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ABSTRACT

Stereotactic body radiation therapy (SBRT) is a relatively new technology, and its use among patients 
with benign spinal tumors has limited prospective data. Similar to intracranial benign tumors treated 
successfully with SBRT, benign spinal tumors of the same histology can also develop, and SBRT 
may be an effective treatment alternative in inoperable or recurrent cases. Outcomes in patients with 
neurofibromatosis type 1, neurofibromatosis type 2, or schwannomatosis treated with SBRT have also 
been reported. Single institution reports have shown local control rates over 90% and improvement in 
clinical symptoms. The optimum dose and fractionation to maximize local control and minimize toxicity 
is unknown, with few incidences of radiation treatment-related toxicities. Given the location and benign 
nature of these tumors, careful management of dose to critical organs is essential. With continued follow-
up, the optimum use of SBRT in patients with benign spinal tumors can be better defined.
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INTRODUCTION

Benign spinal tumors (BST) account for nearly 70% of 
all spinal tumors [1]. Primary surgical resection remains the 
standard treatment, demonstrating excellent tumor control 
and low morbidity [2-7]. Previous attempts to use external 
beam radiotherapy (EBRT) for spinal tumors have been 
limited by spinal cord tolerance [8, 9]. However, with devel-
opment of stereotactic body radiation therapy (SBRT), high 
doses of conformal radiation can be delivered to a target 
while sparing the spinal cord. The use of SBRT for the treat-
ment of benign spinal tumors has been emerging.

TYPES OF BENIGN SPINAL TUMORS

The most common benign tumors include meningi-
omas and nerve sheath tumors (NST) (schwannomas 
and neurofibromas), which comprise 25% and 25-30% 
of spinal tumors, respectively [1, 3, 6, 7, 10, 11]. These 
tumors are commonly intradural and extramedullary in 
location [12].

Radiographically, meningiomas and NSTs are typi-
cally iso-intense on T1 weighted, and hyperintense on 
T2 weighted MR imaging [10, 12-15]. Meningiomas 
show moderate, homogenous post-gadolinium enhance-

ment, whereas schwannomas demonstrate more avid 
enhancement that may be heterogeneous [13]. Neu-
rofibromas tend to have a more homogeneous contrast 
enhancement compared to schwannomas (Table 1).

PATIENT SELECTION

Microsurgical resection is the standard treatment 
for BSTs. However, patients with multifocal disease, 
advanced age, poor performance status, or comorbidi-
ties may be poor surgical candidates [16]. Patients with 
inoperable, incompletely resected, or recurrent disease 
after prior surgical therapy may also be candidates for 
alternate treatment approaches. Although histopatho-
logic diagnosis is generally preferred prior to SBRT, 
some patients are treated without pathologic confirma-
tion when the risk of biopsy is considered too high and/
or radiographic and clinical characteristics are deemed 
sufficient.

Patients who undergo spinal SBRT for BSTs are 
typically symptomatic with pain, sensory disturbances, 
extremity weakness, and/or incontinence. However, 
asymptomatic patients may also be considered for 
SBRT, particularly if further growth may cause neuro-
logic compromise. SBRT is typically considered to be 

Table 1. Imaging findings of benign spine tumors by histology

Histology CT findings MRI - T1 MRI - T2
MR Contrast 
Enhancement Other

Meningioma -Frequent calcifications 
-May have bone 
erosions, sclerosis or 
mixed osseous changes 
-May enlarge adjacent 
paranasal sinuses

Iso/hypo-
intense

Hyper/iso-intense, Homogeneous 
enhancement 
(except 
calcifications)

-Relatively more common in 
thoracic location
-More common in females
-Dural tail sign 
-Displacement of spinal cord 
(widening of the ipsilateral 
subarachnoid space)

Schwannoma -Iso/hypo-dense
-Bone remodeling
-Scalloping of larger 
lesions
-Rounded
-Cystic changes

