in principal to the computational screening of 

the hMOFs set by Snurr and co-workers[213, 302, 303], though with experimental 

adsorption isotherm data as a starting point.

Another opportunity for computation-driven materials development based on the 

NISTISODB is in force field tuning and development, an ongoing need that we discuss 

further in Sec. IX B. The isotherm dataset of NIST-ISODB could serve as a massive training 

set for the development of force fields specifically for adsorptive fluids confined in MOFs 

and other adsorbent materials. In fact, one can argue that there is a strong analogy with the 

machine learning competitions mentioned earlier: the large, freely available datasets can 

promote the development of standards for benchmarking force fields (e.g., resultant force 
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fields must satisfy essential performance metrics) and then open competitions can drive 

progress in molecular modelling. Such competitions could be based on the provision of 

limited training data from the NIST-ISODB and requirements to predict isotherms for 

specific adsorptive/adsorbent/temperature combinations. A competition along these lines 

could be ongoing, with a regularly or continuously updated leaderboard ranking the 

submitted isotherms. Competitions of this type would be similar to the Industrial Fluid 

Properties Simulation Challenge (IFPSC)[304] (nine editions to date), in which challenge 

entrants computationally predict some thermophysical property based on limited 

experimental measurements on which to tune their simulations or other predictive method. 

For example, the 2012 and 2014 IFPSC competitions [305–308] involved prediction of 

adsorption isotherms for perfluorohexane adsorption on zeolite and activated carbon 

adsorbents, respectively, with only simple isotherms (Nitrogen and/or Argon), pore-size 

distribution, and other structural characteristics as training data. Lastly, force field 

development and competitions based on open data resources like those from NIST may also 

adopt workflow practices similar to “continuous integration” (CI) that is widely used in 

software engineering. Given some guiding parameters (e.g., training force fields for a 

particular material class against a specified set of adsorbates), a CI workflow could monitor 

a database of adsorption isotherms, retrain a force field whenever new data that fits the 

training specification is available, and then re-run simulations to predict material and 

adsorption characteristics for cases outside the training set.

The introduction of open data resources for adsorption has also revealed opportunities and 

challenges that stem from a lack of standardisation among researchers of adsorption and 

material scientists beyond that of naming adsorbent materials. (We note that one of the goals 

of the FACT laboratory at NIST is to develop and disseminate best practices for adsorption 

measurements, which addresses this point in part.) One specific issue is the difficulty 

encountered in comparing isotherms from different laboratories when the adsorption 

measurand is presented in different units. NIST-ISODB reports more than 60 unique, non-

reducible types of adsorption units, including mmol/g (millimoles of adsorbate per gram of 

adsorbent), the volumetric units cm3(STP)/g (cubic centimetres of adsorbate gas at standard 
temperature and pressure (STP) conditions per gram of adsorbent), fractional units such as 

weight-percent, units normalised by surface area, or mass or mole units per unit cell, to 

name only a few[294]. Each type of units has its own advantages and particular uses, but 

conversion to a different unit type often requires extra information that may not be present in 

a manuscript describing an adsorption experiment or simulation (e.g., unit cell dimensions, 

bulk density, etc.). A broader issue in the area of standardisation involves the description of 

adsorption experiments, the quantities that are actually measured, and the clear presentation 

of both. For example, experimental isotherms are typically presented as excess adsorption 

isotherms[167, 309], but rarely described explicitly as such. Conversely, isotherms obtained 

from molecular simulations are usually absolute adsorption isotherms [167]. Other examples 

of lack of description of adsorption experiments include poor identification of the adsorbent 

material and, in the case of multicomponent adsorption, poor or incomplete description of 

the adsorptive gas composition. To address some of these concerns, NIST developed an 

isotherm data file based on the JavaScript Object Notation (JSON) standard to contain both 

the isotherm data and experimental metadata, and the NIST-ISODB API serves isotherm 
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data in this format (cf. Ref. 310). It is similar in principle to the Crystallographic 

Information File (CIF) developed and promoted by the International Crystallography 

Union[311, 312] for representing periodic crystal structures. For the sake of experimental/

simulation reproducibility and ease of data re-use, we strongly encourage the MOF and 

adsorption modelling communities to firstly describe their experimental/simulation setup 

with sufficient detail to enable reproduction by other groups, to adopt conventions that 

provide clarity in data representation and interpretation, and perhaps utilise common data 

formats like the JSON isotherm file.

VIII. DISCUSSION

In Sec. VI, we surveyed instances of the computational identification of performant MOFs 

for hydrogen, methane, and oxygen storage, carbon dioxide, xenon, and nerve agent capture, 

and xylene enrichment. The computational identifications of many of these near-term MOFs 

for adsorption-based engineering applications were often predicated on a database of open, 

computation-ready, experimental MOF crystal structures[9, 10]. There are striking parallels 

here with molecular biology and machine learning (the “hypothesis-free science” that 

enabled the discovery of CRISPR [119]) and large, open datasets that spurred developments 

in recommendation algorithms [286] and computer vision [289]. We anticipate the open 

NIST databases of adsorption isotherm measurements will spur further advances in force 

field development, by taking advantage of the large sets of isotherms available as training 

data and through the development of standard benchmarking targets and common data 

formats that facilitate comparison between groups worldwide.

High-throughput computational screening techniques are not unique to the domain of 

nanoporous materials [313, 314]. High-throughput, first principles calculations have 

propelled the discovery of organic light-emitting diodes [315], Li battery materials [316], 

organic solar cell materials [317], and catalysts [318–320]. The field of drug discovery has 

long adopted principles of high-throughput computational screening and cheminformatics 

[321, 322].

