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Abstract

Gene regulatory networks and the dynamic responses they produce offer a wealth of information 

about how biological systems process information about their environment. Recently, researchers 

interested in dissecting these networks have been outsourcing various parts of their experimental 

workflow to computers. Here we review how, using microfluidic or optogenetic tools coupled with 

fluorescence imaging, it is now possible to interface cells and computers. These platforms enable 

scientists to perform informative dynamic stimulations of genetic pathways and monitor their 

reaction. It is also possible to close the loop and regulate genes in real time, providing an 

unprecedented view of how signals propagate through the network. Finally, we outline new tools 

that can be used within the framework of cell-machine interfaces.

Introduction

Deciphering the inner workings of regulatory networks within cells is arguably one of the 

most daunting reverse engineering problems today. Through billions of years of evolution, 

organisms have been optimized in a massively parallelized process to adapt to a plethora of 

changing environments. Dissecting the dynamics of these complex gene regulatory networks 

is an important step in our comprehension of living systems. However, even long after Jacob 

and Monod’s foundational discovery on cellular regulation of lactose metabolism [1], tools 

for dissecting such networks remained primarily limited to gene knock-outs. In addition to 

requiring methods for chromosomal modification, knock-outs do not allow experimenters to 

follow the effect of their perturbation dynamically, requiring researchers to deduce the 

connections within gene networks from static, steady state measurements. Decades later, the 

emergence of chemically or heat responsive genetic induction systems ushered in a new 

wave of experiments that formed the foundation for the field of synthetic biology [2–4]. 

With those inducible systems, it was now possible to perturb gene regulatory networks and 

track their reaction over time. Over the next few years, synthetic biologists set out to develop 

genetic circuits that would allow them to precisely control gene expression or cellular 
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processes to study genetic networks (for an excellent comprehensive review see Ref. [5]). In 

addition, the emergence of optogenetic tools [6–9] to steer gene expression has expanded the 

toolbox that scientists can use to dissect the regulatory mechanisms of the cell.

In this review, we focus on a new paradigm that has appeared with the emergence and 

refinement of these tools: systems and synthetic biologists have started outsourcing the 

signal processing part of their genetic circuits to computers. By using microfluidics or 

computer-controlled light signals on the one hand and automated microscopy or flow 

cytometry on the other, they have implemented cell-machine interfaces in which a computer 

is able to both perturb and monitor expression of genes in living cells in a completely 

automated process. These advances have off-loaded intricate and often burdensome genetic 

circuit design to easily-configurable and rewritable software, which greatly speeds up the 

design-build-test cycle for implementing new perturbations. Here, we review this nascent 

and evolving field, the classes of scientific questions it can help investigate, and how it might 

expand.

Time-varying stimulations

Gene regulation networks process signals. While static perturbations like gene knock-outs 

can give some insight into their operation, time-varying stimulations provide more 

information about how the system adapts to changes. With time-varying perturbations, the 

experimenter can observe both the resting state of gene regulatory networks and their 

reaction to a stimulus. Without measuring these transient effects, one might miss critical 

nodes or connections in the network that would not appear to be impacted in steady state 

measurements [10,11]. For this reason, scientists have developed chemically inducible 

systems that can deliver well-defined dynamic inputs to their circuit.

By combining chemical inputs with computer-controlled time-lapse fluorescence 

microscopy, researchers have started assembling cell-machine interfaces that can extract an 

increasing amount of information about their system in an entirely automated process. In 

2008, pioneering studies in the model organism Saccharomyces cerevisiae demonstrated the 

potential of this approach [12–14]. Oscillatory fluctuations in the nutritive or osmotic 

environment of the cells not only gave insights into the frequency-response of essential cell 

adaptation pathways, but also unearthed key regulatory interactions within those pathways. 

An attractive aspect of these automated experimental platforms is the relative ease of scaling 

up and massively parallelizing the technique: a few years later Dénervaud and colleagues 

[15] conducted a proteome-wide screen of dynamic responses to chemical and UV stresses 

in S. cerevisae by simultaneously monitoring over one thousand separate experiments per 

microfluidic chip.