Iso-intense -Hyper-intense, 
heterogeneous 
-Fluid signal intensity in 
cystic components
-May have target 
sign (peripheral T2 
hyperintensity with 
central hypointensity)

-Avid, irregular/
heterogeneous 
enhancement 

-Often in cervical/lumbar dorsal 
nerve roots with foraminal 
extension (dumbbell shape)
-Peripherally located within nerve 
root
-Fluid-fluid level may be present 
-Well circumscribed
Multiple lesions in NF2 and 
schannomatosis

Neurofibroma -Bone remodeling
-Scalloping of larger 
lesions
-Round or fusiform

Iso-intense -Hyper-intense
-T2 hyperintense rim 
with central hypointensity 
(target sign)

-Typically 
homogeneous 
enhancement

-Infiltrative lesion within nerve 
roots
-Difficult to distinguish from 
schwannoma, particularly in the 
setting of NF2
-Commonly smaller than 
schwannomas
-Multiple lesions may be seen 
in NF1
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appropriate for well circumscribed lesions, with a spa-
tial relationship to the spinal cord that allows differen-
tial dosing to the spinal cord and tumor (Figure 1) [17]. 
SBRT is contraindicated in patients with spinal insta-
bility and/or osseous cord compression or myelopathy. 
Reirradiation with SBRT can be feasible depending on 
the previous dose to the spinal cord at the index spinal 
segment [16]. 

When treating benign tumors, the risks must be 
carefully evaluated against benefits. The endpoints 
commonly evaluated with BSTs include pain relief and 
local control, however this must be weighed against late 
toxicities such as radiation myelopathy. 

RADIATION PLANNING AND DELIVERY

Treatment Device

Several systems are available, including robotic-based 
(CyberKnife) and linear accelerator (LINAC) based 
systems, while newer MRI based platforms are on the 
horizon. Image guidance with intrafraction orthogonal 
X-rays (CyberKnife X-Sight and BrainLab ExacTrac) or 
cone beam CT in conjunction with robust immobilization 
devices (e.g. Elekta BodyFIX) are an essential aspect of 
the precision of SBRT [18-20]. Emerging technologies 
for SBRT include ring-mounted LINAC with rotational 
capabilities and MRI-based image guidance [21].

CT Simulation

Patients are simulated and treated in supine posi-
tion with appropriate immobilization. Thermoplastic 
masks extending to the chest can be used for cervical 
and upper thoracic spine lesions (down to T4), while 
semi-rigid vacuum body fixation can be used in lower 
thoracic and lumbosacral lesions [17, 22-25]. CT based 
simulation is performed with ≤1.25 mm slice thickness 
within the range of target volumes and organs at risk 
(OAR) that may be within the beam path.

Delineation of Targets and Organs-at-Risk and 
Radiation Treatment Planning 

Fusion of treatment planning CT and MRI facili-
tates delineation of gross tumor volume (GTV) (T1 with 
gadolinium) and spinal cord (T2). As BSTs are typically 
well demarcated on MRI, a clinical target volume (CTV) 
expansion is unnecessary. Planning target volume (PTV) 
expansions vary among different institutions (range 0-3 
mm). Some institutions add 1.5-2 mm margins to the 
spinal cord contour to generate a planning-at-risk vol-
ume (PRV) which accounts for independent physiologic 
spinal cord and intra-fraction patient bulk motion, and 
potential variations in spinal cord contouring [26]. When 
a PTV expansion is performed, the portion extending into 
the spinal cord or spinal cord PRV should be trimmed to 
avoid overdosing OARs.