In addition to open databases of crystal structures, open data on (even failed) MOF synthesis 

experiments could also help the MOF community. Finding the optimal synthesis conditions 

(solvent, temperature, reaction time) to yield a high-quality (e.g., high surface area) MOF 

crystal can be difficult and time-consuming [11]. Moosavi et al. [20] showed that machines 

can learn from failed attempts to synthesise a MOF, automatically altering the synthesis 

conditions towards those yielding a higher quality crystal.

While we focus on computation-driven MOF discovery, we do not discount the chemical 

intuition of experimental MOF chemists that often results in successful, rational design of a 

MOF selective for a particular gas. First, one can graft functional groups onto the surface or 

use metals that are known to attract (e.g., amine functionalisation to target CO2 [323], open 

transition metal sites to target ethylene [324]) or exclude (e.g., functionalisation with 

hydrophobic alkyl chains to exclude water [325]) certain adsorbates. Second, one can gauge 

the length of the linker required to manifest in a pore size accommodating of and 

commensurate with the target adsorbate [12]. However, MOFs often exhibit complicated 
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pore geometries, which, from the perspective of a configurational integral in a partition 

function [65], dictate the ensemble of configurations of the adsorbate(s) within the pores and 

the energetics of its interactions with the pore walls; subtle differences in pore geometry can 

have large effects on adsorption when the pore size is commensurate with the molecule 

[281]. Also, interactions with e.g., coordinatively unsaturated metal sites in MOFs are 

difficult to predict [326]. Moreover, some MOFs harbour flexible backbones or rotating/

wobbling constituents [189] and undergo structural changes upon adsorption of gas [327], 

sometimes involving delicate competition between entropy and energy [328]. Thus, the 

rational design of a MOF to exhibit a desired adsorption property is very challenging, 

warranting the use of molecular models and simulations to carry out high-throughput 

computational screenings to account for these subtle factors through molecular models.

Finally, in addition to open databases of crystal structures, we reinforce that releasing 

computer codes and/or input files is imperative for reproducibility and efficient progress. See 

the review of Coudert [329], who predicts that the phrase “data available upon request” will 

become obsolete.

IX. ORIENTING THE FIELD

We now opine the most important future research directions to routinely identify a set of 

MOFs with optimal adsorption properties for an engineering application via high-throughput 

computational screening; the list of computationally-identified MOFs in Sec. VI could be 

longer. Rigorously, the survey in Sec. VI only indicates a degree of statistical signal in the 

rankings predicted in high-throughput computational screenings; there could be many false 

negatives in the studies in Sec. VI. Moreover, there could be under-reporting of experimental 

followups to computational predictions that failed to agree.

In a computational MOF utopia, all MOFs are rigid, perfect crystals lacking defects, and the 

molecular models accurately and cheaply describe potential energies. Future research 

directions are based on leaving behind the presumption of a computational MOF utopia.

A. Treating MOF flexibility

MOFs are typically treated as rigid in high-throughput computational screenings owing to 

(a) the exorbitant cost to sample configurations of the MOF and compute intrahost energies 

and (b) the lack of an accurate force field that covers all coordination environments found in 

MOFs. Often, treating the MOF as a rigid “host” is an adequate approximation [330]. Some 

MOFs however, are known to have flexible backbones [331] or constituents (e.g., rotating 

ligands [332, 333]) that adopt different ensembles of configurations depending on 

temperature, the amount of adsorbed gas, and the mechanical stress imposed on the 

framework; the flexible modes of a MOF can dramatically influence adsorption [189, 327]. 

Even small pore size fluctuations can be important when the (average) pore size is 

commensurate with the size of the adsorbate [334]. Therefore, we opine that accounting for 

MOF flexibility in high-throughput computational screenings is a significant next step to 

more accurately predict gas adsorption properties. This requires the development of (i) 

accurate intrahost force fields for MOFs, which is underway [52, 53, 55, 56, 188], (ii) 

efficient algorithms to sample MOF configurations, also underway [57], and (iii) increasing 
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computing power. Recently, to search for MOFs that exhibit negative gas adsorption, Krause 

et al. [335] used DFT to compute stress-strain relationships for linker molecules that buckle 

under stress. After assembling structural models with these linkers, the authors used 

classical force fields to compute the intrahost free energy as a function of the unit cell 

volume. Bistability of the intrahost free energy suggested the potential for negative gas 

adsorption [336] and helped inspire the discovery of DUT-50, a new material (though 

isoreticular to DUT-49 [337]) that exhibits negative gas adsorption.

B. Developing more accurate force fields

Arguably, the most important future research direction lies in the development of accurate 

classical force fields (molecular models). Given an accurate many-body potential energy 

description of the MOF and adsorbed gas system, the equilibrium adsorption properties 

follow from Monte Carlo simulations of a statistical mechanical ensemble [48, 65]. Owing 

to the exorbitant computation required for first principles calculations of the potential energy 

of a single MOF-gas configuration, it is often impractical to conduct a GCMC simulation of 

gas adsorption in a MOF using a first principles description of the potential energy10. As a 

consequence, simulations typically employ classical interatomic potentials to model the 

potential energy of an atomic system, whose parameters are tuned to reproduce experimental 

data or ab initio calculations. These cheaply-computed potentials enable the simulation of 

gas in a large number of MOFs but usually incur a loss in accuracy compared to ab initio 
methods, particularly when transferred to a system different from which they were tuned.