Albeit less heavily parallelized, a similar approach using 96 independent experiments was 

adopted by Sorre et al. to look into signal processing in embryogenesis regulation in 

mammalian cells [16]. By using step changes, ramps, and trains of pulses in the 

concentration of the TGF-β morphogen in the cell’s environment, the authors demonstrated 

that the differentiation pathway they studied is mostly responsive to the rate of change in the 

morphogen concentration rather than its absolute value. This led them to propose a new 

Lugagne and Dunlop Page 2

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanism for embryogenic cell-fate determination: While gradients of morphogens do 

direct spatial organization, the rate of change in the morphogen concentration varies 

throughout the gradient, and gene regulation networks involved in cell differentiation might 

respond to the time-derivative of the establishment of the gradient. The study of this 

mechanism would have been near impossible had the authors not been able to dynamically 

alter the environment of their cells. In a similar spirit, Young and coworkers used 

microfluidics to inject chemical stressors in the environment of Bacillus subtilis cells, 

ramping the concentration up at various rates [17]. The authors showed that induction under 

the σB sigma factor, which targets over 200 genes in response to stresses, is adaptive, 

meaning that the rate of stress introduction will influence the intensity of activation. More 

recently, a commanding study of stress response in yeast [18] used tools from information 

theory to decipher how environmental information is encoded into gene regulation dynamics 

using single-cell microscopy acquisitions under time-varying inputs. The authors analyzed 

the dynamics of ten transcription factors known to be related to stress response, and 

demonstrated how their temporal response profile encoded not only the nature of the stresses 

that the cells were subjected to, but also their magnitude.

In the past decade, a number of optogenetic induction systems have been developed for 

bacteria [6,9], yeast [7], and mammalian cells [8]. Light is an attractive signal in that it is 

relatively straightforward to program and apply in time-varying inputs, in contrast to 

chemically inducible signals that typically require some kind of microfluidic apparatus. 

Harnessing the tight and precise control offered by optogenetics, Olson and co-workers used 

pre-determined sequences of light inputs to precisely drive gene expression over time [19]. 

They then used their method as a “function generator” to characterize the behavior of a 

synthetic inverter circuit. Using a light-activated enzyme, Stewart-Orstein and colleagues 

investigated the protein kinase A (PKA) pathway [20]. This approach allowed them to 

directly perturb the pathway internally, with a temporal precision and resolution that 

identified new dynamical relationships within this pathway that adapt on the order of 

minutes. Wilson and co-workers recently used optogenetics to control the Ras/Erk pathway, 

which is a fundamental network in cell division and growth in mammalian cells [21,22]. 

They also monitored expression of downstream genes and followed the regulatory activity of 

the pathway at the signaling, transcriptional, and translational levels simultaneously. By 

applying various time-varying profiles as inputs, they identified frequency-dependent 

processing of the optogenetic input as well as logic gating between the processed 

optogenetic input and other environmental cues, and modeled the pathway’s behavior based 

on their experimental data. Taken together, these examples demonstrate the wealth of 

information that can be extracted about a gene regulatory network by applying time-varying 

perturbations. In many of these cases, the knowledge gathered about the networks would 

have been impossible to obtain without some kind of dynamic stimulus.

Cell-machine interfaces and computer-based feedback

Although microfluidics and optogenetics can be used to manipulate the environment of cells 

or induce gene expression, reverse engineering often requires precise and robust 

manipulation of elements within the system itself. In recent years, this has led several teams 

to close the loop between perturbation and monitoring by developing cell-machine interfaces 

Lugagne and Dunlop Page 3

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that implement computer-based feedback to steer the system towards a desired, potentially 

informative state. Synthetic biologists have genetically encoded feedback mechanisms 

within synthetic circuits [23–25], and recent developments in the field promise ever finer 

control [26,27]. However the flexibility offered by running the algorithmic part of the 

feedback loop through a computer or microcontroller offers the possibility to both rapidly 

iterate over different feedback parameters or strategies, and to implement complex feedback 

algorithms from modern control theory.