Figure 1. A T4 neurofibroma treated with SBRT to a dose of 25 Gy in 5 fractions (red isodose line).
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Dose regimens vary throughout the literature 
and range from 11.6 Gy to 30 Gy in 1-6 fractions. 
Compared to spinal metastases, lower biological 
effective doses (BED) are typically needed to yield 
durable local tumor control. Dr. Sahgal has pub-
lished the spinal cord tolerance guidelines for radia-
tion naïve patients, and interested readers can refer 
to the paper for more details [27]. In addition, Dr. 
Kalash from the University of Pittsburgh Medical 
Center published the results of their retrospective 
series on dose de-escalation with no difference in 
local control of BSTs between high dose (BED

10Gy 

>30) versus low dose SBRT [28].
Additionally, inverse treatment planning algo-

rithms allow for maximum tumor coverage while 
protecting the spinal cord and other critical organs. 
The importance of an optimal treatment planning 
algorithm cannot be overemphasized. In a study 
from Case Western Reserve University when Ray 
Tracing algorithm was used instead of Monte Carlo 
calculation for planning CyberKnife-based SBRT 
in the thoracic region, the actual PTV coverage was 
decreased and the spinal cord dose was significantly 
underestimated in some patients [29]. The Imaging 
and Radiation Oncology Core (IROC) Houston, in 
cooperation with the RTOG, has tested several treat-
ment planning systems and provided a list of accept-
able systems for dose calculation within a medium 
of heterogeneity, as is often seen with thoracic spine 
lesions [30]. 

SPINAL MENINGIOMAS

Spinal meningiomas comprise 10% of all meningi-
omas and 25% of all spinal tumors [31, 28]. Most spinal 
meningiomas occur in the thoracic region, posterolat-
eral to the spinal cord [10, 14]. 

In the Stanford University series, 32 spinal menin-
giomas with a mean volume of 3.03 cc (0.14-11.05cc) 
were treated to a median dose of 20.57 Gy (16–30 Gy) 
over a median of 2 fractions [25]. Approximately 50% 
of lesions had been previously resected, and the remain-
ing were diagnosed by imaging. At median follow-up 
of 29 months, all treated meningiomas were either sta-
ble (47%) or decreased (53%) in size. Overall, 91% of 
meningiomas had stable or improved neurologic symp-
toms, with 57% of patients reporting pain improvement 
and 43% reporting minimal change. One case of late 
onset transient myelitis was observed 9 months after 
treatment for a 7.6 cc recurrent meningioma treated to 
24 Gy over 3 fractions.

Colleagues from the University of Pittsburgh treated 
13 spinal meningiomas (11 with pathologic diagnosis) 

to a median dose of 21.25 Gy (range 17.5-25 Gy) with 
mostly single fraction SBRT [17]. At a median follow-
up of 14 months, all lesions were radiographically 
controlled, and a single event of spinal cord toxicity 
was observed. Similar excellent rates of radiographic 
control have also been noted by others at a median fol-
low up of 18-25 months, without spinal cord toxicities 
(Table 2).

After treatment, patients with spinal meningiomas 
may be monitored radiographically. In a Korean study, 
11 patients treated with SRS (7 patients; median dose 
15 Gy) or SBRT (4 patients; median dose 26 Gy in 3 
fractions) were followed for a median of 46.9 months 
[37]. All lesions were controlled locally, with an aver-
age volume reduction of 29.7%. No statistically sig-
nificant changes in enhancement patterns or T2 signal 
intensity were found.

Overall, spinal meningiomas treated with SBRT to 
doses ranging from 16 Gy in one fraction to 30 Gy in 
5 fractions achieved excellent local control rates com-
parable to surgical outcomes after gross total resec-
tion [28, 38, 39]. The results also parallel findings 
seen with fractionated radiotherapy and single fraction 
radiosurgery for intracranial meningiomas [40, 41]. 
SBRT also appears to provide pain improvement in up 
to 30% of patients over the initial weeks to months, 
however motor deficits rarely improve [25, 34, 42]. 
The comparable outcomes of spinal SBRT and both 
surgery and intracranial stereotactic radiosurgery sug-
gest that SBRT for spinal meningiomas is feasible, 
although longer follow up is necessary to better define 
its therapeutic role.