1. Van der Waals interactions—Off-the-shelf, generic force fields such as the UFF 

[28], DREIDING [29], AMBER [341], OPLS [342], etc. are typically employed to describe 

van der Waals interactions for high-throughput screening McDaniel et al. [343] 

systematically compared predictions of CO2 and CH4 adsorption in 424 MOFs among UFF 

and an ab initio force field [based on symmetry-adapted perturbation theory (SAPT) [344]]; 

predicted adsorption often differed significantly between the generic and ab initio force 

field, but the statistics of the ranking of the MOFs according to adsorption was good 

(Spearman’s rank correlation coefficient squared for CH4 and CO2 ranges from 0.81 to 0.98, 

considering uptake at both 1 bar and 30 bar and 298 K). The later finding, though specific to 

CO2 and CH4, emphasises that high-throughput computational screenings using generic 

force fields may rank materials with sufficient statistics but not quantitatively predict 

adsorption in each MOF satisfactorily. To an extent reducing the importance of generic force 

field choice, Dokur et al. [345] showed that simulated CO2, H2, N2, and CH4 uptakes in 100 

MOFs with UFF are well-correlated with those using DREIDING (binary gas mixtures at 1 

bar, 298 K).

Still, predictions of adsorption using generic force fields are often not satisfactorily accurate, 

and significant research efforts should be devoted to the development of accurate and 

10Though, notably, DFT calculations were used as an energetic description of small gas molecules in MOF-74 to compute Henry 
coefficients via Widom insertions [338] by biasing the samples towards low-energy regions. Similarly, Fetisov et al. [339] conducted 
first principle Monte Carlo simulations of CO2, N2, and H2O adsorption in Mg-MOF-74. To avoid wastefully devoting DFT 
calculations to high-energy trial configurations, the authors employed (i) a configurational-bias Monte Carlo algorithm and (ii) a 
cheaper, approximate potential for pre-sampling configurations. Chen et al. [340] simulated CH4 adsorption in CuBTC using ab initio 
calculations on a grid to characterise the CuBTC-CH4 interaction.
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transferable force fields for predicting adsorption in MOFs. A flagship failure of generic 

force fields is in accurately modelling the interaction of some adsorbates with coordinatively 

unsaturated/open metal sites in MOFs [33, 45] because they were not tuned to represent 

interactions in these environments involving complicated electronic interactions such as π-
complexes [34, 35]. For example, Mercado et al. [46] found that simulated adsorption of 

CO2 and CH4 in M-MOF-74 (M = Mg, Fe, Co, Ni, Zn) using UFF exhibits very poor 

agreement with experiment owing to the presence of open metal sites. On the basis of 

periodic DFT calculations of the energy of the adsorbate at judiciously placed positions in 

the pores, they derived a force field for CO2, CH4, and H2O in the M-MOF-74 family, which 

yielded a more accurate prediction of the adsorption isotherm. Fetisov et al. [339] conducted 

first principles Monte Carlo simulations of CO2, N2, and H2O adsorption in Mg-MOF-74 

and achieved good agreement with the experimentally reported adsorption isotherms without 

the manual effort of tuning a force field, but at a large computational expense. Because 

unsaturated metal sites sometimes provide the strongest adsorption sites in a MOF [201], a 

lofty goal is to develop a generic (across e.g., metal paddlewheels in MOFs) force field for 

interactions of adsorbates with unsaturated metals [47]. Aside from unsaturated metals, still 

predictions of adsorption via generic force fields are often unsatisfactory. For example, 

though SBMOF-1 was correctly predicted by the simulations to be a highly-ranked material 

for Xe/Kr separations (see Figure 10), the predicted Xe and Kr adsorption isotherms deviate 

significantly from the experiment (see Supplementary Figure 22 in Ref. 253).

A more radical idea is to abandon efforts to develop a generic, transferable force field and, 

instead, fine-tune/tailor a force field to each MOF in an automated manner. Considerable 

effort is currently spent on force field development for a single adsorbate in a single MOF 

[45]. However, automatic routines that judiciously sample positions of adsorbates in the 

MOF for ab initio calculations could then be used to correct a prior assumption about the 

force field, e.g., a generic force field description. Development of such automatic force field 

tuners would result in more accurate high-throughput computational screenings of MOFs 

with minimal human intervention.

Another important and related direction in force field development is to leverage machine 

learning models as force fields, trained on data obtained from ab initio calculations, e.g., 

neural network force fields [346–349] and Gaussian Approximation Potentials[350]. 

Typically in force field development, a strict functional form for the interatomic potential is 

chosen, at least partially motivated by physics (e.g., Lennard Jones, Buckingham potentials). 

If the imposed functional form does not adequately allow the important physics to be 

captured, the tuned force field will be inaccurate. In contrast, deep neural networks are 

highly adaptable and capable of representing highly non-linear potential energy surfaces 

[351] with minimal human intervention. Therefore, in principle, neural networks can 

accurately reproduce the potential energy surface governed by ab initio theory but at a 

drastically lower computational cost. The disadvantage of a neural network force field is that 

much more data (ab initio calculations) is needed to train it than for a traditional force field 

where a physically motivated function form is imposed [348]. The reason is that the neural 

network must learn the shape of the potential energy surface in addition to the quantitative 

details11.
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Notably, assessing the accuracy of a force field via comparison with an experimental 

adsorption measurement is complicated because attributing deviations between simulation 

and experiment to specific causal factors is extremely difficult. First, there is significant 

variation in the experimental adsorption isotherm measurements [299], perhaps owing to 

varying synthesis and activation protocols. Second, under the assumption of quality 

experimental data, several factors (e.g., neglect of flexibility, poor guest-host interatomic 

potential [functional form and parameters], neglect of polarisability of the adsorbate, etc.) 

could contribute to poor agreement with the simulation, and it is often difficult to 

definitively attribute error to any particular one of these factors. Ideally, one could compare 

force field predictions to several measured properties (adsorption isotherms at different 

temperatures, heat of adsorption, vapour–liquid equilibria of the bulk gas phase, 

compressibility and thermal expansion coefficient of the MOF, etc.) when assessing force 

field predictiveness and tuning a new force field. A sensitivity analysis of how force field 

parameters affect the predictions could shed light on the most important effects to describe 

in a particular MOF-adsorbate system. A standard and comprehensive methodology to 

benchmark both interatomic potentials for van der Waals interactions and electrostatic 

potential modelling could propel force field development. Such a methodology should be 

collaboratively developed by the relevant user communities and, consequently, we do not yet 

suggest specific criteria for tuning and defining both dispersion and electrostatics. However, 

we can envision a methodology in which a force field is tuned against a well-defined set of 

isotherms (e.g., certain adsorbates and temperatures associated with conventional material 

characterisation techniques and conditions[352]) and, perhaps, other important material 

characteristics such as pore volume, BET area, and (if appropriate) pore-size distributions. 