Toettcher et al. [28] used the optogenetic Phy-PIF system [29] to precisely control 

recruitment of both fluorescent proteins and enzymes at the membrane of human HeLa cells 

on the timescale of seconds to minutes. They used a relatively simple proportional-integral 

control scheme to achieve this. Proportional-integral control is a ubiquitous algorithm in 

traditional engineering fields that has been around for over a century. Despite its relative 

mathematical simplicity, it has not yet been successfully implemented in synthetic genetic 

circuits. Out-sourcing the feedback control to a computer can allow for implementation of 

algorithms that are not easily achievable with biological parts.

In another example, Milias-Argeitis et al. were able to control gene expression in S. 
cerevisiae over periods of hours [30]. The authors also used the Phy-PIF optogenetic system 

to control fluorescence levels in a batch liquid culture by periodically measuring cells state 

in a flow cytometer. They used a feedback strategy called model predictive control, in which 

a minimal mathematical model of the genetic system is used to infer the optimal inputs that 

will drive the cells to the desired fluorescence level. This framework is particularly well-

adapted to the control of non-linear, noisy systems, but its algorithmic complexity far 

exceeds the current capabilities of synthetic circuit engineering. A study by Uhlendorf et al. 
focused on single-cell control in S. cerevisiae by driving the expression level of a promoter 

downstream of the endogenous osmolarity-responsive HOG signaling pathway via 

microfluidics [31]. The authors also used model predictive control and were able to 

manipulate the fluorescence level of a single cell for over sixteen hours.

Since then, the field has been expanding, both in the variety of systems investigated and 

finesse of the control. Days-long control of gene expression in mammalian cell lines has 

been reported using a variety of chemically-inducible promoters with microfluidics [32,33]. 

Chait and coworkers [34] combined microfluidics and optogenetics to control fluorescence 

levels in several single Escherichia coli cells independently, reducing cell-to-cell variation at 

the population level. They then used their platform to implement cell-to-cell communication 

through the computer, paving the way for the study of group behavior through single-cell 

control. Beyond gene expression level manipulation, feedback systems also make it possible 

to control other measurable properties of the cells. For example, an interesting tool for cell 

physiology studies has been implemented by Milias-Argeitis and coworkers [35]. By placing 

an essential synthase under the control of the CcaS/R bacterial optogenetic system [9,36] 

they were able to precisely control the growth rate of batch cultures of E. coli cells [35].

In the last two years, studies have appeared using computer-based feedback and synthetic 

biology methods to investigate questions relevant to systems biology. By studying the 

controllability of a bistable genetic toggle switch [37], an architecture common in cellular 
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decision-making circuits, researchers serendipitously discovered a dynamic stabilization 

mechanism that can explain how pluripotency is maintained prior to cell fate determination 

[38]. In another study, Rullan et al. [39] used a single-cell optogenetic feedback interface to 

control transcriptional activity. By automatically detecting nascent RNA transcripts in single 

cells, they quantitively investigated transcriptional bursting in yeast, and proposed a 

mechanistic model describing the relationship between transcription factor binding and 

bursting dynamics that hints at the potential effect of histones. Finally, the traditional 

approach to disentangling feedback in a regulatory network typically involves deleting a 

potential regulator and identifying the nodes in the network that are perturbed. However this 

yields no information regarding the dynamics of those feedback loops. In a remarkable effort 

to quantify and parameterize such feedback loops in the yeast pheromone response MAPK 

pathway, Harrigan et al. replaced endogenous pathway regulators with light-inducible ones, 

and used model predictive control to try to compensate for the lost feedback loops [40]. 

Although the first attempts sometimes failed, the information gathered allowed them to re-fit 

their models until they achieved satisfactory compensation, thus inferring dynamical models 

for three feedback loops in the MAPK network. This interplay between iterative parameter 

inference and computer-based feedback control is a promising avenue for fast, automated 

regulatory network analysis.