SPINAL SCHWANNOMAS

Spinal schwannomas comprise a third of spinal 
neoplasms [7, 42]. Spinal schwannomas have varied 
growth rates, similar to acoustic schwannomas, and 
only a minority of tumors will manifest with symp-
toms [7, 42-44]. They are typically located posterior to 
the spinal cord, and thus surgical resection is preferred 
[2, 7, 39]. However, these tumors may be associated 
with neurofibromatosis type 2 (NF2) and schwanno-
matosis and can present with multiple lesions [44-48]. 
NF2-associated lesions are clinically more aggressive, 
tend to grow faster, cause neurological deficits sooner, 
recur more frequently, and are less responsive to treat-
ment [7, 11, 16]. 

In the largest published series from Dr. Sachdev 
at the Stanford University Cancer Center, 47 spinal 
schwannomas were treated with Cyberknife-based 
SBRT, for which 11%, 21%, and 7% of lesions from 
the entire cohort (103 spinal lesions) had associated 
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diagnoses of neurofibromatosis type 1 (NF1), NF2, and 
schwannomatosis, respectively [25]. The mean tumor 
volume was 6.18 cc (0.05-54.52 cc) and mean dose 
delivered was 18.74 Gy (14-24 Gy) over a median of 
1 fraction (range: 1-4 fractions). At a median follow up 
of 29 months (range: 6-87 months), a single lesion pro-
gressed 73 months after treatment after receiving 18 Gy 
in 3 fractions, resulting in a crude control rate of 98%. 
Radiographic regression was noted in 47% of patients, 
half of which decreased to less than half the original 
tumor size. Pain was improved in 54% of patients and 
progressed in only 14%. Salvage surgery was attempted 
in four patients (only one of which experienced radio-
graphic progression), with subsequent symptomatic 
improvement in three of four patients and no change in 
symptoms in one patient. No late spinal cord toxicities 
were noted.

A Korean series reported outcomes of 54 patients 
with benign tumors (47 spinal schwannomas), who pre-
sented with pain (63%) or neurologic symptoms (24%) 
[49]. Most were treated with single fraction SBRT 
(72%) to a median of 13 Gy as primary therapy, and 
the remaining patients received a combination of sur-
gery and SBRT. At a mean follow up of 43.2 months 
[range: 12-136.8 months], the crude radiographic con-
trol rate was 95%, with 55% of lesions showing regres-
sion. Transient swelling was noted in 20% of lesions at 
a median time from SRS of 8 months (range: 5.1-44.3), 
and tumoral enhancement suggestive of necrosis was 
noted in 69%; neither finding was significantly associ-
ated with local control (p=0.253 and p=0.067, respec-
tively). Overall, significant improvements in pain scores 
were noted at a median of 8.1 months, and all patients 
with neurological symptoms improved after combined 
surgery and SBRT.

Drs. Gerszten and Burton reported 35 spinal 
schwannomas treated with Cyberknife-based SBRT, 
with overall rates of NF1 and NF2 being 29% and 12%, 
respectively [16]. The mean tumor volume was 11.0 
cc (1.0 – 47.7 cc), and 59% of lesions were located 
in the cervical spine. Prescription doses ranged from 
17.5-25 Gy in one fraction. At a median follow up of 
37 months (8-71 months; all patients), the radiographic 
control rate was 100%. Among initially symptomatic 
patients, 82.4% noted improvement in pain, and 80% 
had improvement (60%) or stabilization (20%) of neu-
rologic symptoms. Three patients ultimately under-
went salvage surgery for progressive symptoms. Two 
patients experienced transient myelopathy, with subse-
quent return of strength. 

Published series demonstrate excellent crude local 
control rates after single fraction SBRT for schwanno-
mas, ranging above 90-95% [16, 23, 25, 29, 33, 34, 36, 
49], similar to published surgical studies [2, 7, 11, 50], 
and intracranial schwannomas treated with SRS [50-M
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54]. Excellent symptomatic pain improvement has also 
been demonstrated over the course of months, with only 
a minority of patients experiencing persistent symp-
toms requiring surgical salvage therapy. Outcomes may 
be influenced by patients with NF, as surgical series 
have demonstrated adverse outcomes in this patient 
subset [7, 11]. Rates of NF among SBRT series ranges 
up to 41% of the total population [16], with potential 
for higher rates relative to surgical series due to the 
multiplicative and refractory nature of these lesions. 
Although no clear association between NF and local 
control for schwannomas has been evident thus far, 
this association may be limited due to the low patient 
numbers and limited follow up. Although encouraging, 
continued follow up is necessary to confirm outcomes.