Furthermore, this type of methodology can and should leverage existing data resources (e.g., 

NIST-ISODB) and encourage the collection and distribution (again, via open data resources) 

of specific experimental measurements to facilitate force field development and 

consequential acceleration of materials discovery and refinement.

2. Electrostatic interactions—The electrostatic potential field within a MOF is 

typically described by assigning point charges to the atoms of the framework. See Ongari et 

al. [32] for a summary and comparative assessment of the hierarchy of methods to assign 

these point charges to MOF atoms. There is signficant variance among the charges predicted 

by the different methods, and predicted adsorption of adsorbates with polar bonds can be 

sensitive to these variations [173].

Within the high-throughput screening paradigm of generating a large library of hypothetical 

MOF structures and screening them for their adsorption properties via molecular models and 

simulations, developing accurate and computationally efficient methods to assign point 

charges to MOF structures is imperative. One future direction is to train a machine learning 

model to assign reliable charges on MOF atoms. Towards this, two data-based methods, the 

connectivity-based atom contribution (CBAC) method [353] and the molecular building 

11The following thought experimental clarifies why more data is needed to fit a neural network to the PES surface than to fit a 
traditional force field with an interatomic potential imposed. Assume that the Lennard-Jones potential is the ground truth for an 
interaction between two atoms of A. Then, two independent data points, i.e., the potential energy at two distances, is enough to 
determine the 12–6 Lennard-Jones σ and ϵ. In contrast, the neural network would need many more data points to learn the 12–6 
scaling with interatomic distance.
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block-based (MBBB) method [354] assign a charge to a given MOF atom based on its local 

bonding environment and building block to which it belongs, respectively. In the CBAC 

method, an atom in a MOF with an unknown charge with a given bonding environment is 

assigned a charge equal to the average charge of all atoms with that bonding environment 

found in a training set of MOFs for which charges were assigned by first principles 

calculations in conjunction with the CHELP method [355]. In the MBBB method, charges 

are first assigned to molecular building blocks constituting the library of MOFs using first 

principles calculations in conjunction with the CHELP method. Then, when the building 

blocks are combined to construct a library of MOF models, the building blocks in the 

assembled MOF inherit the charges from the isolated building blocks. Both methods require 

post-point charge assignment adjustments to enforce charge neutrality.

An alternative to assigning point charges to MOF atoms to describe the electrostatic 

potential in the MOF is to directly use an electrostatic potential grid obtained from 

electronic structure calculations. Such an approach requires more computer memory and 

disk space to store the grid but (i) reduces computational cost to compute electrostatic 

potential during a simulation (Ewald sum vs. grid interpolation) and (ii) is more accurate 

than translating the electrostatic potential into a set of point charges.

A daunting challenge is to account for the change in the electrostatic potential within the 

MOF as it flexes or as gas molecules adsorb on it, transferring charge between the adsorbate 

and the MOF. One could envision a protocol where the point charges on the MOF are 

updated every time the microstate of the system is updated during the simulation. This 

however, would result in more computational resources needed for the calculation.

C. Treating MOF defects

Molecular simulations of adsorption in MOFs apply periodic boundary conditions to mimic 

a perfect, defect-free, infinite crystal. In practice, MOFs can exhibit a significant degree of 

defects and disorder (i.e., non-crystallinity) that affect their adsorption properties [356, 357]. 

A flagship example is UiO-66 [358], whose inorganic Zr-based node is coordinated to 12 

benzene-1,4- dicarboxylate (BDC) ligands to afford a highly stable structure. UiO-66 can 

possess a significant amount of linker vacancies that can be systematically tuned by varying 

the synthesis conditions [359]. Both experimental [359] and computational [360, 361] 

studies have elucidated how the linker defects significantly influence the adsorption of CO2 

and H2O in UiO-66. Through molecular modelling, Bristow et al. [362] investigated the 

mechanism by which linker vacancies form in UiO-66.

Zhang et al. [363] used DFT calculations to assess the thermodynamic stability and kinetic 

accessibility of zinc metal node vacancies, linker vacancies, and dangling linker defects in 

ZIF-8. They found defects to be relatively low in energy compared to the crystalline 

structure but prohibitive yet surmountable kinetic barriers exist to their formation from the 

crystalline state. Molecular dynamic simulations showed that defective 6-member rings in 

ZIF-8 can enhance the hopping rate of adsorbates through them [364].

A means to predict which MOFs in a high-throughput screening are most susceptible to 

forming defects that significantly influence adsorption would be useful for flagging 
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computational predictions of adsorption predicated on the perfect crystal assumption. That 

said, arguably, synthetic conditions could be tuned to eliminate defects, placing this problem 

in the hands of experimental MOF chemists.