Optimal experimental design

Because precise and dynamically complex genetic perturbations are now possible, and 

finely-resolved data can be extracted out of experiments, the refinement of our analysis and 

mathematical models of gene regulatory networks keeps increasing. But investigating and 

dissecting these networks in ever more details calls for more informative experiments. 

Moreover, with dynamic perturbations, the parameter space for designing experiments 

increases dramatically. Optimal experimental design is a powerful tool to minimize the 

number of experiments necessary to investigate a gene regulatory network. Given a system 

to reverse engineer, the core concept of optimal experimental design is to calculate what the 

optimal series of experiments would be to perform on that system in order to produce data 

that would best constrain its modeling. Theoretical studies describing its potential use in 

systems biology arose early [41–44]. At the time, because both perturbations and 

observations were less dynamically refined, the studies focused on static genetic 

manipulations to infer network structure. Since then, with technical advances, a body of 

work has been building up on optimal time-varying inputs to maximize dynamic 

understanding of gene regulation networks [45–47]. However, these studies have remained 

predominantly theoretical, and few experimenters actually incorporate optimal experimental 

design into their workflow. A notable exception is the work by Bandara and colleagues in 

which an ordinary differential equation model describing the phosphatidylinositol 3,4,5-

trisphosphate (PIP3) lipid signaling dynamics in mammalian cells was fitted to the results of 

iteratively-designed experiments with time-varying chemical inputs [48]. In a remarkable 

testament to the power of optimal experimental design, the study showed that only two 

iterative experiments suffice to reduce the uncertainty on the parameter estimates by over 

60-fold, where previous “intuitively designed” experiments failed to constrain the fit. 

Another notable study reports the optimal experimental design-driven characterization of an 
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optogenetic system in yeast [49]. After the authors demonstrate that, again, only two 

optimally-designed experiments were necessary to constrain the parameters of the model, 

they used their fitted model to perform computer-based, model predictive feedback control 

on both the average fluorescence level of their population and its variance. While 

experimental implementation of optimal experimental design is still somewhat lacking, we 

expect that it will combine synergistically with advanced dynamic stimulation frameworks 

and cell-machine interfaced feedback control to play an increasing role in gene regulatory 

network analysis.

Current limitations and new tools for controlling gene regulation networks

Cell-machine interfaces arose thanks to technical advances in, among other things, 

molecular biology, microfluidics, optogenetics, and image processing. Naturally, their 

capabilities are constrained by the current limitations of these underlying technologies. For 

example, long term single-cell control of gene expression in mammalian cells is a major 

challenge because it requires near perfect on-the-fly image segmentation. Recently however, 

a revolutionary deep learning-based segmentation framework, U-Net [50], has been 

streamlined for use in biomedical acquisitions [51] and has shown outstanding results for 

mammalian cell segmentation. Another limitation of these platforms is the difficulty in 

measuring gene expression deep within tissues in real time, which confines the interfaces to 

the study of either monolayers of single cells or liquid cultures that can be sampled from. An 

exciting potential solution that could bring cell-machine interfaces into animal models is 

photoacoustic tomography [52]. This technique can exploit the photoacoustic properties of 

reporter proteins to measure gene expression in a non-invasive way, at depths of several 

millimeters to centimeters.

Regardless of the organism, experimenters are limited to the study of gene regulation 

networks that can be perturbed, which restricts them to either systems that naturally respond 

to environmental stimuli, or to potentially disruptive genetic modifications. Fortunately, 

technological solutions for better and easier manipulation of cellular processes are emerging. 

CRISPR-derived genome-targeting tools, especially photo-activatable ones [53–56], are a 

clear example. CRISPR activation/inhibition systems can be used to target and perturb 

endogenous pathways within their physiologically relevant ranges and with minimal off-

target interference. These tools offer the exciting potential for time-varying dCas9-mediated 

perturbations to investigate gene regulation dynamics. Photoactivatable recombinases offer 

another potential solution [57]. With this system, not only can a gene of interest be turned 

completely off by excising its DNA, it can also be turned from off to on with appropriate 

arrangement of the recombinase’s recognition sites. This tool allows the experimenter to 

investigate the effect of complete gene knock-outs or knock-ins dynamically. The emergence 

of frameworks for automated circuit design and cloning [58] could also lead researchers to 

study cellular processes more extensively and systematically. By automating the time-

consuming and often repetitive genetic modifications required to interface the machine with 

different parts of a gene regulation network, studying complex networks with an otherwise 

impractically large number of genes may become possible. An exciting potential 

development would be to integrate the design and construction of new strains into an optimal 
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experimental design workflow, suggesting both the genetic modifications and the dynamic 

experiments that would yield the most information.