SPINAL NEUROFIBROMAS

Neurofibromas comprise about 3.5% of all spinal 
tumors [6, 42]. Surgical resection is still preferred 
for pathologic confirmation in non-NF1/NF2 patients 
and given transformation risk on NF1/NF2 patients. 
However, lesions are more commonly found on the 
ventral nerve root and require a more complex sur-
gical approach [5, 49, 55]. Therefore, non-surgical 
approaches are often considered given the burden of 
disease seen in many patients.

A series from University of Pittsburgh reported out-
comes of 25 patients with neurofibromas treated with 
CyberKnife-based SBRT [16]. Most (80%) were asso-
ciated with NF1 and presented with pain (52%) or neu-
rological deficits (16%). Patients were treated to a mean 
dose of 21.3 Gy in a single fraction. At a median fol-
low up of 37 months, the tumor control rate was 100%. 
Among symptomatic patients, 77% achieved improved 
or stable pain, while 50% of patients with motor deficits 
showed improved function. No patients experienced 
late spinal cord toxicity or malignant transformation.

In the Stanford University series, 24 spinal neurofi-
bromas were treated with CyberKnife-based SBRT to 
a median dose of 20 Gy over a median of 2 fractions 
[25]. After a median follow up of 29 months, all lesions 
were controlled locally despite only 18% demonstrat-
ing any significant radiographic regression. A minority 
of patients (17%) experienced pain relief, while 33% 
experienced worsening pain. Two patients required sur-
gical resection due to refractory symptoms.

Other series have also shown neurofibromas to 
be relatively difficult to control. In a UCSF series, at 
a median follow up of 25 months, Dr. Sahgal noted 
one radiographic failure and one symptomatic failure 
among 11 patients treated for spinal neurofibromas to 
doses of 21 Gy in 3 fractions and 30 Gy in 3 fractions, 

respectively [35]. Dr. Selch’s group also reported wors-
ening symptoms in 2 of 8 patients treated with SBRT 
despite radiographic control [36].

Among benign tumors treated with SBRT, neurofi-
bromas appear to be the most symptomatic, with the 
poorest clinical response after treatment. The infiltra-
tive nature of the lesions causes the tumor margins to 
be less distinct, making them more prone to marginal 
recurrences. Additionally, neurofibromas are associated 
with NF1, where multiple lesions may be present and 
treatments may be less effective due to failure to treat 
the appropriate symptomatic lesion [25, 42, 46, 56]. 
Similar poor response rates have been seen in surgical 
series [6, 61]. Despite these findings, radiographic con-
trol remained high, and there were no significant late 
toxicities, although further follow up is necessary to 
confirm these findings.