D. Predicting MOF synthesisability and stability

Stability is a prerequisite for deploying a MOF for most practical applications [14]. An 

important research goal is to predict a priori the thermal, chemical, and mechanical stability 

of a given hypothetical MOF. Most directly stated by Zunger, within the context of 

topological materials, but also applicable to hypothetical MOFs, “theorists who design 

materials must add extra filters to avoid sending their chemistry colleagues off to the lab on 

a pointless quest” to synthesise “fantasy materials” [365]. Therefore, it is important to 

develop computational methods to predict the synthetic feasibility of hypothetical MOFs, as 

it will help the community to focus on the synthesis of high-performing hypothetical MOFs 

with high fidelity for practical applications. Efforts are underway to computationally discern 

the feasibility of synthesising a hypothetical MOF and identify synthetic conditions that 

provide favourable thermodynamics and kinetics for its formation, mainly by modelling 

MOF self-assembly. Cantu et al.[366] used DFT calculations and ab initio molecular 

dynamics to uncover the formation pathway (and energies of the intermediates) of the 

secondary building block of MIL-101. They found that the highest energy barrier is the 

formation of the metal centre, where the organic linkers play a key role; linker addition 

reactions have lower energy barriers that vary depending on the arrangement of water and 

incumbent linkers coordinated to the metal centre. Classical simulations have also been used 

to study MOF self-assembly. Yoneya and co-workers[367] demonstrated how tuning the 

interaction parameters between the building blocks can lead to the spontaneous formation of 

MOFs in molecular dynamics simulations. Biswal and Kusalik[368, 369] also simulated 

MOF self-assembly and observed moieties that are important in MOF formation. Recent 

work complements these efforts by employing enhanced-sampling techniques. Colón and 

co-workers[370] used enhanced-sampling techniques to simulate the self-assembly of 

MOF-5, finding the process is entropically favourable for the ordered MOF structure. They 

also found free energy barriers that are associated with structural rearrangements and solvent 

interactions that are disrupted in an amorphous-to-crystalline transition. Similarly, Kollias 

and co-workers[371] calculate free energies to explore the role that solvent and counterions 

play in the early-stage nucleation of MIL-101. They found that the stability of the early 

structures and the presence of amorphous vs. crystalline moieties can be affected by the 

identity of the solvent and ions present in solution.

Regarding chemical stability, in an early study of MOF stability in the presence of water, 

Greathouse and Allendorf [372] conducted molecular dynamics simulations of water in 

MOF-5, treating the flexibility of MOF-5 and modelling the ZnO coordination with a 

nonbonded potential. They showed distortion of the MOF structure at low water 

concentrations and the collapse of the framework at higher water concentrations as the water 

molecules attack the ZnO4 polyhedra. In subsequent work, Bellarosa and co-workers[373] 

used Born–Oppenheimer molecular dynamics simulations and showed the degradation of 

MOF-5 instead occurs through the replacement of the organic linkers by water molecules. 

Han et al. [374] used density functional theory calculations to elucidate the mechanism by 
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which acid gases degrade zeolitic imidazolate frameworks (ZIFs) both inside the pores and 

at the external surface of a crystallite.

Mechanical stability of MOFs under high pressures is important when densifying MOF 

powders for deployment in practical applications. Rogge et al. [375] provide an account of 

advances in computationally predicting the mechanical stability of MOFs. Moghadam et al. 

[81] recently trained an artificial neural network to predict mechanical properties of MOFs 

and found that topological features of the MOF are strongly correlated to mechanical 

stability.

E. Multi-scale modelling

So far, the majority of high-throughput computational screenings relied on simple 

performance metrics based on equilibrium adsorption properties of the material. Although 

these simple properties are important indicators of the performance of these materials for 

adsorption-based engineering applications, these metrics do not completely determine 

process-level objectives [376–378]. For instance, the usable capacity and selectivity of CO2 

are commonly used performance metrics for CO2 capture applications, while the overall 

process objectives are the cost of capturing and recovering the CO2 ($/g CO2) and the 

productivity of the material [378], both under CO2 purity and recovery constraints. Since the 

improvements in equilibrium adsorptive selectivity and usable capacity do not necessarily 

translate into better process performance, we envisage the integration of process-level 

simulations and molecular simulations, feeding innate material properties obtained from 

molecular simulations into process-level (larger length scale) simulations to account for heat 

and mass transfer kinetics, pressure drops in columns, etc. to properly rank materials [378, 

379]. However, (i) process-level modelling requires many physical properties of the material 

to be known, and (ii) often, process-level detriments to material performance can be 

corrected via engineering, e.g., poor thermal conductivity can be addressed by incorporating 

heat exchangers into the process.

Krishna [380] discussed and contrasted the material properties that determine performance 

in two distinct separation processes using adsorbent materials: pressure-swing adsorption 

units (a bed packed with material) and membrane permeation units (a thin layer of material). 

The performance of a pressure-swing adsorption unit is determined primarily by both the 

equilibrium gas uptake and selectivity of the material, and influences of intracrystalline 

diffusion are typically considered undesirable. In contrast, both equilibrium adsorption 

properties of the material and intracrystalline diffusion rates are important determinants of 

membrane permeation unit performance. Therefore, the criteria on intrinsic properties for 

evaluating a material for a separation process critically depend on the mode of its intended 

use.

First et al. [377] combined molecular simulations (to predict adsorption isotherms) and 

pressure swing adsorption process modelling and optimisation of e.g., the column length and 

pressure of adsorption and desorption, under methane recovery and purity constraints, to 

rank zeolites for CO2 capture from natural gas. Interestingly, the authors found “no clear 

correlation between the overall cost and material-centric metrics, such as adsorption 

selectivity” [377].
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Recently, Leperi et al.[381] developed a general evaluation metric for post-combustion CO2 

capture materials used in pressure-swing adsorption units. Molecular simulations and full 

process simulation and optimisations were carried out to screen ≈ 2 900 CoRE MOF 

structures. Commonly used screening metrics, such as the thermodynamic selectivity at 

dilute conditions, adsorbent figure of merit, separation factor, etc., show poor correlations 

with the cost of CO2 capture at the unit operation level. Using the generated data, the authors 

developed a general evaluation metric, based on the intrinsic materials properties such as 

those obtained from adsorption isotherms. The authors showed the metric was, compared to 

other screening metrics, more predictive of the cost of CO2 capture using a pressure-swing 

adsorption unit packed with that material.