Increasing the number of inputs and outputs in the network also offers the potential to 

increase performance. Optogenetic actuation and fluorescence sensing quickly run into 

spectral crowding issues, especially when used simultaneously. As an alternative approach, 

the development of microfluidic chips integrating valves and pumps, like the one used by 

Sorre et al. [16], makes it possible to use several chemically inducible systems to perturb 

gene regulation networks. The renewed interest in fluorescent probe development that 

followed the super-resolution breakthrough [59,60] could help extract more information out 

of dynamic experiments. By expanding the toolbox of available biosensors, protein 

engineers have made it possible to investigate, and possibly control, gene regulation 

networks in more refined ways. These advances can also enable tracking of more nodes 

simultaneously in a network, as illustrated by the signaling-transcription-translation 

monitoring described in Wilson et al. [22]. Exciting studies have shown how the use of 

photoswitchable fluorescent reporters with modulated light signals can discriminate between 

spectrally similar reporters [61,62]. Such techniques would make it possible to monitor 

many nodes simultaneously in gene networks. Finally, further development of periodic 

sampling platforms would allow cell-machine interfaces to be integrated with other, more 

holistic cell biology techniques like RNA-seq to contextualize the knowledge acquired 

through dynamic stimulation of an isolated gene regulation network.

Conclusions

Following the same trend that more traditional engineering fields followed decades before, 

synthetic biologists have started interacting with the physical processes they intend to 

perturb and analyze through the digital realm. Much like electromechanical actuators and 

sensors, microfluidic and optogenetic tools and biosensors allow researchers to submit 

genetic systems to programmed, time-varying inputs and to monitor their reaction over time. 

By closing the loop between sensing and actuation, experimenters have now started to 

precisely and robustly steer nodes within gene regulatory networks. While the domain is still 

young and constantly evolving, we expect this approach to spread as standards and protocols 

are established. We also anticipate that recent progress in the field of optimal experimental 

design can be used in the framework of cell-machine interfaces to drive on-line 

experimentation. In conjunction with new minimally-invasive chemical or light-inducible 

actuators and fluorescent biosensors, autonomous and automated investigation of the 

dynamics of gene regulatory networks, possibly in a massively parallelized fashion, has the 

potential to revolutionize our approach to systems biology.
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Highlights

• Cell-machine interfaces are increasingly used to perturb gene regulatory 

networks and study their dynamics.

• By implementing computer-based feedback loops, researchers can precisely 

and robustly manipulate the inner workings of genetic pathways.

• Optimal experimental design can help identify and model the structure of 

gene regulatory networks.
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Figure 1. 
Computer-based study of gene regulatory networks. (A) Computers are used to subject cells 

to dynamic stimulations using chemical inducers or light. Automated microscopy or flow 

cytometry is used to monitor the dynamic response of the gene regulatory network in real 

time, and the data is then analyzed to infer a mathematical model capturing the dynamics of 

the system. (B) Automated microscopy or flow cytometry can also be used to implement 

feedback control through the computer. The state of one or more nodes of the regulatory 

network is measured and compared to a reference objective that the experimenter chooses a 
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priori. This error is fed into a control algorithm that will modify the chemical or light input 

in real-time to steer the controlled gene or genes towards the objective. One or more other 

nodes can also be monitored to study their reaction to this internal perturbation. (C) A model 

of the system can be used to infer what dynamic perturbation would yield the most 

information to improve understanding and modeling of the system. The process can be 

iterated, with the improved model being used to design new perturbations.
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