RADIATION TOXICITIES

The most feared potential toxicity of SBRT for BSTs 
is radiation myelopathy. Traditionally, radiation myelop-
athy is diagnosed by the presence of neurological symp-
toms corresponding to an irradiated spinal cord segment, 
with correlative radiographic findings such as edema and 
necrosis, without evidence of other etiologies [58]. The 
main dosimetric risk factors for myelopathy include total 
dose, fraction size, length of spinal cord irradiation, and 
total duration of treatment [42, 59, 60]. The accepted spi-
nal cord dose with conventional fractionation is 45-50 
Gy at 1.8-2 Gy per fraction, resulting in a 0.03-0.1% risk 
of myelopathy between 6 and 24 months after treatment 
[42, 59-62]. With hypofractionated regimens, early esti-
mates of single fraction spinal cord tolerance had been 
quoted as 8-10 Gy [63, 64]. Recently, robust retrospec-
tive analyses have estimated the risk of myelopathy after 
partial volume spinal irradiation of 13 Gy in 1 fraction or 
20 Gy in 3 fractions to be <1% [65]. Dr. Sahgal reported 
a multi-institutional dosimetric analysis, based on 9 cases 
of grade 4 spinal cord toxicity compared against 66 con-
trols [27]. After normalizing the fractionation schemes 
by the equivalent dose in 2 Gy fractions (EQD2), a lin-
ear regression model showed significant differences in 
dose to the thecal sac among patients with and without 
myelopathy to volumes ranging from point doses to 0.8 
cc. The most significant differences were seen for maxi-
mum point doses, suggesting even small volumes of spi-
nal cord must be accounted for to practice SBRT safely. 
In the final analysis, investigators estimated the doses the 
thecal sac required to limit the risk of myelitis to < 5% 
were less than 12.4 Gy in 1 fraction, 17 Gy in 2 frac-
tions, 20.3 Gy in 3 fractions, 23 Gy in 4 fractions, or 
25.4 Gy in 5 fractions. With comparable local control in 
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a report of low-dose SBRT (BED
10Gy

 <30) versus high-
dose, and continued follow-up of long term toxicities, 
dose-deescalated SBRT to BSTs may also be an area of 
future investigation in select patients at increased risk of 
radiation toxicity. 

In the selected series, four patients presented with 
radiation-induced myelopathy (Table 2). The first 
patient was treated for a recurrent, 7.6 cc C7-T2 men-
ingioma, to a total prescription dose of 24 Gy in 3 
fractions. The dose volume histogram (DVH) analysis 
showed a 4.7 cc volume of spinal cord receiving over 
8 Gy, 0.1 cc volume receiving 27 Gy, and a max point 
dose 29.9 Gy. Approximately 9 months after treatment, 
the patient developed posterior column dysfunction 
with associated edema on imaging. After treatment with 
steroids, the patient’s symptoms resolved [42, 25].

Three patients in the University of Pittsburgh series 
experienced transient spinal cord compression after 
treatment for a meningioma and two schwannomas. All 
patients were treated for cervical lesions, two of which 
received previous subtotal resections. All received mar-
ginal prescription radiation doses of 20 Gy in a sin-
gle fraction and received 8 Gy to less than 0.02 cc of 
the spinal cord. At 5, 12, and 13 months from SBRT, 
each patient developed symptoms of Brown Sequard 
syndrome, including posterior column motor dysfunc-
tion to a strength of 4+/5 and associated T2 weighted 
changes on MRI. 

 After treatment with steroids, vitamin E, and gabap-
entin, with or without hyperbaric oxygen, two patients’ 
symptoms resolved completely, while one patient had 
5-/5 hemibody strength. Given the low doses delivered, 
authors postulated the previous surgical resection and/
or cervical treatment location may be risk factors for 
radiation injury.

Transient tumor swelling has also been demon-
strated in a subset of patients. In two series from a 
South Korean group, 37% and 56.9% spinal forami-
nal nerve sheath tumors and benign spinal neurogenic 
tumors, respectively, treated with single or multifrac-
tion SBRT showed transient swelling without wors-
ening of neurologic function [69]. As such, transient 
spinal cord compression requiring surgical interven-
tion can occur and has to be kept in mind after SBRT 
for benign spine tumors if new neurologic symptoms 
develop. 

CONCLUSION

SBRT for BSTs appears to be effective in terms of 
radiographic local control, regardless of histology, with 
rates approaching 100% at a median follow up of 18-43 
months. Symptomatic control remains less predictable. 

Good outcomes have been shown with pain control in 
meningiomas and schwannomas, but there’s room for 
improvement of motor deficits, patients with neurofi-
bromas, and those with NF1. Overall, SBRT of BSTs 
appears to be safe and effective at tumor control and 
symptom management in nonsurgical patients. More 
outcome data from larger patient databases with longer 
follow-up intervals are necessary to better define the 
role of SBRT in benign spinal tumors. Further research 
in this area is desperately needed.
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