FĪNIS

We reviewed the demonstrated impacts of molecular modelling and simulation on the 

discovery of performant MOFs for adsorption-based engineering applications. Our outlook 

is that the highly reliable computational identification of MOFs for deployment in gas 

storage, separations, and sensing will be routinised with well-directed research efforts.
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A lesson from molecular biology

CRISPR-Cas9 technology [116] is revolutionising molecular biology by enabling the 

facile, precise, and cost-effective editing of genomes [116]. Impacts include accelerating 

and enabling more systematic experiments to probe gene function and regulation and, 

potentially, genetic-engineering disease- and stress-resistant crops and correcting genetic 

and epigenetic human disease, such as cancer [117]. The CRISPR-Cas9 technology 

originates from an adaptive immune system discovered in bacteria [118]. The fascinating 

story by which CRISPR was recognised as a bacterial immune system, outlined by 

Lander [119], bestows useful lessons on materials science, including the importance of 

“hypothesis-free science”.

By 2000, Mojica et al. [120] cataloged the presence of peculiar sequence patterns in the 

genomes of 20 different microbes using a computer programme to analyse published 

genomes. Particularly, they found clusters of multiple copies of roughly palindromic 

sequence base pairs (bp), ≈ 24 bp to 40 bp in length, flanking both sides of a unique 

spacer sequence of roughly consistent length (20 bp to 58 bp). These were descriptively 

coined clustered regularly interspaced short palindromic repeats (CRISPR) [121]. 

Mysteriously, the biological role (or lack thereof) of evolutionarily conserved (within 

species [121]) CRISPRs was unknown.

Five years later, Mojica et al. [122] published evidence that CRISPR is related to a 

microbial immune system, conferring resistance to e.g., bacteriophages. The link was 

made by searching databases of DNA molecules for matches of ≈ 4 500 known spacer 

sequences between CRISPRs; 47 of the spacer sequences matched bacteriophage DNA 

sequences. As further evidence, a microbe strain carrying the CRISPR spacer sequence of 

a particular virus was found to be immune to infection by that virus, whereas other strains 

lacking that spacer sequence were susceptible.

Lander [119] credits the role of “hypothesis-free” research in the discovery of CRISPR: 

“The discovery of the CRISPR loci and their biological function … all emerged not from 

wet-bench experiments but from open-ended bioinformatic exploration of large-scale, 

often public, genomic datasets.” Similarly, we claim here that hypothesis-free science, 

i.e., the curation of databases of computation-ready nanoporous crystal structures and 

adsorption data, can accelerate the pace of nanoporous materials discovery and 

deployment in un-conceived ways. Of course, mindlessly gathering data is unlikely to be 

the best allocation of resources [123]; there must be an implicit hypothesis that the data 

will enable further developments, albeit in an ill-defined or un-conceived context. Our 

survey of computation-inspired MOF discoveries in Sec. VI will demonstrate the impact 

of open, computation-ready databases of MOF structures on the discovery of performant 

MOFs for adsorption-based engineering applications.

A lesson from machine learning

The field of machine learning aims to leverage data to train mathematical models or 

algorithms to perform a task. For example, instead of explicitly programming a computer 

to translate speech, identify and classify traffic signs, detect fraudulent financial 
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transactions, and recommend music, a machine learning algorithm/statistical model is 

tuned to perform these tasks after taking in many examples (data) as input. As more data 

is used to train the machine learning model, it generally performs the task more 

effectively, though with diminishing returns.

The development of the field of machine learning has benefited dramatically from large, 

open data sets that serve as arenas for machine learning models and methods. These open 

data sets (i) standardise benchmarking and comparison of models, (ii) reveal insights into 

the inner-workings and deficiencies of different learning algorithms based on their 

mistakes while performing intuitive tasks, (iii) foster competition, and (iv) stimulate the 

development of better-performing methods.

As an example, the open MNIST data set of handwritten digits [282] contains ca. 70 000 

labelled, binary images of handwritten digits 0, 1,…, 9. The MNIST data set is 

partitioned into training and testing sets to provide a widely-used, standard benchmark 

for classification algorithms. Developments in machine learning algorithms have led to 

highly accurate handwritten digit classifiers (0.21 % error [283]). As a more challenging 

arena, CIFAR-10 and -100 [284] data sets each consist of 60 000 colored, labelled images 

and contain more complicated classes such as frogs, dogs, airplanes, etc.

To directly generate interest and develop new supervised machine learning models and 

methods, open challenges are held (sometimes prized), where a labelled data set is 

publicly released for training a model. To rank competitors, a testing data set, where 

labels are withheld (i.e., the data set has only independent variables), is also released. 

Teams submit the test set labels predicted by their trained model, and a leaderboard ranks 

teams according to an evaluation metric e.g., accuracy.

For example, Netflix in 2006 released ratings by ca. 480 000 subscribers on ca. 18 000 

movies, comprising ca. 100 million movie ratings from 1 to 5 [285]. Three million ratings 

(by the same set of subscribers, on the same set of movies) were withheld as test data. In 

2009, a $1 million prize was awarded to the team that improved upon the incumbent 

algorithm of Netflix, Cinematch, by decreasing the root mean square error between 

predicted and actual ratings on the test set by 10 %. Both the release of the ratings data 

and the competition generated interest in recommendation systems, spurred the sharing of 

ideas between groups, and led to advances in recommendation algorithms (which were 

disseminated) [286, 287]. Koren [288], a member of the team that won the Netflix Prize, 

noted “a clear spike in related publications, and the Netflix dataset is the direct catalyst to 

developing some of the better algorithms known in the field”. He noted that the teams 

exhibited a collaborative spirit: “the feeling was of a big community progressing 

together”.

As another example, the ImageNet Large Scale Visual Recognition Challenge is an 

annual, ongoing challenge since 2010, and it has spurred innovation in object recognition 

and detection in images [289]. ImageNET is a crowdsource-annotated database of 

millions of images with hundreds of object categories. An annual workshop is held at the 

end of the year to disseminate and discuss the most innovative and successful approaches. 

[289]
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Within the realm of materials science, to spur developments and track progress in crystal 

structure prediction [290], the CCDC holds a challenge to predict crystal structures of 

molecules [291]. To spur force field development, we envisage holding an open challenge 

to predict the adsorption isotherms of different gases in MOF structures (holding the 

experimental MOF adsorption data secret).
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FIG. 1. 
The chemistry of metal-organic frameworks (MOFs) is modular and highly tuneable, 

affording a vast chemical space of crystal structures in which to search for materials 

exhibiting an optimal adsorption property. (top) MOFs are composed of metal nodes or 

clusters coordinated to organic linker molecules to form a crystalline, porous framework. By 

changing the linkers and metal clusters, we can obtain millions of possible materials. 

Inspired by Ref. 14. (middle) The crystal structures of Ni-MOF-74 [15], HKUST-1 [16], 

IRMOF-1 [12] are shown as examples. (bottom) A sample of HKUST-1 [16] from Ref. 17. 

is show to illustrate how a MOF appears from the naked eye.
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FIG. 2. 
The crystal structure of IRMOF-74-VII was determined by PXRD assisted by computational 

modelling. (a) The suspected and confirmed crystal structure of IRMOF-74-VII. Isoreticular 

to Mg-MOF-74, organic linkers with seven phenylene rings are connected to magnesium 

oxide clusters, forming one-dimensional hexagonal channels (blue: Mg, red: O, gray: C). (b) 

Experimental PXRD pattern (red) and simulated PXRD pattern (black) of a 

computationally-assembled structure of IRMOF-74-VII. The difference between the 

experimental and simulated pattern is shown in green. (c) High-resolution transmission 

electron microscopy images of IRMOF-74-VII show the ordered hexagonal pores as in (a). 

A fast Fourier transform analysis (inset in upper left; scale bar 2 nm−1) was conducted on the 

area in the dashed square. The d-spacing from the Fourier transformation, measured from 

the six reflection spots corresponding to the 110 reflections resolved from the FFT patterns, 

agreed with those from the PXRD patterns. From Science 2012, 336, 6084, 1018–1023. 

Reprinted with permission from AAAS.
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FIG. 3. 
Curating the computation-ready, experimental (CoRE) database of MOFs. (a) The workflow 

of the development of CoRE MOF Database 2014. (b) Automatically removing solvent from 

MOFs deposited in the CSD. Left to right, as-is structure, free solvent removed, free and 

bound solvent removed (CSD refcode: VICDOC). (c) Before and after disorder removed 

(CSD refcode: PIDNEX). Reprinted with permission from Chem. Mater. 2014, 26, 21, 

6185–6192. Copyright 2019 American Chemical Society.
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FIG. 4. 
The seven chemical bond criteria used by Moghadam and co-workers [10] to search for 

MOFs in the CSD. Here QA = O, N, P, C, B, S, QB = N, P, B, S, C, ME = methyl group. 

The superscripts c and a denote cyclic and acyclic, respectively. Reprinted with permission 

from Chem. Mater. 2017, 29, 7, 2618–2625. Copyright 2019 American Chemical Society.
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FIG. 5. 
The algorithm used by Wilmer et al. [213] to construct hypothetical MOF structures first 

extracts building blocks from previously-known MOF structures. These building blocks are 

then combined according to their geometry to create hypothetical MOF structures.
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FIG. 6. 
The MOFs NOTT-107 and NU-125 were both identified via high throughput computational 

screening studies [213, 217] as potentially promising materials for methane storage. 

NU-125, in particular, was pinpointed based on its void fraction of 0.8, which was found as 

optimal for methane storage from prior large-scale screening studies [213]. Crystal 

structures of NOTT-107 and NU-125 (left) with methane adsorption isotherms (right) 

demonstrating comparable performance between the two sorbents.
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FIG. 7. 
Gomez-Gualdron et al. [218] constructed a set of 204 zirconium-based hypothetical MOFs 

and screened them for storing and delivering methane, leading to the synthesis of NU-800. 

(a) The basic building blocks used to construct the hypothetical MOFs (connection points 

highlighted). The ditopic linkers and Zr-SBU are combined in an fcu net. The central and 

peripheral building blocks are combined to form planar, tetratopic building units (e.g., see 

(b)), which are then assembled with the Zr-SBU in the ftw, csq, and scu nets. (b) Examples 

of planar, tetratopic building units obtained by combining one central and four peripheral 

building blocks (see (a)). (c) The crystal structure of NU-800 has fcu topology and is 

constructed from the ditopic TPT linker in (a) (cyan: Zr, red: O, grey: C, white: H). (d) 

Comparison of experimental (points, solid lines) and simulated (dashed lines) isotherms for 

methane adsorption in NU-800 at various temperatures. Reprinted with permission from 

Chem. Mater. 2014, 26, 19, 5632–5639. Copyright 2019 American Chemical Society.
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FIG. 8. 
A machine-learning accelerated high-throughput screening [98] led to the identification of 

MFU-4l for hydrogen storage. (a) Crystal structure of MFU-4l. (b) Simulated and 

experimental H2 adsorption isotherms of MFU-4l at different temperatures. Reproduced 

from Mol. Syst. Des. Eng. 2019, 4, 1, 162–174, with permission from The Royal Society of 

Chemistry.

Sturluson et al. Page 68

Mol Simul. Author manuscript; available in PMC 2020 January 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



FIG. 9. 
Computational identification of UMCM-125 (CSD refcode: ANUGIA) for oxygen storage 

and delivery.[243] (a) Computational screening data; each point represents a MOF. The 

volumetric oxygen deliverable (usable) capacity is largest for MOFs with a void fraction 

(Vf) above 0.7 and a largest cavity diameter above 7.5 Å to 8 Å. Common MOFs are 

highlighted, including the MOF predicted to have the largest O2 usable capacity, 

UMCM-152. (b) The crystal structure of UMCM-125, with the purple sphere highlighting 

the main pore. Figure from Nat. Commun., 2018, 9, 1, 1378, under Creative Commons 

Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/
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FIG. 10. 
SBMOF-1 for Xe/Kr separations [253]. (a) Simulated Xe/Kr selectivity against pore size; 

each point represents a CoRE MOF; SBMOF-1 is marked. (b) The crystal structure of 

SBMOF-1 (CSD refcode: KAXQIL) exhibits 1D channels that form well-defined pockets in 

which xenon can adsorb commensurately with the structure. (green: Ca, yellow: S, red: O, 

gray: C, white: H) (c) Experimentally measured pure-component Xe and Kr adsorption 

isotherms in SBMOF-1 at 298 K. Horizontal, dashed line shows one adsorbate per unit cell, 

indicating commensurate xenon adsorption. Henry coefficients fit to the low-pressure data 

imply SBMOF-1 harbours an equilibrium Xe/Kr selectivity of 16. Inset shows metal (Ca) 

and V-shaped organic ligand used to synthesise SBMOF-1. (d) Comparison of experimental, 

equilibrium Xe/Kr separation capability among MOFs at dilute conditions and at ≈ 298 K; 

Henry coefficients were extracted from experimental pure-component adsorption isotherms 

in the literature. Reproduced and adapted from Nat. Commun. 2016, 7, 11831, under 

Creative Commons Attribution 4.0 International License https://creativecommons.org/

licenses/by/4.0/.
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FIG. 11. 
Computational identification of Ni3(BTP)2 for chemical warfare agent capture [263]. (a) The 

structure of Ni3(BTP)2 (CSD refcode: UTEWOG). (b) Mustard gas and its surrogate diethyl 

sulphide (DES). (c) DES breakthrough curve. A N2 gas stream with 80 % relative humidity 

and 1 ppm DES at 298 K is passed, at 20 mL/min, through a column packed with 150 mg of 

Ni3(BTP)2. Shown is a measurement, via gas chromatography, of normalised DES 

concentration at the outlet of the column. Reprinted with permission from Chem. Mater. 

2018, 30, 14, 4571–4579. Copyright 2019 American Chemical Society
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FIG. 12. 
The discovery of NOTT-101/OEt was guided using a genetic algorithm in conjunction with 

molecular simulations to evaluate fitness [114]. (a) A chromosome describes a MOF 

structure with 6 integers (called genes), each representing a different property of the MOF. 

The chromosomes define a chemical space that will be explored in the genetic algorithm. (b) 

A visualisation of the evolution of the primary organic linker gene throughout the genetic 

algorithm using the adsorption performance score as the fitness. After 10 generations, only 3 

genes are predominantly contained within the chromosomes, hinting that these linkers are 

optimal for CO2 capture. (c) The simulated adsorption properties of the MOFs from the 

genetic algorithm search. Each point represents a hypothetical MOF that appeared/evolved 

in the genetic algorithm. NOTT-101/OEt is marked. (d) A comparison between simulated 

and experimental isotherms for NOTT-101/OEt. The experimental isotherms were scaled to 

take into account the 92 % pore activation of the synthesised NOTT-101/OEt sample. The 

inset shows the structure of NOTT-101/OEt with pores represented by dark spheres. Figure 

from Sci. Adv., 2016, 2, 10, e1600909, under Creative Commons Attribution-

NonCommercial 4.0 International License https://creativecommons.org/licenses/by-nc/4.0/.
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FIG. 13. 
Screenshot of an article entry[293] available in the NIST-ISODB, selected from results of a 

search using “NH4-ZSM-5” as the adsorbent material and “carbon dioxide” as the adsorbate 

gas. Metadata about the experiments described in the article are shown in the upper half of 

the screenshot. The isotherm visualisation widget shows four separate isotherms from the 

source article plotted together.
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FIG. 14. 
On the reproducibility of CO2 adsorption isotherms in HKUST-1 [299]. (a) Experimental 

isotherms of carbon dioxide adsorption in HKUST-1 at temperatures of 298 K ± 5 K, as 

collected and organised by Park et al. [299] from the NIST-ISODB, to show the variability 

of laboratory measurements for that particular adsorption experiment. (b) Box-and-whisker 

plot created from 13 (out of 18) non-outlier isotherms in panel (a). Boxes represent the upper 

and lower quartile, the median is indicated by the straight line, and the small square is the 

mean. Whiskers represent 1.5 times the interquartile range. Reprinted with permission from 

Chem. Mater. 2017, 29, 24, 10487–10495. Copyright 2017 American Chemical Society.
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FIG. 15. 
Graphical summary of reproducibility and consistency results from Park et al. for adsorption 

isotherms of carbon dioxide on various MOFs[299]. On the x-axis, reproducibility increases 

(according to Park et al.’s metrics) from left to right. Font size is indicative of the number of 

independent isotherms available for the noted material and bolding/italicisation identifies 

outlier levels. The reader may consult Ref. 299 for full description of the reproducibility 

level, consistency rating, and outlier levels. Reprinted with permission from Chem. Mater. 

2017, 29, 24, 10487–10495. Copyright 2017 American Chemical Society.
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